1
|
Lin H, Qiu S, Yang Y, Yang C, Shen Z, Chen Y, Zhang Z, Feng Y, Yan F. Three-dimensional magnetic resonance elastography combining proton-density fat fraction precisely identifies metabolic dysfunction-associated steatohepatitis with significant fibrosis. Magn Reson Imaging 2023; 104:1-8. [PMID: 37553044 DOI: 10.1016/j.mri.2023.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/10/2023]
Abstract
PURPOSE Patients with metabolic dysfunction-associated steatohepatitis (MASH) and significant fibrosis (fibrosis stage≥2), known as Fibro-MASH, are at increased risk of liver-related outcomes and lower rates of spontaneous disease regression. The aim was to investigate three-dimensional MR elastography (3D-MRE) combining proton-density fat fraction (PDFF) as a means of identifying Fibro-MASH. METHODS Forty-eight New Zealand rabbits were fed a high-fat/cholesterol or standard diet to obtain different disease activity and fibrosis stages. Shear stiffness (SS) and Damping Ratio (DR) were derived from 3D-MRE, whereas PDFF was from a volumetric 3D imaging sequence. Steatosis grade, metabolic dysfunction-associated steatotic liver disease activity score (MAS), and fibrosis stage were diagnosed histologically. Serum markers of fibrosis and inflammation were also measured. Correlation and comparison analysis, Receiver operating characteristic curves (ROC), Delong test, logistic regression analysis, and Net reclassification improvement (NRI) were performed. RESULTS PDFF correlated with steatosis grade (rho = 0.853). SS increased with developed liver fibrosis (rho = 0.837). DR correlated with MAS grade (rho = 0.678). The areas under the ROC (AUROCs) of SS for fibrosis grading were 0.961 and 0.953 for ≥F2, and ≥ F3, respectively. All the biochemical parameters were considered but excluded from the logistic regression analysis to identify Fibro-MASH. FF, SS, and DR were finally included in the further analysis. The three-parameter model combining PDFF, SS, and DR showed significant improvement in NRI over the model combining SS and PDFF (AUROC 0.973 vs. 0.906, P = 0.081; NRI 0.28, P < 0.05). CONCLUSION 3D-MRE combining PDFF may characterize the state of fat content, disease activity and fibrosis, thus precisely identify Fibro-MASH.
Collapse
Affiliation(s)
- Huimin Lin
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Suhao Qiu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Yanzhao Yang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chunxue Yang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhehan Shen
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yu Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhihan Zhang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yuan Feng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Xu M, Tan J, Liu X, Han L, Ge C, Zhang Y, Luo F, Wang Z, Xue X, Xiong L, Wang X, Zhang Q, Wang X, Tian Q, Zhang S, Meng Q, Dai X, Kuang Q, Li Q, Lou D, Hu L, Liu X, Kuang G, Luo J, Chang C, Wang B, Chai J, Shi S, Han L. Tripartite motif containing 26 prevents steatohepatitis progression by suppressing C/EBPδ signalling activation. Nat Commun 2023; 14:6384. [PMID: 37821436 PMCID: PMC10567751 DOI: 10.1038/s41467-023-42040-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
Currently potential preclinical drugs for the treatment of nonalcoholic steatohepatitis (NASH) and NASH-related pathopoiesis have failed to achieve expected therapeutic efficacy due to the complexity of the pathogenic mechanisms. Here we show Tripartite motif containing 26 (TRIM26) as a critical endogenous suppressor of CCAAT/enhancer binding protein delta (C/EBPδ), and we also confirm that TRIM26 is an C/EBPδ-interacting partner protein that catalyses the ubiquitination degradation of C/EBPδ in hepatocytes. Hepatocyte-specific loss of Trim26 disrupts liver metabolic homeostasis, followed by glucose metabolic disorder, lipid accumulation, increased hepatic inflammation, and fibrosis, and dramatically facilitates NASH-related phenotype progression. Inversely, transgenic Trim26 overexpression attenuates the NASH-associated phenotype in a rodent or rabbit model. We provide mechanistic evidence that, in response to metabolic insults, TRIM26 directly interacts with C/EBPδ and promotes its ubiquitin proteasome degradation. Taken together, our present findings identify TRIM26 as a key suppressor over the course of NASH development.
Collapse
Affiliation(s)
- Minxuan Xu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China.
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, 400030, Chongqing, P. R. China.
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China.
| | - Xin Liu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Science, 250117, Jinan, P. R. China
| | - Li Han
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Science, 250117, Jinan, P. R. China
| | - Chenxu Ge
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, 400030, Chongqing, P. R. China
| | - Yujie Zhang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
| | - Fufang Luo
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
| | - Zhongqin Wang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
| | - Xiaoqin Xue
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
| | - Liangyin Xiong
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
| | - Xin Wang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
| | - Qinqin Zhang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
| | - Xiaoxin Wang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
| | - Qin Tian
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
| | - Shuguang Zhang
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Science, 250117, Jinan, P. R. China
| | - Qingkun Meng
- Geriatrics Department, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250117, Jinan, P. R. China
| | - Xianling Dai
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, 400030, Chongqing, P. R. China
| | - Qin Kuang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, 400030, Chongqing, P. R. China
| | - Qiang Li
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
| | - Deshuai Lou
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
| | - Linfeng Hu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, 400030, Chongqing, P. R. China
| | - Xi Liu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
| | - Gang Kuang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
| | - Jing Luo
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
| | - Chunxiao Chang
- Geriatrics Department, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250117, Jinan, P. R. China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, 400030, Chongqing, P. R. China
| | - Jie Chai
- Geriatrics Department, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250117, Jinan, P. R. China
| | - Shengbin Shi
- New Drug Technology R&D Center, Nanjing Biomed Sciences Inc., 210003, Nanjing, P. R. China.
| | - Lianyi Han
- Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, 315211, Shanghai, China.
| |
Collapse
|
4
|
Bao J, Zhang X, Zhao X. MR imaging and outcome in neonatal HIBD models are correlated with sex: the value of diffusion tensor MR imaging and diffusion kurtosis MR imaging. Front Neurosci 2023; 17:1234049. [PMID: 37790588 PMCID: PMC10543095 DOI: 10.3389/fnins.2023.1234049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/30/2023] [Indexed: 10/05/2023] Open
Abstract
Objective Hypoxic-ischemic encephalopathy can lead to lifelong morbidity and premature death in full-term newborns. Here, we aimed to determine the efficacy of diffusion kurtosis (DK) [mean kurtosis (MK)] and diffusion tensor (DT) [fractional anisotropy (FA), mean diffusion (MD), axial diffusion (AD), and radial diffusion (RD)] parameters for the early diagnosis of early brain histopathological changes and the prediction of neurodegenerative events in a full-term neonatal hypoxic-ischemic brain injury (HIBD) rat model. Methods The HIBD model was generated in postnatal day 7 Sprague-Dawley rats to assess the changes in DK and DT parameters in 10 specific brain structural regions involving the gray matter, white matter, and limbic system during acute (12 h) and subacute (3 d and 5 d) phases after hypoxic ischemia (HI), which were validated against histology. Sensory and cognitive parameters were assessed by the open field, novel object recognition, elevated plus maze, and CatWalk tests. Results Repeated-measures ANOVA revealed that specific brain structures showed similar trends to the lesion, and the temporal pattern of MK was substantially more varied than DT parameters, particularly in the deep gray matter. The change rate of MK in the acute phase (12 h) was significantly higher than that of DT parameters. We noted a delayed pseudo-normalization for MK. Additionally, MD, AD, and RD showed more pronounced differences between males and females after HI compared to MK, which was confirmed in behavioral tests. HI females exhibited anxiolytic hyperactivity-like baseline behavior, while the memory ability of HI males was affected in the novel object recognition test. CatWalk assessments revealed chronic deficits in limb gait parameters, particularly the left front paw and right hind paw, as well as poorer performance in HI males than HI females. Conclusions Our results suggested that DK and DT parameters were complementary in the immature brain and provided great value in assessing early tissue microstructural changes and predicting long-term neurobehavioral deficits, highlighting their ability to detect both acute and long-term changes. Thus, the various diffusion coefficient parameters estimated by the DKI model are powerful tools for early HIBD diagnosis and prognosis assessment, thus providing an experimental and theoretical basis for clinical treatment.
Collapse
Affiliation(s)
- Jieaoxue Bao
- Department of Imaging, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Neuroimaging, Zhengzhou, China
| | - Xiaoan Zhang
- Department of Imaging, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Neuroimaging, Zhengzhou, China
| | - Xin Zhao
- Department of Imaging, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Neuroimaging, Zhengzhou, China
| |
Collapse
|
6
|
Peng Y, Ye J, Liu C, Jia H, Sun J, Ling J, Prince M, Li C, Luo X. Simultaneous hepatic iron and fat quantification with dual-energy CT in a rabbit model of coexisting iron and fat. Quant Imaging Med Surg 2021; 11:2001-2012. [PMID: 33936981 DOI: 10.21037/qims-20-902] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Liver iron and fat are often co-deposited, synergistically aggravating the progression of chronic liver disease. Accurate determination of liver iron and fat content is helpful for patient management. To assess the accuracy of hepatic iron/fat decomposition using dual-energy computed tomography (DECT) for simultaneously quantifying hepatic iron and fat when both are present. Methods Sixty-eight New Zealand rabbits on a high-fat/cholesterol diet plus iron injections were used to establish a model of coexisting hepatic iron/fat. Abdominal imaging was performed using dual-source DECT. The iron and fat fractions (Iron-CT and Fat-CT, respectively) were calculated using a 3-material decomposition algorithm. The spectroscopic liver iron concentration (LIC) grading (normal, mild, moderate, severe, and massive iron overload) and the histopathological fat fraction (Fat-ref) grading (normal, mild, moderate, severe steatosis) were used as references. Correlations between the DECT parameters and the references were analyzed. Hepatic iron/fat quantification equations were established and validated. Analysis of covariance was used to assess the influence of fat on iron measurements and vice versa. Results Iron-CT highly correlated with LIC (r=0.94, P<0.001), and Fat-CT highly correlated with Fat-ref (r=0.88, P<0.001). Both the Iron-CT- and Fat-CT-derived LIC and fat fraction showed good agreement with spectroscopy/histology. The linear relationship between Iron-CT and spectroscopic LIC was not affected by the grade of hepatic fat (F=1.93, P=0.16). The linear relationship between Fat-CT and Fat-ref was unaffected by hepatic iron grades from normal to severe (F=0.18, P=0.91). However, with massive iron overload [>15.0 mg Fe/g (270 µmol/g)] the regression began to deviate, causing fat underestimation (F=5.50, P=0.04). Conclusions Our DECT-based iron/fat decomposition algorithm accurately measured hepatic iron and fat when both were present in a rabbit model. Hepatic fat may be underestimated when there is massive iron overload.
Collapse
Affiliation(s)
- Yun Peng
- Department of Radiology, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Jing Ye
- Department of Radiology, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Chang Liu
- Department of Radiology, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Hongru Jia
- Department of Radiology, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Jun Sun
- Department of Radiology, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Jun Ling
- Department of Radiology, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Martin Prince
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, USA
| | - Chang Li
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xianfu Luo
- Department of Radiology, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Xiao J, He X, Tian J, Chen H, Liu J, Yang C. Diffusion kurtosis imaging and pathological comparison of early hypoxic-ischemic brain damage in newborn piglets. Sci Rep 2020; 10:17242. [PMID: 33057162 PMCID: PMC7560608 DOI: 10.1038/s41598-020-74387-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 09/28/2020] [Indexed: 12/28/2022] Open
Abstract
To investigate the application value of magnetic resonance diffusion kurtosis imaging (DKI) in hypoxic–ischemic brain damage (HIBD) in newborn piglets and to compare imaging and pathological results. Of 36 piglets investigated, 18 were in the experimental group and 18 in the control group. The HIBD model was established in newborn piglets by ligating the bilateral common carotid arteries and placing them into hypoxic chamber. All piglets underwent conventional MRI and DKI scans at 3, 6, 9, 12, 16, and 24 h postoperatively. Mean kurtosis (MK) and mean diffusivity (MD) maps were constructed. Then, the lesions were examined using light and electron microscopy and compared with DKI images. The MD value of the lesion area gradually decreased and the MK value gradually increased in the experimental group with time. The lesion areas gradually expanded with time; MK lesions were smaller than MD lesions. Light microscopy revealed neuronal swelling in the MK- and MD-matched and mismatched regions. Electron microscopy demonstrated obvious mitochondrial swelling and autophagosomes in the MK- and MD-matched region but normal mitochondrial morphology or mild swelling in the mismatched region. DKI can accurately evaluate early ischemic–hypoxic brain injury in newborn piglets.
Collapse
Affiliation(s)
- Juan Xiao
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, Liaoning, China
| | - Xiaoning He
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, Liaoning, China
| | - Juan Tian
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, Liaoning, China
| | - Honghai Chen
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, Liaoning, China
| | - Jing Liu
- Dalian Medical University, No. 9, West Section, South Lvshun Road, Dalian, Liaoning, China
| | - Chao Yang
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, Liaoning, China.
| |
Collapse
|