1
|
Qu S, Shi S, Quan Z, Gao Y, Wang M, Wang Y, Pan G, Lai HY, Roe AW, Zhang X. Design and application of a multimodality-compatible 1Tx/6Rx RF coil for monkey brain MRI at 7T. Neuroimage 2023; 276:120185. [PMID: 37244320 DOI: 10.1016/j.neuroimage.2023.120185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/09/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023] Open
Abstract
OBJECTIVE Blood-oxygen-level-dependent functional MRI allows to investigte neural activities and connectivity. While the non-human primate plays an essential role in neuroscience research, multimodal methods combining functional MRI with other neuroimaging and neuromodulation enable us to understand the brain network at multiple scales. APPROACH In this study, a tight-fitting helmet-shape receive array with a single transmit loop for anesthetized macaque brain MRI at 7T was fabricated with four openings constructed in the coil housing to accommodate multimodal devices, and the coil performance was quantitatively evaluated and compared to a commercial knee coil. In addition, experiments over three macaques with infrared neural stimulation (INS), focused ultrasound stimulation (FUS), and transcranial direct current stimulation (tDCS) were conducted. MAIN RESULTS The RF coil showed higher transmit efficiency, comparable homogeneity, improved SNR and enlarged signal coverage over the macaque brain. Infrared neural stimulation was applied to the amygdala in deep brain region, and activations in stimulation sites and connected sites were detected, with the connectivity consistent with anatomical information. Focused ultrasound stimulation was applied to the left visual cortex, and activations were acquired along the ultrasound traveling path, with all time course curves consistent with pre-designed paradigms. The existence of transcranial direct current stimulation electrodes brought no interference to the RF system, as evidenced through high-resolution MPRAGE structure images. SIGNIFICANCE This pilot study reveals the feasibility for brain investigation at multiple spatiotemporal scales, which may advance our understanding in dynamic brain networks.
Collapse
Affiliation(s)
- Shuxian Qu
- The Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China
| | - Sunhang Shi
- The Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China
| | - Zhiyan Quan
- The Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China
| | - Yang Gao
- The Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China; College of Electrical Engineering, Zhejiang University, Hangzhou, China
| | - Minmin Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
| | - Yueming Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China; State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
| | - Gang Pan
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China; State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China.
| | - Hsin-Yi Lai
- The Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China; Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| | - Anna Wang Roe
- The Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China; Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiaotong Zhang
- The Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China; Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; College of Electrical Engineering, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Lou F, Tang X, Quan Z, Qian M, Wang J, Qu S, Gao Y, Wang Y, Pan G, Lai HY, Roe AW, Zhang X. A 16-channel loop array for in vivo macaque whole-brain imaging at 7 T. Magn Reson Imaging 2023:S0730-725X(23)00110-8. [PMID: 37356599 DOI: 10.1016/j.mri.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Combining multimodal approaches with functional magnetic resonance imaging (fMRI) has catapulted the research on brain circuitries of non-human primates (NHPs) into a new era. However, many studies are constrained by a lack of appropriate RF coils. In this study,a single loop transmit and 16-channel receive array coil was constructed for brain imaging of macaques at 7 Tesla (7 T). The 16 receive channels were mounted on a 3D-printed helmet-shaped form closely fiting the macaque head, with fourteen openings arranged for multimodal devices around the cortical regions. Coil performance was evaluated by quantifying and comparing signal-to-noise ratio (SNR) maps, noise correlations, g-factor maps and flip-angle maps with a 28-channel commercial knee coil. The in vivo results suggested that the macaque coil has higher SNR in cortical regions and better acceleration ability in parallel imaging, which may benefit revealing mesoscale organizations in the brain.
Collapse
Affiliation(s)
- Feiyang Lou
- The Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China
| | - Xiaocui Tang
- The Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China
| | - Zhiyan Quan
- The Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China; Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Meizhen Qian
- The Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China; Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jianbao Wang
- The Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China
| | - Shuxian Qu
- The Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China; Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Yang Gao
- The Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China; Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Yueming Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China; State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
| | - Gang Pan
- The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China; College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Hsin-Yi Lai
- The Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China; Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Anna Wang Roe
- The Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China; Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaotong Zhang
- The Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China; Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; College of Electrical Engineering, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Zheng M, Gao Y, Quan Z, Zhang X. The design and evaluation of single-channel loopole coils at 7T MRI. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac8fdf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 09/06/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. Improving the local uniformity of
B
1
+
field for awake monkey brain magnetic resonance imaging (MRI) at ultra-high fields while facilitating convenient placement and fixation of MRI-compatible multimodal devices for neuroscience study, can eventually advance our understanding of the primate’s brain organization. Approach. A group of single-channel RF coils including conventional loop coils and loopole coils sharing the same size and shape were designed for comparison; their performance as the transmit coil was quantitatively evaluated through a series of numerical electromagnetic (EM) simulations, and further verified by using 7T MRI over a saline phantom and a monkey in vivo. Main results. Compared to conventional loop coils, the optimized loopole coil brought up to 23.5%
B
1
+
uniformity improvement for monkey brain imaging in EM simulations, and this performance was further verified over monkey brain imaging at 7T in vivo. Importantly, we have systematically explored the underlying mechanism regarding the relationship between loopole coils’ current density distribution and
B
1
+
uniformity, observing that it can be approximated as a sinusoidal curve. Significance. The proposed loopole coil design can improve the imaging quality in awake and behaving monkeys, thus benefiting advanced brain research at UHF.
Collapse
|
4
|
Song X, García-Saldivar P, Kindred N, Wang Y, Merchant H, Meguerditchian A, Yang Y, Stein EA, Bradberry CW, Ben Hamed S, Jedema HP, Poirier C. Strengths and challenges of longitudinal non-human primate neuroimaging. Neuroimage 2021; 236:118009. [PMID: 33794361 PMCID: PMC8270888 DOI: 10.1016/j.neuroimage.2021.118009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 01/20/2023] Open
Abstract
Longitudinal non-human primate neuroimaging has the potential to greatly enhance our understanding of primate brain structure and function. Here we describe its specific strengths, compared to both cross-sectional non-human primate neuroimaging and longitudinal human neuroimaging, but also its associated challenges. We elaborate on factors guiding the use of different analytical tools, subject-specific versus age-specific templates for analyses, and issues related to statistical power.
Collapse
Affiliation(s)
- Xiaowei Song
- Preclinical Pharmacology Section, Intramural Research Program, NIDA, NIH, Baltimore, MD 21224, USA
| | - Pamela García-Saldivar
- Instituto de Neurobiología, UNAM, Campus Juriquilla. Boulevard Juriquilla No. 3001 Querétaro, Qro. 76230, México
| | - Nathan Kindred
- Biosciences Institute & Centre for Behaviour and Evolution, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Yujiang Wang
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Complex Systems Group, School of Computing, Newcastle University, United Kingdom
| | - Hugo Merchant
- Instituto de Neurobiología, UNAM, Campus Juriquilla. Boulevard Juriquilla No. 3001 Querétaro, Qro. 76230, México
| | - Adrien Meguerditchian
- Laboratoire de Psychologie Cognitive, UMR7290, Université Aix-Marseille/CNRS, Institut Language, Communication and the Brain 13331 Marseille, France
| | - Yihong Yang
- Neuroimaging Research Branch, Intramural Research Program, NIDA, NIH, Baltimore, MD 21224, USA
| | - Elliot A Stein
- Neuroimaging Research Branch, Intramural Research Program, NIDA, NIH, Baltimore, MD 21224, USA
| | - Charles W Bradberry
- Preclinical Pharmacology Section, Intramural Research Program, NIDA, NIH, Baltimore, MD 21224, USA
| | - Suliann Ben Hamed
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, Université de Lyon - CNRS, France
| | - Hank P Jedema
- Preclinical Pharmacology Section, Intramural Research Program, NIDA, NIH, Baltimore, MD 21224, USA.
| | - Colline Poirier
- Biosciences Institute & Centre for Behaviour and Evolution, Faculty of Medical Sciences, Newcastle University, United Kingdom.
| |
Collapse
|
5
|
Hartig R, Glen D, Jung B, Logothetis NK, Paxinos G, Garza-Villarreal EA, Messinger A, Evrard HC. The Subcortical Atlas of the Rhesus Macaque (SARM) for neuroimaging. Neuroimage 2021; 235:117996. [PMID: 33794360 DOI: 10.1016/j.neuroimage.2021.117996] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 12/20/2022] Open
Abstract
Digitized neuroanatomical atlases that can be overlaid onto functional data are crucial for localizing brain structures and analyzing functional networks identified by neuroimaging techniques. To aid in functional and structural data analysis, we have created a comprehensive parcellation of the rhesus macaque subcortex using a high-resolution ex vivo structural imaging scan. This anatomical scan and its parcellation were warped to the updated NIMH Macaque Template (NMT v2), an in vivo population template, where the parcellation was refined to produce the Subcortical Atlas of the Rhesus Macaque (SARM) with 210 primary regions-of-interest (ROIs). The subcortical parcellation and nomenclature reflect those of the 4th edition of the Rhesus Monkey Brain in Stereotaxic Coordinates (Paxinos et al., in preparation), rather than proposing yet another novel atlas. The primary ROIs are organized across six spatial hierarchical scales from small, fine-grained ROIs to broader composites of multiple ROIs, making the SARM suitable for analysis at different resolutions and allowing broader labeling of functional signals when more accurate localization is not possible. As an example application of this atlas, we have included a functional localizer for the dorsal lateral geniculate (DLG) nucleus in three macaques using a visual flickering checkerboard stimulus, identifying and quantifying significant fMRI activation in this atlas region. The SARM has been made openly available to the neuroimaging community and can easily be used with common MRI data processing software, such as AFNI, where the atlas has been embedded into the software alongside cortical macaque atlases.
Collapse
Affiliation(s)
- Renée Hartig
- Centre for Integrative Neurosciences, University of Tübingen, Tübingen, Germany; Max Planck Institute for Biological Cybernetics, Tübingen, Germany; Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Daniel Glen
- Scientific and Statistical Computing Core, National Institute of Mental Health, Bethesda, USA
| | - Benjamin Jung
- Department of Neuroscience, Brown University, Providence, RI, USA; Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, USA
| | - Nikos K Logothetis
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany; University of Manchester, Manchester, United Kingdom; International Center for Primate Brain Research, Songjiang, Shanghai, PR China
| | - George Paxinos
- Neuroscience Research Australia and The University of New South Wales, Sydney, NSW 2031, Australia
| | - Eduardo A Garza-Villarreal
- Instituto de Neurobiologia, Universidad Nacional Autónoma de México campus Juriquilla, Queretaro, Mexico.
| | - Adam Messinger
- Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, USA.
| | - Henry C Evrard
- Centre for Integrative Neurosciences, University of Tübingen, Tübingen, Germany; Max Planck Institute for Biological Cybernetics, Tübingen, Germany; Nathan S. Kline Institute for Psychiatric Research, Center for Biomedical Imaging and Neuromodulation, Orangeburg, NY, USA; International Center for Primate Brain Research, Songjiang, Shanghai, PR China.
| |
Collapse
|
6
|
Zhang X, Zhang J, Gao Y, Qian M, Qu S, Quan Z, Yu M, Chen X, Wang Y, Pan G, Adriany G, Roe AW. A 16-Channel Dense Array for In Vivo Animal Cortical MRI/fMRI on 7T Human Scanners. IEEE Trans Biomed Eng 2020; 68:1611-1618. [PMID: 32991277 DOI: 10.1109/tbme.2020.3027296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE The purpose of the present study was to fabricate a novel RF coil exclusively for visualizing submillimeter tissue structure and probing neuronal activity in cerebral cortex over anesthetized and awake animals on 7T human scanners. METHODS A novel RF coil design has been proposed for visualizing submillimeter tissue structure and probing neuronal activity in cerebral cortex over anesthetized and awake animals on 7T human scanners: a local transmit coil was utilized to save space for auxiliary device installation; 16 receive-only loops were densely arranged over a 5 cm-diameter circular area, with a diameter of 1.3 cm for each loop. RESULTS In anesthetized macaque experiments, 60 μm T2*-weighted images were successfully obtained with cortical gyri and sulci exquisitely visualized; over awake macaques, bilateral activations of visual areas including V1, V2, V4, and MST were distinctly detected at 1 mm; over the cat, robust activations were recorded in areas 17 and 18 (V1 and V2) as well as in their connected area of lateral geniculate nucleus (LGN) at 0.3 mm resolution. CONCLUSION The promising brain imaging results along with flexibility in various size use of the presented design can be an effective and maneuverable solution to take one step close towards mesoscale cortical-related imaging. SIGNIFICANCE High-spatial-resolution brain imaging over large animals by using ultra-high-field (UHF) MRI will be helpful to understand and reveal functional brain organizations and the underlying mechanism in diseases.
Collapse
|