1
|
Yan B, Zhao T, Deng Y, Zhang Y. Preoperative prediction of lymph node metastasis in endometrial cancer patients via an intratumoral and peritumoral multiparameter MRI radiomics nomogram. Front Oncol 2024; 14:1472892. [PMID: 39364314 PMCID: PMC11446724 DOI: 10.3389/fonc.2024.1472892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Introduction While lymph node metastasis (LNM) plays a critical role in determining treatment options for endometrial cancer (EC) patients, the existing preoperative methods for evaluating the lymph node state are not always satisfactory. This study aimed to develop and validate a nomogram based on intra- and peritumoral radiomics features and multiparameter magnetic resonance imaging (MRI) features to preoperatively predict LNM in EC patients. Methods Three hundred and seventy-four women with histologically confirmed EC were divided into training (n = 220), test (n = 94), and independent validation (n = 60) cohorts. Radiomic features were extracted from intra- and peritumoral regions via axial T2-weighted imaging (T2WI) and apparent diffusion coefficient (ADC) mapping. A radiomics model (annotated as the Radscore) was established using the selected features from different regions. The clinical parameters were statistically analyzed. A nomogram was developed by combining the Radscore and the most predictive clinical parameters. Decision curve analysis (DCA) and the net reclassification index (NRI) were used to assess the clinical benefit of using the nomogram. Results Nine radiomics features were ultimately selected from the intra- and peritumoral regions via ADC mapping and T2WI. The nomogram combining the Radscore, serum CA125 level, and tumor area ratio achieved the highest AUCs in the training, test and independent validation sets (nomogram vs. Radscore vs. clinical model: 0.878 vs. 0.850 vs. 0.674 (training), 0.877 vs. 0.838 vs. 0.668 (test), and 0.864 vs. 0.836 vs. 0.618 (independent validation)). The DCA and NRI results revealed the nomogram had greater diagnostic performance and net clinical benefits than the Radscore alone. Conclusion The combined intra- and peritumoral region multiparameter MRI radiomics nomogram showed good diagnostic performance and could be used to preoperatively predict LNM in patients with EC.
Collapse
Affiliation(s)
- Bin Yan
- Department of Radiology, Shaanxi Provincial Tumor Hospital, Xi’an, China
| | - Tingting Zhao
- Department of Medical Imaging, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Ying Deng
- Department of Radiology, Shaanxi Provincial Tumor Hospital, Xi’an, China
| | - Yili Zhang
- Department of Medical Oncology, Shaanxi Provincial Tumor Hospital, Xi’an, China
| |
Collapse
|
2
|
Yu H, Tang B, Fu Y, Wei W, He Y, Dai G, Xiao Q. Quantifying the reproducibility and longitudinal repeatability of radiomics features in magnetic resonance Image-Guide accelerator Imaging: A phantom study. Eur J Radiol 2024; 181:111735. [PMID: 39276402 DOI: 10.1016/j.ejrad.2024.111735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/22/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
OBJECTIVE This study aimed to quantitatively evaluate the inter-platform reproducibility and longitudinal acquisition repeatability of MRI radiomics features in Fluid-Attenuated Inversion Recovery (FLAIR), T2-weighted (T2W), and T1-weighted (T1W) sequences on MR-Linac systems using an American College of Radiology (ACR) phantom. MATERIALS AND METHODS This study used two MR-Linac systems (A and B) in different cancer centers. The ACR phantom was scanned on system A daily for 30 consecutive days to evaluate longitudinal repeatability. Additionally, retest data were collected after repositioning the phantom. Inter-platform reproducibility was assessed by conducting scans under identical conditions using system B. Regions of interest were delineated on the T1W sequence from system A and mapped to other sequences via rigid registration. Intra-observer and inter-observer comparisons were conducted. Repeatability and reproducibility were assessed using the intraclass correlation coefficient (ICC) and coefficient of variation (CV). Robust radiomics features were identified based on ICC>0.9 and CV<10 %. RESULTS Analysis showed that a higher proportion of radiomics features derived from longitudinal FLAIR sequence (51.65 %) met robustness criteria compared to T2W (48.35 %) and T1W (43.96 %). Additionally, more inter-platform features from the FLAIR sequence (62.64 %) were robust compared to T2W (42.86 %) and T1W (39.56 %). Test-retest and intra-observer repeatability were excellent across all sequences, with a median ICC of 0.99 and CV<5%. However, inter-observer reproducibility was inferior, especially for the T1W sequence. CONCLUSIONS Different sequences show variations in repeatability and reproducibility. The FLAIR sequence demonstrated advantages in both longitudinal repeatability and inter-platform reproducibility. Caution is warranted when interpreting data, particularly in longitudinal or multiplatform radiomics studies.
Collapse
Affiliation(s)
- Hang Yu
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Bin Tang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory Of Sichuan Province, Sichuan Cancer Hospital& Institute, Chengdu, Sichuan, China
| | - Yuchuan Fu
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China.
| | - Weige Wei
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Yisong He
- Medical Physics Laboratory, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Guyu Dai
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Qing Xiao
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| |
Collapse
|
3
|
Liu W, Wang W, Guo M, Zhang H. Tumor habitat and peritumoral region evolution-based imaging features to assess risk categorization of thymomas. Clin Radiol 2024; 79:e1117-e1125. [PMID: 38862335 DOI: 10.1016/j.crad.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024]
Abstract
AIM To develop an aggregate model that integrated clinical data, habitat characteristics, and intratumoral and peritumoral features to assess the risk categorization of thymomas. MATERIALS AND METHODS We retrospectively analyzed 140 thymoma patients (70 low-risk and 70 high-risk), including pathological data. The patients were randomly divided into training cohort (n = 114) and test cohort (n = 26). The k-means clustering was utilized to partition the primary tumor into habitats based on intratumoral radiomic features, 6 distinct habitats were identified. By expanding the region of interest (ROI) mask, 2 peritumoral regions were obtained. Finally, 7 clinical characteristics, 3 habitat values, 20 radiomic features were utilized to develop an aggregated model, to predict the risk of thymoma. Shapley additive explanations (SHAP) interpretation was used for features importance ranking. The accuracy and area under curve (AUC) were used to analyze the performance of the models. RESULTS The aggregated model, which utilized the XGBoost classifier, demonstrated the best performance with an AUC of 0.811 and an accuracy of 0.769. In comparison, the radiomic model produced an AUC of 0.654 and an accuracy of 0.692. Additionally, the Intratumoral + peritumoral model exhibited an AUC of 0.728 and an accuracy of 0.769. CONCLUSION Our study establishes a novel tool to predict the risk of thymoma with a good performance. If prospectively validated, the model may refine thymoma patient selection for risk-adaptative therapy and improve prognosis.
Collapse
Affiliation(s)
- W Liu
- School of Health Management, China Medical University, Shenyang City, Liaoning Province, PR China.
| | - W Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang City, Liaoning Province, PR China.
| | - M Guo
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang City, Liaoning Province, PR China.
| | - H Zhang
- Department of Radiology, Liaoning Cancer Hospital and Institute, Shenyang City, Liaoning Province, PR China.
| |
Collapse
|
4
|
Sun Y, Liang F, Yang J, Liu Y, Shen Z, Zhou C, Xia Y. Pilot study: radiomic analysis for predicting treatment response to whole-brain radiotherapy combined temozolomide in lung cancer brain metastases. Front Oncol 2024; 14:1395313. [PMID: 39193384 PMCID: PMC11347322 DOI: 10.3389/fonc.2024.1395313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Objective The objective of this study is to assess the viability of utilizing radiomics for predicting the treatment response of lung cancer brain metastases (LCBM) to whole-brain radiotherapy (WBRT) combined with temozolomide (TMZ). Methods Fifty-three patients diagnosed with LCBM and undergoing WBRT combined with TMZ were enrolled. Patients were divided into responsive and non-responsive groups based on the RANO-BM criteria. Radiomic features were extracted from contrast-enhanced the whole brain tissue CT images. Feature selection was performed using t-tests, Pearson correlation coefficients, and Least Absolute Shrinkage And Selection (LASSO) regression. Logistic regression was employed to construct the radiomics model, which was then integrated with clinical data to develop the nomogram model. Model performance was evaluated using receiver operating characteristic (ROC) curves, and clinical utility was assessed using decision curve analysis (DCA). Results A total of 1834 radiomic features were extracted from each patient's images, and 3 features with predictive value were selected. Both the radiomics and nomogram models exhibited satisfactory predictive performance and clinical utility, with the nomogram model demonstrating superior predictive value. The ROC analysis revealed that the AUC of the radiomics model in the training and testing sets were 0.776 and 0.767, respectively, while the AUC of the nomogram model were 0.799 and 0.833, respectively. DCA curves demonstrated that both models provided benefits to patients across various thresholds. Conclusion Radiomic-defined image biomarkers can effectively predict the treatment response of WBRT combined with TMZ in patients with LCBM, offering potential to optimize treatment decisions for this condition.
Collapse
Affiliation(s)
- Yichu Sun
- Department of Radiation Oncology, The First People's Hospital of Lianyungang/Lianyungang Clinical College of Nanjing Medical University, Lianyungang, Jiangsu, China
| | - Fei Liang
- Department of Radiation Oncology, The First People's Hospital of Lianyungang/Lianyungang Clinical College of Nanjing Medical University, Lianyungang, Jiangsu, China
| | - Jing Yang
- Department of Radiation Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Yong Liu
- Department of Radiation Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Ziqiang Shen
- Department of Radiation Oncology, The First People's Hospital of Lianyungang/Lianyungang Clinical College of Nanjing Medical University, Lianyungang, Jiangsu, China
| | - Chong Zhou
- Department of Radiation Oncology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Youyou Xia
- Department of Radiation Oncology, The First People's Hospital of Lianyungang/Lianyungang Clinical College of Nanjing Medical University, Lianyungang, Jiangsu, China
- Department of Radiation Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| |
Collapse
|
5
|
Tian R, Lu G, Zhao N, Qian W, Ma H, Yang W. Constructing the Optimal Classification Model for Benign and Malignant Breast Tumors Based on Multifeature Analysis from Multimodal Images. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:1386-1400. [PMID: 38381383 PMCID: PMC11300407 DOI: 10.1007/s10278-024-01036-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/22/2024]
Abstract
The purpose of this study was to fuse conventional radiomic and deep features from digital breast tomosynthesis craniocaudal projection (DBT-CC) and ultrasound (US) images to establish a multimodal benign-malignant classification model and evaluate its clinical value. Data were obtained from a total of 487 patients at three centers, each of whom underwent DBT-CC and US examinations. A total of 322 patients from dataset 1 were used to construct the model, while 165 patients from datasets 2 and 3 formed the prospective testing cohort. Two radiologists with 10-20 years of work experience and three sonographers with 12-20 years of work experience semiautomatically segmented the lesions using ITK-SNAP software while considering the surrounding tissue. For the experiments, we extracted conventional radiomic and deep features from tumors from DBT-CCs and US images using PyRadiomics and Inception-v3. Additionally, we extracted conventional radiomic features from four peritumoral layers around the tumors via DBT-CC and US images. Features were fused separately from the intratumoral and peritumoral regions. For the models, we tested the SVM, KNN, decision tree, RF, XGBoost, and LightGBM classifiers. Early fusion and late fusion (ensemble and stacking) strategies were employed for feature fusion. Using the SVM classifier, stacking fusion of deep features and three peritumoral radiomic features from tumors in DBT-CC and US images achieved the optimal performance, with an accuracy and AUC of 0.953 and 0.959 [CI: 0.886-0.996], a sensitivity and specificity of 0.952 [CI: 0.888-0.992] and 0.955 [0.868-0.985], and a precision of 0.976. The experimental results indicate that the fusion model of deep features and peritumoral radiomic features from tumors in DBT-CC and US images shows promise in differentiating benign and malignant breast tumors.
Collapse
Affiliation(s)
- Ronghui Tian
- College of Medicine and Biological Information Engineering, Northeastern University, No. 195 Chuangxin Road, Hunnan District, Shenyang, 110819, Liaoning Province, China
| | - Guoxiu Lu
- College of Medicine and Biological Information Engineering, Northeastern University, No. 195 Chuangxin Road, Hunnan District, Shenyang, 110819, Liaoning Province, China
- Department of Nuclear Medicine, General Hospital of Northern Theatre Command, No. 83 Wenhua Road, Shenhe District, Shenyang, 110016, Liaoning Province, China
| | - Nannan Zhao
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No. 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, China
| | - Wei Qian
- College of Medicine and Biological Information Engineering, Northeastern University, No. 195 Chuangxin Road, Hunnan District, Shenyang, 110819, Liaoning Province, China
| | - He Ma
- College of Medicine and Biological Information Engineering, Northeastern University, No. 195 Chuangxin Road, Hunnan District, Shenyang, 110819, Liaoning Province, China
| | - Wei Yang
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No. 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, China.
| |
Collapse
|
6
|
Li X, Lin J, Qi H, Dai C, Guo Y, Lin D, Zhou J. Radiomics predict the WHO/ISUP nuclear grade and survival in clear cell renal cell carcinoma. Insights Imaging 2024; 15:175. [PMID: 38992169 PMCID: PMC11239644 DOI: 10.1186/s13244-024-01739-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/08/2024] [Indexed: 07/13/2024] Open
Abstract
OBJECTIVES This study aimed to assess the predictive value of radiomics derived from intratumoral and peritumoral regions and to develop a radiomics nomogram to predict preoperative nuclear grade and overall survival (OS) in patients with clear cell renal cell carcinoma (ccRCC). METHODS The study included 395 patients with ccRCC from our institution. The patients in Center A (anonymous) institution were randomly divided into a training cohort (n = 284) and an internal validation cohort (n = 71). An external validation cohort comprising 40 patients from Center B also was included. Computed tomography (CT) radiomics features were extracted from the internal area of the tumor (IAT) and IAT combined peritumoral areas of the tumor at 3 mm (PAT 3 mm) and 5 mm (PAT 5 mm). Independent predictors from both clinical and radiomics scores (Radscore) were used to construct a radiomics nomogram. Kaplan-Meier analysis with a log-rank test was performed to evaluate the correlation between factors and OS. RESULTS The PAT 5-mm radiomics model (RM) exhibited exceptional predictive capability for grading, achieving an area under the curves of 0.80, 0.80, and 0.90 in the training, internal validation, and external validation cohorts. The nomogram and RM gained from the PAT 5-mm region were more clinically useful than the clinical model. The association between OS and predicted nuclear grade derived from the PAT 5-mm Radscore and the nomogram-predicted score was statistically significant (p < 0.05). CONCLUSION The CT-based radiomics and nomograms showed valuable predictive capabilities for the World Health Organization/International Society of Urological Pathology grade and OS in patients with ccRCC. CRITICAL RELEVANCE STATEMENT The intratumoral and peritumoral radiomics are feasible and promising to predict nuclear grade and overall survival in patients with clear cell renal cell carcinoma, which can contribute to the development of personalized preoperative treatment strategies. KEY POINTS The multi-regional radiomics features are associated with clear cell renal cell carcinoma (ccRCC) grading and prognosis. The combination of intratumoral and peritumoral 5 mm regional features demonstrated superior predictive performance for grading. The nomogram and radiomics models have a broad range of clinical applications.
Collapse
Affiliation(s)
- Xiaoxia Li
- Department of Radiology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
| | - Jinglai Lin
- Department of Urology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
| | - Hongliang Qi
- Department of Clinical Engineering, Southern Medical University, Nanfang Hospital, Guangzhou, 510515, China
| | - Chenchen Dai
- Department of Radiology, Zhongshan Hospital, Fudan University, No 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Yi Guo
- Department of Radiology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
| | - Dengqiang Lin
- Department of Urology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China.
| | - Jianjun Zhou
- Department of Radiology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China.
- Department of Radiology, Zhongshan Hospital, Fudan University, No 180, Fenglin Road, Xuhui District, Shanghai, 200032, China.
- Xiamen Municipal Clinical Research Center for Medical Imaging, Xiamen, 361015, China.
- Fujian Province Key Clinical Specialty for Medical Imaging, Xiamen, 361015, China.
- Xiamen Key Laboratory of Clinical Transformation of Imaging Big Data and Artificial Intelligence, Xiamen, 361015, China.
| |
Collapse
|
7
|
Ma NN, Wang T, Lv YN, Li SD. An MRI radiomics-based model for the prediction of invasion of the lymphovascular space in patients with cervical cancer. Front Oncol 2024; 14:1394427. [PMID: 39035734 PMCID: PMC11259963 DOI: 10.3389/fonc.2024.1394427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024] Open
Abstract
Background Cervical cancer (CC) remains the second leading cause of cancer-related death in women, and the ability to accurately anticipate the presence or absence of lymphovascular space invasion (LVSI) is critical to maintaining optimal patient outcomes. The objective of this study was to establish and verify an MRI radiomics-based model to predict the status of LVSI in patients with operable CC. Methods The current study performed a retrospective analysis, with 86 patients in the training cohort and 38 patients in the testing group, specifically focusing on patients with CC. The radiomics feature extraction process included ADC, T2WI-SPAIR, and T2WI sequences. The training group data were used for the initial radionics-based model building, and the model predictive performance was subsequently validated using data from patients recruited in the experimental group. Results The development of the radiomics scoring model has been completed with 17 selected features. The study found several risk factors associated with LVSI. These risk factors included moderate tumor differentiation (P = 0.005), poor tumor differentiation (P = 0.001), and elevated combined sequence-based radiomics scores (P = 0.001). Radiomics scores based on predictive model, combined sequences, ADC, T2WI-SPAIR, and T2WI exhibited AUCs of 0.897, 0.839, 0.815, 0.698, and 0.739 in the training cohort, respectively, with corresponding testing cohort values of 0.833, 0.833, 0.683, 0.692, and 0.725. Excellent consistency was shown by the calibration curve analysis, which showed a higher degree of agreement between the actual and anticipated LVSI status. Moreover, the decision curve analysis outcomes demonstrated the medical application of this prediction model. Conclusion This investigation indicated that the MRI radiomics model was successfully developed and validated to predict operable CC patient LVSI status, attaining high overall diagnostic accuracy. However, further external validation and more deeper analysis on a larger sample size are still needed.
Collapse
Affiliation(s)
- Nan-Nan Ma
- Department of Medical Imaging, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Tao Wang
- Department of Radiology, Xuzhou Central Hospital, Xuzhou, China
| | - Ya-Nan Lv
- Department of Radiology, Xuzhou Universal Medical Imaging Diagnostic Center, Xuzhou, China
| | - Shao-Dong Li
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
8
|
Wu L, Li S, Li S, Lin Y, Wei D. Preoperative magnetic resonance imaging-radiomics in cervical cancer: a systematic review and meta-analysis. Front Oncol 2024; 14:1416378. [PMID: 39026971 PMCID: PMC11254676 DOI: 10.3389/fonc.2024.1416378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/27/2024] [Indexed: 07/20/2024] Open
Abstract
Background The purpose of this systematic review and meta-analysis is to evaluate the potential significance of radiomics, derived from preoperative magnetic resonance imaging (MRI), in detecting deep stromal invasion (DOI), lymphatic vascular space invasion (LVSI) and lymph node metastasis (LNM) in cervical cancer (CC). Methods A rigorous and systematic evaluation was conducted on radiomics studies pertaining to CC, published in the PubMed database prior to March 2024. The area under the curve (AUC), sensitivity, and specificity of each study were separately extracted to evaluate the performance of preoperative MRI radiomics in predicting DOI, LVSI, and LNM of CC. Results A total of 4, 7, and 12 studies were included in the meta-analysis of DOI, LVSI, and LNM, respectively. The overall AUC, sensitivity, and specificity of preoperative MRI models in predicting DOI, LVSI, and LNM were 0.90, 0.83 (95% confidence interval [CI], 0.75-0.89) and 0.83 (95% CI, 0.74-0.90); 0.85, 0.80 (95% CI, 0.73-0.86) and 0.75 (95% CI, 0.66-0.82); 0.86, 0.79 (95% CI, 0.74-0.83) and 0.80 (95% CI, 0.77-0.83), respectively. Conclusion MRI radiomics has demonstrated considerable potential in predicting DOI, LVSI, and LNM in CC, positioning it as a valuable tool for preoperative precision evaluation in CC patients.
Collapse
Affiliation(s)
| | | | | | | | - Dayou Wei
- Department of Medical Ultrasound, Maoming People’s Hospital, Maoming, Guangdong, China
| |
Collapse
|
9
|
Xin W, Rixin S, Linrui L, Zhihui Q, Long L, Yu Z. Machine learning-based radiomics for predicting outcomes in cervical cancer patients undergoing concurrent chemoradiotherapy. Comput Biol Med 2024; 177:108593. [PMID: 38801795 DOI: 10.1016/j.compbiomed.2024.108593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024]
Abstract
PURPOSES To investigate the value of machine learning-based radiomics for predicting disease-free survival (DFS) and overall survival (OS) undergoing concurrent chemoradiotherapy (CCRT) for patients with locally advanced cervical cancer (LACC). MATERIALS AND METHODS In this multicentre study, 700 patients with IB2-IVA cervical cancer who underwent CCRT with ongoing follow-up were retrospectively analyzed. Three-dimensional radiomics features of primary lesions and its surrounding 5 mm region in T2WI sequences were collected. Six machine learning methods were used to construct the optimal radiomics model for accurate prediction of DFS and OS after CCRT in LACC patients. Eventually, TCGA and GEO databases were used to explore the mechanisms of radiomics in predicting the progression and survival of cervical cancer. This study adhered CLEAR for reporting and its quality was assessed using RQS and METRICS. RESULTS In the prediction of DFS, the RSF model combined tumor and peritumor radiomics demonstrated the best predictive efficacy, with the AUC for predicting 1-year, 3-year, and 5-year DFS in the training, validation, and test sets of 0.986, 0.989, 0.990, and 0.884, 0.838, 0.823, and 0.829, 0.809, 0.841, respectively. In the prediction of OS, the GBM model best performer, with AUC of 0.999, 0.995, 0.978, and 0.981, 0.975, 0.837, and 0.904, 0.860, 0.905. Differential genes in TCGA and GEO suggest that the prediction of radiomics model may be associated with KDELR2 and HK2. CONCLUSION Machine learning-based radiomics models help to predict DFS and OS after CCRT in LACC patients, and the combination of tumor and peritumor information has higher predictive efficacy, which can provide a reliable basis for therapeutic decision-making in cervical cancer patients.
Collapse
Affiliation(s)
- Wang Xin
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Su Rixin
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Li Linrui
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Qin Zhihui
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Liu Long
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Zhejiang University, Hangzhou, 310000, Zhejiang, China.
| | - Zhang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
| |
Collapse
|
10
|
Mo S, Huang C, Wang Y, Zhao H, Wu W, Jiang H, Qin S. Endoscopic ultrasonography-based intratumoral and peritumoral machine learning radiomics analyses for distinguishing insulinomas from non-functional pancreatic neuroendocrine tumors. Front Endocrinol (Lausanne) 2024; 15:1383814. [PMID: 38952387 PMCID: PMC11215175 DOI: 10.3389/fendo.2024.1383814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
Objectives To develop and validate radiomics models utilizing endoscopic ultrasonography (EUS) images to distinguish insulinomas from non-functional pancreatic neuroendocrine tumors (NF-PNETs). Methods A total of 106 patients, comprising 61 with insulinomas and 45 with NF-PNETs, were included in this study. The patients were randomly assigned to either the training or test cohort. Radiomics features were extracted from both the intratumoral and peritumoral regions, respectively. Six machine learning algorithms were utilized to train intratumoral prediction models, using only the nonzero coefficient features. The researchers identified the most effective intratumoral radiomics model and subsequently employed it to develop peritumoral and combined radiomics models. Finally, a predictive nomogram for insulinomas was constructed and assessed. Results A total of 107 radiomics features were extracted based on EUS, and only features with nonzero coefficients were retained. Among the six intratumoral radiomics models, the light gradient boosting machine (LightGBM) model demonstrated superior performance. Furthermore, a peritumoral radiomics model was established and evaluated. The combined model, integrating both the intratumoral and peritumoral radiomics features, exhibited a comparable performance in the training cohort (AUC=0.876) and achieved the highest accuracy in predicting outcomes in the test cohorts (AUC=0.835). The Delong test, calibration curves, and decision curve analysis (DCA) were employed to validate these findings. Insulinomas exhibited a significantly smaller diameter compared to NF-PNETs. Finally, the nomogram, incorporating diameter and radiomics signature, was constructed and assessed, which owned superior performance in both the training (AUC=0.929) and test (AUC=0.913) cohorts. Conclusion A novel and impactful radiomics model and nomogram were developed and validated for the accurate differentiation of NF-PNETs and insulinomas utilizing EUS images.
Collapse
Affiliation(s)
- Shuangyang Mo
- Gastroenterology Department, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, China
- Gastroenterology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Cheng Huang
- Oncology Department, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Yingwei Wang
- Gastroenterology Department, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Huaying Zhao
- Gastroenterology Department, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Wenhong Wu
- Gastroenterology Department, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Haixing Jiang
- Gastroenterology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shanyu Qin
- Gastroenterology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
11
|
Yichu S, Fei L, Ying L, Youyou X. Potential of radiomics analysis and machine learning for predicting brain metastasis in newly diagnosed lung cancer patients. Clin Radiol 2024; 79:e807-e816. [PMID: 38395696 DOI: 10.1016/j.crad.2024.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/05/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024]
Abstract
AIM To explore the potential of utilising radiomics analysis and machine-learning models that incorporate intratumoural and peritumoural regions of interest (ROIs) for predicting brain metastasis (BM) in newly diagnosed lung cancer patients. MATERIALS AND METHODS The study comprised 183 lung cancer patients (training cohort: n=146; validation cohort: n=37) whose radiomics features were extracted from plain computed tomography (CT) images of the primary lesion. Four machine-learning algorithms (logistic regression [LR], support vector machine [SVM], k-nearest neighbour algorithm [KNN], and random forest [RF]) were employed to develop predictive models. Model diagnostic performance was assessed through receiver operating characteristic (ROC) analysis, and clinical utility was evaluated using decision curve analysis (DCA). Finally, the radiomics model's generalisation ability was further validated in the prediction of metachronous brain metastasis (MBM). RESULTS After feature screening, 22 radiomics features were identified as highly predictive, of which nine were derived from the peritumour region. All four machine-learning models demonstrated predictive capability, with SVM showing superior efficiency and robustness. The area under the ROC curve (AUC) of SVM was 0.918 in the training cohort and 0.901 in the validation cohort. DCA indicated the highest net benefit. Furthermore, the time-dependent ROC curve exhibited predictive efficacy for MBM occurrence across 1-, 2-, and 3-year follow-up periods, with all AUC values exceeding 0.7. CONCLUSION The optimal SVM model integrating intratumoural and peritumoural radiomics features was confirmed and defined as an imaging biomarker for predicting BM in newly diagnosed lung cancer patients, underscoring its potential to significantly impact clinical diagnosis and treatment.
Collapse
Affiliation(s)
- S Yichu
- Department of Radiation Oncology, The First People's Hospital of Lianyungang/ Lianyungang Clinical College of Nanjing Medical University, Lianyungang City, Jiangsu Province, 222000, China
| | - L Fei
- Department of Radiation Oncology, The First People's Hospital of Lianyungang/ Lianyungang Clinical College of Nanjing Medical University, Lianyungang City, Jiangsu Province, 222000, China
| | - L Ying
- Department of Radiology, The First People's Hospital of Lianyungang, Lianyungang City, Jiangsu Province, 222000, China
| | - X Youyou
- Department of Radiation Oncology, The First People's Hospital of Lianyungang/ Lianyungang Clinical College of Nanjing Medical University, Lianyungang City, Jiangsu Province, 222000, China.
| |
Collapse
|
12
|
Kajabwangu R, Bajunirwe F, Izudi J, Bazira J, Ssedyabane F, Kayondo M, Lugobe HM, Turanzomwe S, Randall TC, Ngonzi J. Late Stage at Diagnosis of Cervical Cancer and Its Correlates at a Large Regional Referral Hospital in Uganda: A Cross-Sectional Study. Cureus 2024; 16:e62702. [PMID: 39036129 PMCID: PMC11259160 DOI: 10.7759/cureus.62702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2024] [Indexed: 07/23/2024] Open
Abstract
Background The stage of disease at diagnosis is one of the major determinants of survival in women with cervical cancer. Most women with cervical cancer in low- and middle-income countries (LMICs) present to hospitals with advanced stages, thus reducing their survivorship following the diagnosis. Factors correlated with late-stage disease at diagnosis are not completely explored. This study aimed to describe the association between sociodemographic, clinical, and metabolic characteristics with late-stage disease at diagnosis in women with cervical cancer attending the Mbarara Regional Referral Hospital in Southwestern Uganda. Methodology We conducted a cross-sectional study of women with histological diagnoses of invasive cervical cancer between November 2022 and August 2023. Women who presented to the hospital with the International Federation of Gynecology and Obstetrics stage IIb and above were considered to have late-stage cervical cancer while those with stage IIa and below were considered to have early-stage disease. We used modified Poisson regression to determine the factors independently associated with the outcome. Results We enrolled 157 women. The average age of the participants was 52.4 years. The majority of the participants (83.4%) had late-stage disease at diagnosis. Women with adenocarcinoma (adjusted prevalence ratio (aPR) = 1.18, 95% confidence interval (CI) = 1.10-1.38) and those with lymphovascular space involvement on histology (aPR = 1.30, 95% CI = 1.05-1.60) were more likely to have late-stage disease at diagnosis while women living with human immunodeficiency virus (aPR = 0.83, 95% CI = 0.71-0.97) were less likely to present with late-stage disease at diagnosis. None of the sociodemographic and metabolic characteristics were associated with late-stage disease at diagnosis. Conclusions The number of women presenting with late-stage cervical cancer is high. Efforts to increase the availability and uptake of cervical cancer screening services in LMICs should be reinforced. Cervical cancer treatment services should be decentralized to increase accessibility.
Collapse
Affiliation(s)
- Rogers Kajabwangu
- Department of Obstetrics and Gynaecology, Mbarara University of Science and Technology, Mbarara, UGA
| | - Francis Bajunirwe
- Department of Community Health, Mbarara University of Science and Technology, Mbarara, UGA
| | - Jonathan Izudi
- Department of Community Health, Mbarara University of Science and Technology, Mbarara, UGA
| | - Joel Bazira
- Department of Microbiology, Mbarara University of Science and Technology, Mbarara, UGA
| | - Frank Ssedyabane
- Department of Medical Laboratory Science, Mbarara University of Science and Technology, Mbarara, UGA
| | - Musa Kayondo
- Department of Obstetrics and Gynaecology, Mbarara University of Science and Technology, Mbarara, UGA
| | - Henry M Lugobe
- Department of Obstetrics and Gynaecology, Mbarara University of Science and Technology, Mbarara, UGA
| | - Stuart Turanzomwe
- Department of Obstetrics and Gynaecology, Mbarara University of Science and Technology, Mbarara, UGA
| | - Thomas C Randall
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, USA
| | - Joseph Ngonzi
- Department of Obstetrics and Gynaecology, Mbarara University of Science and Technology, Mbarara, UGA
| |
Collapse
|
13
|
Tan R, Sui C, Wang C, Zhu T. MRI-based intratumoral and peritumoral radiomics for preoperative prediction of glioma grade: a multicenter study. Front Oncol 2024; 14:1401977. [PMID: 38803534 PMCID: PMC11128562 DOI: 10.3389/fonc.2024.1401977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Background Accurate preoperative prediction of glioma is crucial for developing individualized treatment decisions and assessing prognosis. In this study, we aimed to establish and evaluate the value of integrated models by incorporating the intratumoral and peritumoral features from conventional MRI and clinical characteristics in the prediction of glioma grade. Methods A total of 213 glioma patients from two centers were included in the retrospective analysis, among which, 132 patients were classified as the training cohort and internal validation set, and the remaining 81 patients were zoned as the independent external testing cohort. A total of 7728 features were extracted from MRI sequences and various volumes of interest (VOIs). After feature selection, 30 radiomic models depended on five sets of machine learning classifiers, different MRI sequences, and four different combinations of predictive feature sources, including features from the intratumoral region only, features from the peritumoral edema region only, features from the fusion area including intratumoral and peritumoral edema region (VOI-fusion), and features from the intratumoral region with the addition of features from peritumoral edema region (feature-fusion), were established to select the optimal model. A nomogram based on the clinical parameter and optimal radiomic model was constructed for predicting glioma grade in clinical practice. Results The intratumoral radiomic models based on contrast-enhanced T1-weighted and T2-flair sequences outperformed those based on a single MRI sequence. Moreover, the internal validation and independent external test underscored that the XGBoost machine learning classifier, incorporating features extracted from VOI-fusion, showed superior predictive efficiency in differentiating between low-grade gliomas (LGG) and high-grade gliomas (HGG), with an AUC of 0.805 in the external test. The radiomic models of VOI-fusion yielded higher prediction efficiency than those of feature-fusion. Additionally, the developed nomogram presented an optimal predictive efficacy with an AUC of 0.825 in the testing cohort. Conclusion This study systematically investigated the effect of intratumoral and peritumoral radiomics to predict glioma grading with conventional MRI. The optimal model was the XGBoost classifier coupled radiomic model based on VOI-fusion. The radiomic models that depended on VOI-fusion outperformed those that depended on feature-fusion, suggesting that peritumoral features should be rationally utilized in radiomic studies.
Collapse
Affiliation(s)
- Rui Tan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunxiao Sui
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Chao Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University Dezhou Hospital (Dezhou People’s Hospital), Shandong, China
| | - Tao Zhu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
14
|
Han W, Wang Y, Li T, Dong Y, Dang Y, He L, Xu L, Zhou Y, Li Y, Wang X. A CT-based integrated model for preoperative prediction of occult lymph node metastasis in early tongue cancer. PeerJ 2024; 12:e17254. [PMID: 38685941 PMCID: PMC11057426 DOI: 10.7717/peerj.17254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/26/2024] [Indexed: 05/02/2024] Open
Abstract
Background Occult lymph node metastasis (OLNM) is an essential prognostic factor for early-stage tongue cancer (cT1-2N0M0) and a determinant of treatment decisions. Therefore, accurate prediction of OLNM can significantly impact the clinical management and outcomes of patients with tongue cancer. The aim of this study was to develop and validate a multiomics-based model to predict OLNM in patients with early-stage tongue cancer. Methods The data of 125 patients diagnosed with early-stage tongue cancer (cT1-2N0M0) who underwent primary surgical treatment and elective neck dissection were retrospectively analyzed. A total of 100 patients were randomly assigned to the training set and 25 to the test set. The preoperative contrast-enhanced computed tomography (CT) and clinical data on these patients were collected. Radiomics features were extracted from the primary tumor as the region of interest (ROI) on CT images, and correlation analysis and the least absolute shrinkage and selection operator (LASSO) method were used to identify the most relevant features. A support vector machine (SVM) classifier was constructed and compared with other machine learning algorithms. With the same method, a clinical model was built and the peri-tumoral and intra-tumoral images were selected as the input for the deep learning model. The stacking ensemble technique was used to combine the multiple models. The predictive performance of the integrated model was evaluated for accuracy, sensitivity, specificity, and the area under the receiver operating characteristic curve (AUC-ROC), and compared with expert assessment. Internal validation was performed using a stratified five-fold cross-validation approach. Results Of the 125 patients, 41 (32.8%) showed OLNM on postoperative pathological examination. The integrated model achieved higher predictive performance compared with the individual models, with an accuracy of 84%, a sensitivity of 100%, a specificity of 76.5%, and an AUC-ROC of 0.949 (95% CI [0.870-1.000]). In addition, the performance of the integrated model surpassed that of younger doctors and was comparable to the evaluation of experienced doctors. Conclusions The multiomics-based model can accurately predict OLNM in patients with early-stage tongue cancer, and may serve as a valuable decision-making tool to determine the appropriate treatment and avoid unnecessary neck surgery in patients without OLNM.
Collapse
Affiliation(s)
- Wei Han
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Department of Otolaryngology, Head and Neck Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yingshu Wang
- Department of Radiology, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Tao Li
- Department of Otolaryngology, Head and Neck Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yuke Dong
- Department of Otolaryngology, Head and Neck Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yanwei Dang
- Department of Otolaryngology, Head and Neck Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Liang He
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Lianfang Xu
- Department of Otolaryngology, Head and Neck Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yuhao Zhou
- Department of Otolaryngology, Head and Neck Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yujie Li
- Department of Otolaryngology, Head and Neck Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xudong Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| |
Collapse
|
15
|
Li Z, Wang F, Zhang H, Xie S, Peng L, Xu H, Wang Y. A radiomics strategy based on CT intra-tumoral and peritumoral regions for preoperative prediction of neoadjuvant chemoradiotherapy for esophageal cancer. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024; 50:108052. [PMID: 38447320 DOI: 10.1016/j.ejso.2024.108052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 03/08/2024]
Abstract
OBJECTIVE Develop a method for selecting esophageal cancer patients achieving pathological complete response with pre-neoadjuvant therapy chest-enhanced CT scans. METHODS Two hundred and one patients from center 1 were enrolled, split into training and testing sets (7:3 ratio), with an external validation set of 30 patients from center 2. Radiomics features from intra-tumoral and peritumoral images were extracted and dimensionally reduced using Student's t-test and least absolute shrinkage and selection operator. Four machine learning classifiers were employed to build models, with the best-performing models selected based on accuracy and stability. ROC curves were utilized to determine the top prediction model, and its generalizability was evaluated on the external validation set. RESULTS Among 16 models, the integrated-XGBoost and integrated-random forest models performed the best, with average ROC AUCs of 0.906 and 0.918, respectively, and RSDs of 6.26 and 6.89 in the training set. In the testing set, AUCs were 0.845 and 0.871, showing no significant difference in ROC curves. External validation set AUCs for integrated-XGBoost and integrated-random forest models were 0.650 and 0.749. CONCLUSION Incorporating peritumoral radiomics features into the analysis enhances predictive performance for esophageal cancer patients undergoing neoadjuvant chemoradiotherapy, paving the way for improved treatment outcomes.
Collapse
Affiliation(s)
- Zhiyang Li
- Department of Thoracic Surgery, West China Hospital, Sichuan University, China; West China School of Medicine, West China Hospital, Sichuan University, China
| | - Fuqiang Wang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, China; West China School of Medicine, West China Hospital, Sichuan University, China
| | - Hanlu Zhang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, China
| | - Shenglong Xie
- Department of Thoracic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Peng
- Department of Thoracic Surgery, West China Hospital, Sichuan University, China
| | - Hui Xu
- Department of Radiology, West China Hospital, Sichuan University, China.
| | - Yun Wang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, China.
| |
Collapse
|
16
|
Huang H, Chen H, Zheng D, Chen C, Wang Y, Xu L, Wang Y, He X, Yang Y, Li W. Habitat-based radiomics analysis for evaluating immediate response in colorectal cancer lung metastases treated by radiofrequency ablation. Cancer Imaging 2024; 24:44. [PMID: 38532520 DOI: 10.1186/s40644-024-00692-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/20/2024] [Indexed: 03/28/2024] Open
Abstract
PURPOSE To create radiomics signatures based on habitat to assess the instant response in lung metastases of colorectal cancer (CRC) after radiofrequency ablation (RFA). METHODS Between August 2016 and June 2019, we retrospectively included 515 lung metastases in 233 CRC patients who received RFA (412 in the training group and 103 in the test group). Multivariable analysis was performed to identify independent risk factors for developing the clinical model. Tumor and ablation regions of interest (ROI) were split into three spatial habitats through K-means clustering and dilated with 5 mm and 10 mm thicknesses. Radiomics signatures of intratumor, peritumor, and habitat were developed using the features extracted from intraoperative CT data. The performance of these signatures was primarily evaluated using the area under the receiver operating characteristics curve (AUC) via the DeLong test, calibration curves through the Hosmer-Lemeshow test, and decision curve analysis. RESULTS A total of 412 out of 515 metastases (80%) achieved complete response. Four clinical variables (cancer antigen 19-9, simultaneous systemic treatment, site of lung metastases, and electrode type) were utilized to construct the clinical model. The Habitat signature was combined with the Peri-5 signature, which achieved a higher AUC than the Peri-10 signature in the test set (0.825 vs. 0.816). The Habitat+Peri-5 signature notably surpassed the clinical and intratumor radiomics signatures (AUC: 0.870 in the test set; both, p < 0.05), displaying improved calibration and clinical practicality. CONCLUSIONS The habitat-based radiomics signature can offer precise predictions and valuable assistance to physicians in developing personalized treatment strategies.
Collapse
Affiliation(s)
- Haozhe Huang
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Xuhui District, 130 Dongan Road, Shanghai, 200032, China
| | - Hong Chen
- Department of Medical Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wanping Road, Xuhui District, Shanghai, 200030, China
| | - Dezhong Zheng
- Laboratory for Medical Imaging Informatics, Shanghai Institute of Technical Physics, Chinese Academy of Science, 500 Yutian Road, Hongkou District, Shanghai, 200083, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Chao Chen
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Xuhui District, 130 Dongan Road, Shanghai, 200032, China
| | - Ying Wang
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Xuhui District, 130 Dongan Road, Shanghai, 200032, China
| | - Lichao Xu
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Xuhui District, 130 Dongan Road, Shanghai, 200032, China
| | - Yaohui Wang
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Xuhui District, 130 Dongan Road, Shanghai, 200032, China
| | - Xinhong He
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Xuhui District, 130 Dongan Road, Shanghai, 200032, China
| | - Yuanyuan Yang
- Laboratory for Medical Imaging Informatics, Shanghai Institute of Technical Physics, Chinese Academy of Science, 500 Yutian Road, Hongkou District, Shanghai, 200083, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing, 100049, China.
| | - Wentao Li
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui District, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Xuhui District, 130 Dongan Road, Shanghai, 200032, China.
| |
Collapse
|
17
|
Zhang XF, Wu HY, Liang XW, Chen JL, Li J, Zhang S, Liu Z. Deep-learning-based radiomics of intratumoral and peritumoral MRI images to predict the pathological features of adjuvant radiotherapy in early-stage cervical squamous cell carcinoma. BMC Womens Health 2024; 24:182. [PMID: 38504245 PMCID: PMC10949581 DOI: 10.1186/s12905-024-03001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 02/27/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Surgery combined with radiotherapy substantially escalates the likelihood of encountering complications in early-stage cervical squamous cell carcinoma(ESCSCC). We aimed to investigate the feasibility of Deep-learning-based radiomics of intratumoral and peritumoral MRI images to predict the pathological features of adjuvant radiotherapy in ESCSCC and minimize the occurrence of adverse events associated with the treatment. METHODS A dataset comprising MR images was obtained from 289 patients who underwent radical hysterectomy and pelvic lymph node dissection between January 2019 and April 2022. The dataset was randomly divided into two cohorts in a 4:1 ratio.The postoperative radiotherapy options were evaluated according to the Peter/Sedlis standard. We extracted clinical features, as well as intratumoral and peritumoral radiomic features, using the least absolute shrinkage and selection operator (LASSO) regression. We constructed the Clinical Signature (Clinic_Sig), Radiomics Signature (Rad_Sig) and the Deep Transformer Learning Signature (DTL_Sig). Additionally, we fused the Rad_Sig with the DTL_Sig to create the Deep Learning Radiomic Signature (DLR_Sig). We evaluated the prediction performance of the models using the Area Under the Curve (AUC), calibration curve, and Decision Curve Analysis (DCA). RESULTS The DLR_Sig showed a high level of accuracy and predictive capability, as demonstrated by the area under the curve (AUC) of 0.98(95% CI: 0.97-0.99) for the training cohort and 0.79(95% CI: 0.67-0.90) for the test cohort. In addition, the Hosmer-Lemeshow test, which provided p-values of 0.87 for the training cohort and 0.15 for the test cohort, respectively, indicated a good fit. DeLong test showed that the predictive effectiveness of DLR_Sig was significantly better than that of the Clinic_Sig(P < 0.05 both the training and test cohorts). The calibration plot of DLR_Sig indicated excellent consistency between the actual and predicted probabilities, while the DCA curve demonstrating greater clinical utility for predicting the pathological features for adjuvant radiotherapy. CONCLUSION DLR_Sig based on intratumoral and peritumoral MRI images has the potential to preoperatively predict the pathological features of adjuvant radiotherapy in early-stage cervical squamous cell carcinoma (ESCSCC).
Collapse
Grants
- 20211800500322 CHINA,Guangdong Sci-tech Commissoner
- 20211800500322 CHINA,Guangdong Sci-tech Commissoner
- 20211800500322 CHINA,Guangdong Sci-tech Commissoner
- 20231800935742 CHINA,Dongguan City Social Science and Technology Development (Key) Project
- 20231800935742 CHINA,Dongguan City Social Science and Technology Development (Key) Project
- 20231800935742 CHINA,Dongguan City Social Science and Technology Development (Key) Project
- 20231800935742 CHINA,Dongguan City Social Science and Technology Development (Key) Project
- 20221800902092 CHINA,Dongguan City Social Science and Technology Development Project
- 20221800902092 CHINA,Dongguan City Social Science and Technology Development Project
- 20221800902092 CHINA,Dongguan City Social Science and Technology Development Project
Collapse
Affiliation(s)
- Xue-Fang Zhang
- Radiotherapy department, Cancer center, The Tenth Affiliated Hospital, Southern Medical University(Dongguan People's Hospital), No.78 Wandaonan Road, Dongguan, 523059, Guangdong, People's Republic of China
- Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, Dongguan, 523059, Guangdong, People's Republic of China
| | - Hong-Yuan Wu
- Radiotherapy department, Cancer center, The Tenth Affiliated Hospital, Southern Medical University(Dongguan People's Hospital), No.78 Wandaonan Road, Dongguan, 523059, Guangdong, People's Republic of China
- Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, Dongguan, 523059, Guangdong, People's Republic of China
| | - Xu-Wei Liang
- Radiotherapy department, Cancer center, The Tenth Affiliated Hospital, Southern Medical University(Dongguan People's Hospital), No.78 Wandaonan Road, Dongguan, 523059, Guangdong, People's Republic of China
- Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, Dongguan, 523059, Guangdong, People's Republic of China
| | - Jia-Luo Chen
- Radiotherapy department, Cancer center, The Tenth Affiliated Hospital, Southern Medical University(Dongguan People's Hospital), No.78 Wandaonan Road, Dongguan, 523059, Guangdong, People's Republic of China
- Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, Dongguan, 523059, Guangdong, People's Republic of China
| | - Jianpeng Li
- Radiology Department, The Tenth Affiliated Hospital, Southern Medical University(Dongguan People's Hospital), No.78 Wandaonan Road, Dongguan, 523059, Guangdong, People's Republic of China
| | - Shihao Zhang
- Pathology Department, The Tenth Affiliated Hospital, Southern Medical University(Dongguan People's Hospital), No.78 Wandaonan Road, Dongguan, 523059, Guangdong, People's Republic of China
| | - Zhigang Liu
- Radiotherapy department, Cancer center, The Tenth Affiliated Hospital, Southern Medical University(Dongguan People's Hospital), No.78 Wandaonan Road, Dongguan, 523059, Guangdong, People's Republic of China.
- Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, Dongguan, 523059, Guangdong, People's Republic of China.
| |
Collapse
|
18
|
Li H, Chai L, Pu H, Yin LL, Li M, Zhang X, Liu YS, Pang MH, Lu T. T2WI-based MRI radiomics for the prediction of preoperative extranodal extension and prognosis in resectable rectal cancer. Insights Imaging 2024; 15:57. [PMID: 38411722 PMCID: PMC10899552 DOI: 10.1186/s13244-024-01625-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 01/18/2024] [Indexed: 02/28/2024] Open
Abstract
OBJECTIVE To investigate whether T2-weighted imaging (T2WI)-based intratumoral and peritumoral radiomics can predict extranodal extension (ENE) and prognosis in patients with resectable rectal cancer. METHODS One hundred sixty-seven patients with resectable rectal cancer including T3T4N + cases were prospectively included. Radiomics features were extracted from intratumoral, peritumoral 3 mm, and peritumoral-mesorectal fat on T2WI images. Least absolute shrinkage and selection operator regression were used for feature selection. A radiomics signature score (Radscore) was built with logistic regression analysis. The area under the receiver operating characteristic curve (AUC) was used to evaluate the performance of each Radscore. A clinical-radiomics nomogram was constructed by the most predictive radiomics signature and clinical risk factors. A prognostic model was constructed by Cox regression analysis to identify 3-year recurrence-free survival (RFS). RESULTS Age, cT stage, and lymph node-irregular border and/or adjacent fat invasion were identified as independent clinical risk factors to construct a clinical model. The nomogram incorporating intratumoral and peritumoral 3 mm Radscore and independent clinical risk factors achieved a better AUC than the clinical model in the training (0.799 vs. 0.736) and validation cohorts (0.723 vs. 0.667). Nomogram-based ENE (hazard ratio [HR] = 2.625, 95% CI = 1.233-5.586, p = 0.012) and extramural vascular invasion (EMVI) (HR = 2.523, 95% CI = 1.247-5.106, p = 0.010) were independent risk factors for predicting 3-year RFS. The prognostic model constructed by these two indicators showed good performance for predicting 3-year RFS in the training (AUC = 0.761) and validation cohorts (AUC = 0.710). CONCLUSION The nomogram incorporating intratumoral and peritumoral 3 mm Radscore and clinical risk factors could predict preoperative ENE. Combining nomogram-based ENE and MRI-reported EMVI may be useful in predicting 3-year RFS. CRITICAL RELEVANCE STATEMENT A clinical-radiomics nomogram could help preoperative predict ENE, and a prognostic model constructed by the nomogram-based ENE and MRI-reported EMVI could predict 3-year RFS in patients with resectable rectal cancer. KEY POINTS • Intratumoral and peritumoral 3 mm Radscore showed the most capability for predicting ENE. • Clinical-radiomics nomogram achieved the best predictive performance for predicting ENE. • Combining clinical-radiomics based-ENE and EMVI showed good performance for 3-year RFS.
Collapse
Affiliation(s)
- Hang Li
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32# Second Section of First Ring Road, Qingyang District, Chengdu, Sichuan, 610070, China
| | - Li Chai
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hong Pu
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32# Second Section of First Ring Road, Qingyang District, Chengdu, Sichuan, 610070, China
| | - Long-Lin Yin
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32# Second Section of First Ring Road, Qingyang District, Chengdu, Sichuan, 610070, China
- Institute of Radiation Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Mou Li
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32# Second Section of First Ring Road, Qingyang District, Chengdu, Sichuan, 610070, China
| | - Xin Zhang
- Pharmaceutical Diagnostic Team, GE Healthcare, Beijing, 100176, China
| | - Yi-Sha Liu
- Department of Pathology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32# Second Section of First Ring Road, Qingyang District, Chengdu, Sichuan, 610070, China
| | - Ming-Hui Pang
- Department of Geriatric Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32# Second Section of First Ring Road, Qingyang District, Chengdu, Sichuan, 610070, China
| | - Tao Lu
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32# Second Section of First Ring Road, Qingyang District, Chengdu, Sichuan, 610070, China.
| |
Collapse
|
19
|
Zhang H, Zhou B, Zhang H, Zhang Y, Lei Y, Huang B. Peritumoral Radiomics for Identification of Telomerase Reverse Transcriptase Promoter Mutation in Patients With Glioblastoma Based on Preoperative MRI. Can Assoc Radiol J 2024; 75:143-152. [PMID: 37552107 DOI: 10.1177/08465371231183309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
Purpose: To evaluate the value of intra- and peritumoral deep learning (DL) features based on multi-parametric magnetic resonance imaging (MRI) for identifying telomerase reverse transcriptase (TERT) promoter mutation in glioblastoma (GBM). Methods: In this study, we included 229 patients with GBM who underwent preoperative MRI in two hospitals between November 2016 and September 2022. We used four 2D Convolutional Neural Networks (GoogLeNet, DenseNet121, VGG16, and MobileNetV3-Large) to extract intra- and peritumoral DL features. The Mann-Whitney U test, Pearson correlation analysis, least absolute shrinkage and selection operator, and logistic regression analysis were used for feature selection and construction of DL radiomics (DLR) signatures in different regions. These multi-parametric and multi-region signatures were combined to identify TERT promoter mutation. The area under the receiver operating characteristic curve (AUC) was used to evaluate the effects of the signatures. Results: The signatures based on the DL features from the peritumoral regions with expansion distances of 2 mm, 8 mm, and 10 mm using the GoogLeNet architecture correlated with the optimal AUC values (test set: .823, .753, and .768) in the T2-weighted, T1-weighted contrast-enhanced, and T1-weighted images. Using the stacking fusion method, DLR with multi-parameter and multi-region fusion achieved the best discrimination with AUC values of .948 and .902 in the training and test sets, respectively. Conclusions: The radiomics model based on the fusion of multi-parameter MRI intra- and peritumoral DLR signatures may help to identify TERT promoter mutation in patients with GBM.
Collapse
Affiliation(s)
- Hongbo Zhang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Beibei Zhou
- Department of Radiology, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, China
| | - Hanwen Zhang
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yuze Zhang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yi Lei
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Biao Huang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
20
|
Zeng F, Ye Z, Zhou Q. CT-based peritumoral radiomics nomogram on prediction of response and survival to induction chemotherapy in locoregionally advanced nasopharyngeal carcinoma. J Cancer Res Clin Oncol 2024; 150:50. [PMID: 38286865 PMCID: PMC10824876 DOI: 10.1007/s00432-023-05590-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/22/2023] [Indexed: 01/31/2024]
Abstract
PURPOSE The study aims to harness the value of radiomics models combining intratumoral and peritumoral features obtained from pretreatment CT to predict treatment response as well as the survival of LA-NPC(locoregionally advanced nasopharyngeal carcinoma) patients receiving multiple types of induction chemotherapies, including immunotherapy and targeted therapy. METHODS 276 LA-NPC patients (221 in the training and 55 in the testing cohort) were retrospectively enrolled. Various statistical analyses and feature selection techniques were applied to identify the most relevant radiomics features. Multiple machine learning models were trained and compared to build signatures for the intratumoral and each peritumoral region, along with a clinical signature. The performance of each model was evaluated using different metrics. Subsequently, a nomogram model was constructed by combining the best-performing radiomics and clinical models. RESULTS In the testing cohort, the nomogram model exhibited an AUC of 0.816, outperforming the other models. The nomogram model's calibration curve showed good agreement between predicted and observed outcomes in both the training and testing sets. When predicting survival, the model's concordance index (C-index) was 0.888 in the training cohort and 0.899 in the testing cohort, indicating its robust predictive ability. CONCLUSION In conclusion, the combined nomogram model, incorporating radiomics and clinical features, outperformed other models in predicting treatment response and survival outcomes for LA-NPC patients receiving induction chemotherapies. These findings highlight the potential clinical utility of the model, suggesting its value in individualized treatment planning and decision-making.
Collapse
Affiliation(s)
- Fanyuan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhuomiao Ye
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Translational Medicine Research Center (TMRC), School of Medicine, Chongqing University, Shapingba, Chongqing, 400044, China
| | - Qin Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
21
|
Kajabwangu R, Bajunirwe F, Izudi J, Bazira J, Farjardo Y, Ssedyabane F, Lugobe HM, Muhumuza J, Kayondo M, Turanzomwe S, Randall TC, Ngonzi J. Magnitude and trends in cervical cancer at Mbarara Regional Referral Hospital in South Western Uganda: Retrospective analysis of data from 2017-2022. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0002848. [PMID: 38241290 PMCID: PMC10798516 DOI: 10.1371/journal.pgph.0002848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/29/2023] [Indexed: 01/21/2024]
Abstract
High-income countries have documented a significant decline in the incidence and mortality of cervical cancer over the past decade but such data from low and middle-income countries such as Uganda is limited to ascertain trends. There is also paucity of data on the burden of cervical cancer in comparison to other gynaecologic malignancies and there is a likelihood that the incidence might be on the rise. To describe the current trends and magnitude of cervical cancer in comparison to other gynaecological malignancies histological types, we conducted a retrospective records review of charts of patients admitted with gynaecological malignancies on the gynaecological ward of Mbarara Regional Referral Hospital (MRRH) between January 2017 and December 2022. Of 875 patients with gynaecological malignancies admitted to the MRRH in the 6-year review period, 721 (82.4%) had cervical cancer. Patients with cervical cancer were significantly older than those with other gynaecological malignancies: (50.2±11.5 versus 43.8± 15.0 respectively, p<0.001). Between 2017 and 2022, cervical cancer rates increased by 17% annually compared to other gynaecological cancers (OR:1.17; 95% CI 1.06-1.28, p = 0.0046), with the majority of patients of cervical cancer patients (92.7%, n = 668) having squamous cell carcinoma. Most patients (87.9%, n = 634) had late-stage disease (stage 2 and above) and were referred to the Uganda Cancer Institute for chemoradiation. These results imply that there is a need to scale up screening services and other preventive measures such as vaccination against human papilloma virus.
Collapse
Affiliation(s)
- Rogers Kajabwangu
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Francis Bajunirwe
- Department of Community Health, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Jonathan Izudi
- Department of Community Health, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Joel Bazira
- Department of Medical Microbiology, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Yarine Farjardo
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Frank Ssedyabane
- Department of Medical Laboratory Science, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Henry Mark Lugobe
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Joy Muhumuza
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Musa Kayondo
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Stuart Turanzomwe
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Thomas C. Randall
- Department of Obstetrics and Gynecology, Gynecological Oncology Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Joseph Ngonzi
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| |
Collapse
|
22
|
Xin P, Wang Q, Yan R, Chen Y, Zhu Y, Zhang E, Ren C, Lang N. Assessment of axial spondyloarthritis activity using a magnetic resonance imaging-based multi-region-of-interest fusion model. Arthritis Res Ther 2023; 25:227. [PMID: 38001465 PMCID: PMC10668377 DOI: 10.1186/s13075-023-03193-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/13/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Identifying axial spondyloarthritis (axSpA) activity early and accurately is essential for treating physicians to adjust treatment plans and guide clinical decisions promptly. The current literature is mostly focused on axSpA diagnosis, and there has been thus far, no study that reported the use of a radiomics approach for differentiating axSpA disease activity. In this study, the aim was to develop a radiomics model for differentiating active from non-active axSpA based on fat-suppressed (FS) T2-weighted (T2w) magnetic resonance imaging (MRI) of sacroiliac joints. METHODS This retrospective study included 109 patients diagnosed with non-active axSpA (n = 68) and active axSpA (n = 41); patients were divided into training and testing cohorts at a ratio of 8:2. Radiomics features were extracted from 3.0 T sacroiliac MRI using two different heterogeneous regions of interest (ROIs, Circle and Facet). Various methods were used to select relevant and robust features, and different classifiers were used to build Circle-based, Facet-based, and a fusion prediction model. Their performance was compared using various statistical parameters. p < 0.05 is considered statistically significant. RESULTS For both Circle- and Facet-based models, 2284 radiomics features were extracted. The combined fusion ROI model accurately differentiated between active and non-active axSpA, with high accuracy (0.90 vs.0.81), sensitivity (0.90 vs. 0.75), and specificity (0.90 vs. 0.85) in both training and testing cohorts. CONCLUSION The multi-ROI fusion radiomics model developed in this study differentiated between active and non-active axSpA using sacroiliac FS T2w-MRI. The results suggest MRI-based radiomics of the SIJ can distinguish axSpA activity, which can improve the therapeutic result and patient prognosis. To our knowledge, this is the only study in the literature that used a radiomics approach to determine axSpA activity.
Collapse
Affiliation(s)
- Peijin Xin
- Department of Radiology, Peking University Third Hospital, Beijing, People's Republic of China
| | - Qizheng Wang
- Department of Radiology, Peking University Third Hospital, Beijing, People's Republic of China
| | - Ruixin Yan
- Department of Radiology, Peking University Third Hospital, Beijing, People's Republic of China
| | - Yongye Chen
- Department of Radiology, Peking University Third Hospital, Beijing, People's Republic of China
| | - Yupeng Zhu
- Department of Radiology, Peking University Third Hospital, Beijing, People's Republic of China
| | - Enlong Zhang
- Department of Radiology, Peking University Third Hospital, Beijing, People's Republic of China
| | - Cui Ren
- Department of Radiology, Peking University Third Hospital, Beijing, People's Republic of China.
| | - Ning Lang
- Department of Radiology, Peking University Third Hospital, Beijing, People's Republic of China.
| |
Collapse
|
23
|
Li H, Chen XL, Liu H, Liu YS, Li ZL, Pang MH, Pu H. MRI-based multiregional radiomics for preoperative prediction of tumor deposit and prognosis in resectable rectal cancer: a bicenter study. Eur Radiol 2023; 33:7561-7572. [PMID: 37160427 DOI: 10.1007/s00330-023-09723-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/07/2023] [Accepted: 03/20/2023] [Indexed: 05/11/2023]
Abstract
OBJECTIVE To build T2WI-based multiregional radiomics for predicting tumor deposit (TD) and prognosis in patients with resectable rectal cancer. MATERIALS AND METHODS A total of 208 patients with pathologically confirmed rectal cancer from two hospitals were prospectively enrolled. Intra- and peritumoral features were extracted separately from T2WI images and the least absolute shrinkage and selection operator was used to screen the most valuable radiomics features. Clinical-radiomics nomogram was developed by radiomics signatures and the most predictive clinical parameters. Prognostic model for 3-year recurrence-free survival (RFS) was constructed using univariate and multivariate Cox analysis. RESULTS For TD, the area under the receiver operating characteristic curve (AUC) for intratumoral radiomics model was 0.956, 0.823, and 0.860 in the training cohort, test cohort, and external validation cohort, respectively. AUC for the peritumoral radiomics model was 0.929, 0.906, and 0.773 in the training cohort, test cohort, and external validation cohort, respectively. The AUC for combined intra- and peritumoral radiomics model was 0.976, 0.918, and 0.874 in the training cohort, test cohort, and external validation cohort, respectively. The AUC for clinical-radiomics nomogram was 0.989, 0.777, and 0.870 in the training cohort, test cohort, and external validation cohort, respectively. The prognostic model constructed by combining intra- and peritumoral radiomics signature score (radscore)-based TD and MRI-reported lymph nodes metastasis (LNM) indicated good performance for predicting 3-year RFS, with AUC of 0.824, 0.865, and 0.738 in the training cohort, test cohort and external validation cohort, respectively. CONCLUSION Combined intra- and peritumoral radiomics model showed good performance for predicting TD. Combining intra- and peritumoral radscore-based TD and MRI-reported LNM indicated the recurrence risk. CLINICAL RELEVANCE STATEMENT Combined intra- and peritumoral radiomics model could help accurately predict tumor deposits. Combining this predictive model-based tumor deposits with MRI-reported lymph node metastasis was associated with relapse risk of rectal cancer after surgery. KEY POINTS • Combined intra- and peritumoral radiomics model provided better diagnostic performance than that of intratumoral and peritumoral radiomics model alone for predicting TD in rectal cancer. • The predictive performance of the clinical-radiomics nomogram was not improved compared with the combined intra- and peritumoral radiomics model for predicting TD. • The prognostic model constructed by combining intra- and peritumoral radscore-based TD and MRI-reported LNM showed good performance for assessing 3-year RFS.
Collapse
Affiliation(s)
- Hang Li
- Department of Radiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, 32# Second Section of First Ring Road, Qingyang District, Chengdu, 610070, Sichuan, China
| | - Xiao-Li Chen
- Department of Radiology, Affiliated Cancer Hospital of Medical School, University of Electronic Science and Technology of China, Sichuan Cancer Hospital, Chengdu, 610000, China
| | | | - Yi-Sha Liu
- Department of Pathology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, 32# Second Section of First Ring Road, Qingyang District, Chengdu, 610070, Sichuan, China
| | - Zhen-Lin Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ming-Hui Pang
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, 32# Second Section of First Ring Road, Qingyang District, Chengdu, 610070, Sichuan, China
| | - Hong Pu
- Department of Radiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, 32# Second Section of First Ring Road, Qingyang District, Chengdu, 610070, Sichuan, China.
| |
Collapse
|
24
|
Bizzarri N, Russo L, Dolciami M, Zormpas-Petridis K, Boldrini L, Querleu D, Ferrandina G, Pedone Anchora L, Gui B, Sala E, Scambia G. Radiomics systematic review in cervical cancer: gynecological oncologists' perspective. Int J Gynecol Cancer 2023; 33:1522-1541. [PMID: 37714669 DOI: 10.1136/ijgc-2023-004589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023] Open
Abstract
OBJECTIVE Radiomics is the process of extracting quantitative features from radiological images, and represents a relatively new field in gynecological cancers. Cervical cancer has been the most studied gynecological tumor for what concerns radiomics analysis. The aim of this study was to report on the clinical applications of radiomics combined and/or compared with clinical-pathological variables in patients with cervical cancer. METHODS A systematic review of the literature from inception to February 2023 was performed, including studies on cervical cancer analysing a predictive/prognostic radiomics model, which was combined and/or compared with a radiological or a clinical-pathological model. RESULTS A total of 57 of 334 (17.1%) screened studies met inclusion criteria. The majority of studies used magnetic resonance imaging (MRI), but positron emission tomography (PET)/computed tomography (CT) scan, CT scan, and ultrasound scan also underwent radiomics analysis. In apparent early-stage disease, the majority of studies (16/27, 59.3%) analysed the role of radiomics signature in predicting lymph node metastasis; six (22.2%) investigated the prediction of radiomics to detect lymphovascular space involvement, one (3.7%) investigated depth of stromal infiltration, and one investigated (3.7%) parametrial infiltration. Survival prediction was evaluated both in early-stage and locally advanced settings. No study focused on the application of radiomics in metastatic or recurrent disease. CONCLUSION Radiomics signatures were predictive of pathological and oncological outcomes, particularly if combined with clinical variables. These may be integrated in a model using different clinical-pathological and translational characteristics, with the aim to tailor and personalize the treatment of each patient with cervical cancer.
Collapse
Affiliation(s)
- Nicolò Bizzarri
- UOC Ginecologia Oncologica, Dipartimento per la salute della Donna e del Bambino e della Salute Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Luca Russo
- Department of Bioimaging, Radiation Oncology and Hematology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Miriam Dolciami
- Department of Bioimaging, Radiation Oncology and Hematology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Konstantinos Zormpas-Petridis
- Department of Bioimaging, Radiation Oncology and Hematology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Luca Boldrini
- Department of Bioimaging, Radiation Oncology and Hematology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Denis Querleu
- UOC Ginecologia Oncologica, Dipartimento per la salute della Donna e del Bambino e della Salute Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Gabriella Ferrandina
- UOC Ginecologia Oncologica, Dipartimento per la salute della Donna e del Bambino e della Salute Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luigi Pedone Anchora
- UOC Ginecologia Oncologica, Dipartimento per la salute della Donna e del Bambino e della Salute Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Benedetta Gui
- Department of Bioimaging, Radiation Oncology and Hematology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Evis Sala
- Department of Bioimaging, Radiation Oncology and Hematology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Scambia
- UOC Ginecologia Oncologica, Dipartimento per la salute della Donna e del Bambino e della Salute Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
25
|
Zhang Z, Wan X, Lei X, Wu Y, Zhang J, Ai Y, Yu B, Liu X, Jin J, Xie C, Jin X. Intra- and peri-tumoral MRI radiomics features for preoperative lymph node metastasis prediction in early-stage cervical cancer. Insights Imaging 2023; 14:65. [PMID: 37060378 PMCID: PMC10105820 DOI: 10.1186/s13244-023-01405-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/16/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND Noninvasive and accurate prediction of lymph node metastasis (LNM) is very important for patients with early-stage cervical cancer (ECC). Our study aimed to investigate the accuracy and sensitivity of radiomics models with features extracted from both intra- and peritumoral regions in magnetic resonance imaging (MRI) with T2 weighted imaging (T2WI) and diffusion weighted imaging (DWI) for predicting LNM. METHODS A total of 247 ECC patients with confirmed lymph node status were enrolled retrospectively and randomly divided into training (n = 172) and testing sets (n = 75). Radiomics features were extracted from both intra- and peritumoral regions with different expansion dimensions (3, 5, and 7 mm) in T2WI and DWI. Radiomics signature and combined radiomics models were constructed with selected features. A nomogram was also constructed by combining radiomics model with clinical factors for predicting LNM. RESULTS The area under curves (AUCs) of radiomics signature with features from tumors in T2WI and DWI were 0.841 vs. 0.791 and 0.820 vs. 0.771 in the training and testing sets, respectively. Combining radiomics features from tumors in the T2WI, DWI and peritumoral 3 mm expansion in T2WI achieved the best performance with an AUC of 0.868 and 0.846 in the training and testing sets, respectively. A nomogram combining age and maximum tumor diameter (MTD) with radiomics signature achieved a C-index of 0.884 in the prediction of LNM for ECC. CONCLUSIONS Radiomics features extracted from both intra- and peritumoral regions in T2WI and DWI are feasible and promising for the preoperative prediction of LNM for patients with ECC.
Collapse
Affiliation(s)
- Zhenhua Zhang
- Department of Radiology, The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaojie Wan
- Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiyao Lei
- Department of Radiotherapy Center, The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yibo Wu
- Department of Radiotherapy Center, The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ji Zhang
- Department of Radiotherapy Center, The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yao Ai
- Department of Radiotherapy Center, The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bing Yu
- Department of Radiotherapy Center, The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinmiao Liu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Juebin Jin
- Department of Medical Engineering, The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Congying Xie
- Department of Radiation and Medical Oncology, The 2nd Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Xiance Jin
- Department of Radiotherapy Center, The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
26
|
Shang F, Tan Z, Gong T, Tang X, Sun H, Liu S. Evaluation of parametrial infiltration in patients with IB-IIB cervical cancer by a radiomics model integrating features from tumoral and peritumoral regions in 18 F-fluorodeoxy glucose positron emission tomography/MR images. NMR IN BIOMEDICINE 2023:e4945. [PMID: 37012600 DOI: 10.1002/nbm.4945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/03/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Parametrial infiltration (PMI) is an essential factor in staging and planning treatment of cervical cancer. The purpose of this study was to develop a radiomics model for accessing PMI in patients with IB-IIB cervical cancer using features from 18 F-fluorodeoxy glucose (18 F-FDG) positron emission tomography (PET)/MR images. In this retrospective study, 66 patients with International Federation of Gynecology and Obstetrics stage IB-IIB cervical cancer (22 with PMI and 44 without PMI) who underwent 18 F-FDG PET/MRI were divided into a training dataset (n = 46) and a testing dataset (n = 20). Features were extracted from both the tumoral and peritumoral regions in 18 F-FDG PET/MR images. Single-modality and multimodality radiomics models were developed with random forest to predict PMI. The performance of the models was evaluated with F1 score, accuracy, and area under the curve (AUC). The Kappa test was used to observe the differences between PMI evaluated by radiomics-based models and pathological results. The intraclass correlation coefficient for features extracted from each region of interest (ROI) was measured. Three-fold crossvalidation was conducted to confirm the diagnostic ability of the features. The radiomics models developed by features from the tumoral region in T2 -weighted images (F1 score = 0.400, accuracy = 0.700, AUC = 0.708, Kappa = 0.211, p = 0.329) and the peritumoral region in PET images (F1 score = 0.533, accuracy = 0.650, AUC = 0.714, Kappa = 0.271, p = 0.202) achieved the best performances in the testing dataset among the four single-ROI radiomics models. The combined model using features from the tumoral region in T2 -weighted images and the peritumoral region in PET images achieved the best performance (F1 score = 0.727, accuracy = 0.850, AUC = 0.774, Kappa = 0.625, p < 0.05). The results suggest that 18 F-FDG PET/MRI can provide complementary information regarding cervical cancer. The radiomics-based method integrating features from the tumoral and peritumoral regions in 18 F-FDG PET/MR images gave a superior performance for evaluating PMI.
Collapse
Affiliation(s)
- Fei Shang
- Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zheng Tan
- Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Tan Gong
- Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xiaoying Tang
- Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Hongzan Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shuai Liu
- Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
27
|
Li H, Chen XL, Liu H, Lu T, Li ZL. MRI-based multiregional radiomics for predicting lymph nodes status and prognosis in patients with resectable rectal cancer. Front Oncol 2023; 12:1087882. [PMID: 36686763 PMCID: PMC9846353 DOI: 10.3389/fonc.2022.1087882] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023] Open
Abstract
Purpose To establish and evaluate multiregional T2-weighted imaging (T2WI)-based clinical-radiomics model for predicting lymph node metastasis (LNM) and prognosis in patients with resectable rectal cancer. Methods A total of 346 patients with pathologically confirmed rectal cancer from two hospitals between January 2019 and December 2021 were prospectively enrolled. Intra- and peritumoral features were extracted separately, and least absolute shrinkage and selection operator regression was applied for feature selection. Radiomics signatures were built using the selected features from different regions. The clinical-radiomic nomogram was developed by combining the intratumoral and peritumoral radiomics signatures score (radscore) and the most predictive clinical parameters. The diagnostic performances of the nomogram and clinical model were evaluated using the area under the receiver operating characteristic curve (AUC). The prognostic model for 3-year recurrence-free survival (RFS) was constructed using univariate and multivariate Cox analysis. Results The intratumoral radscore (radscore 1) included four features, the peritumoral radscore (radscore 2) included five features, and the combined intratumoral and peritumoural radscore (radscore 3) included ten features. The AUCs for radscore 3 were higher than that of radscore 1 in training cohort (0.77 vs. 0.71, P=0.182) and internal validation cohort (0.76 vs. 0.64, P=0.041). The AUCs for radscore 3 were higher than that of radscore 2 in training cohort (0.77 vs. 0.74, P=0.215) and internal validation cohort (0.76 vs. 0.68, P=0.083). A clinical-radiomic nomogram showed a higher AUC compared with the clinical model in training cohort (0.84 vs. 0.67, P<0.001) and internal validation cohort (0.78 vs. 0.64, P=0.038) but not in external validation (0.72 vs. 0.76, P=0.164). Multivariate Cox analysis showed MRI-reported extramural vascular invasion (EMVI) (HR=1.099, 95%CI: 0.462-2.616; P=0.031) and clinical-radiomic nomogram-based LNM (HR=2.232, 95%CI:1.238-7.439; P=0.017) were independent risk factors for assessing 3-year RFS. Combined clinical-radiomic nomogram based LNM and MRI-reported EMVI showed good performance in training cohort (AUC=0.748), internal validation cohort (AUC=0.706) and external validation (AUC=0.688) for predicting 3-year RFS. Conclusion A clinical-radiomics nomogram exhibits good performance for predicting preoperative LNM. Combined clinical-radiomic nomogram based LNM and MRI-reported EMVI showed clinical potential for assessing 3-year RFS.
Collapse
Affiliation(s)
- Hang Li
- Department of Radiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Xiao-li Chen
- Department of Radiology, Affiliated Cancer Hospital of Medical School, University of Electronic Science and Technology of China, Sichuan Cancer Hospital, Chengdu, China
| | | | - Tao Lu
- Department of Radiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China,*Correspondence: Tao Lu, ; Zhen-lin Li,
| | - Zhen-lin Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Tao Lu, ; Zhen-lin Li,
| |
Collapse
|
28
|
Ren J, Li Y, Liu XY, Zhao J, He YL, Jin ZY, Xue HD. Diagnostic performance of ADC values and MRI-based radiomics analysis for detecting lymph node metastasis in patients with cervical cancer: A systematic review and meta-analysis. Eur J Radiol 2022; 156:110504. [PMID: 36108474 DOI: 10.1016/j.ejrad.2022.110504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To evaluate and compare the diagnostic performance of apparent diffusion coefficient (ADC) values and MRI-based radiomics analysis for lymph node metastasis (LNM) detection in patients with cervical cancer (CC). METHODS We searched relevant databases for studies on ADC values and MRI-based radiomics analysis for LNM detection in CC between January 2001 and December 2021. Methodological quality assessment of risk of bias using Quality Assessment of Diagnostic Accuracy Studies 2 and radiomics quality score (RQS) of the studies was conducted. The pooled sensitivity, specificity, positive likelihood ratio (LR+), negative likelihood ratio (LR-), diagnostic odds ratio (DOR), and area under the curve (AUC) were calculated. Diagnostic performance was compared between the two quantitative analyses using a two-sample Z-test. RESULTS In total, 22 studies including 2314 patients were included. Unclear risk of bias was observed in 4.5-36.4% of the studies. The 8 radiomics studies exhibited a median (interquartile range) RQS of 13.5 (5.5-15.75). The pooled sensitivity, specificity, LR+, LR-, DOR, and AUC of the ADC values vs radiomics analysis were 0.86 vs 0.84, 0.85 vs 0.73, 5.7 vs 3.1, 0.17 vs 0.22, 34 vs 14, and 0.91 vs 0.86, respectively. There was no threshold effect or publication bias, but significant heterogeneity existed among the studies. No significant difference was detected in the diagnostic performance of the two quantitative analyses using the Z-test. CONCLUSION ADC values are more clinically promising because they are more easily accessible and widely applied, and exhibit a non-statistically significant trend to outperform radiomics analysis.
Collapse
Affiliation(s)
- Jing Ren
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China.
| | - Yuan Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, PR China.
| | - Xin-Yu Liu
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China.
| | - Jia Zhao
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China.
| | - Yong-Lan He
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China.
| | - Zheng-Yu Jin
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China.
| | - Hua-Dan Xue
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China.
| |
Collapse
|