1
|
Chatterjee A, Gallan A, Fan X, Medved M, Akurati P, Bourne RM, Antic T, Karczmar GS, Oto A. Prostate Cancers Invisible on Multiparametric MRI: Pathologic Features in Correlation with Whole-Mount Prostatectomy. Cancers (Basel) 2023; 15:5825. [PMID: 38136370 PMCID: PMC10742185 DOI: 10.3390/cancers15245825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
We investigated why some prostate cancers (PCas) are not identified on multiparametric MRI (mpMRI) by using ground truth reference from whole-mount prostatectomy specimens. A total of 61 patients with biopsy-confirmed PCa underwent 3T mpMRI followed by prostatectomy. Lesions visible on MRI prospectively or retrospectively identified after correlating with histology were considered "identified cancers" (ICs). Lesions that could not be identified on mpMRI were considered "unidentified cancers" (UCs). Pathologists marked the Gleason score, stage, size, and density of the cancer glands and performed quantitative histology to calculate the tissue composition. Out of 115 cancers, 19 were unidentified on MRI. The UCs were significantly smaller and had lower Gleason scores and clinical stage lesions compared with the ICs. The UCs had significantly (p < 0.05) higher ADC (1.34 ± 0.38 vs. 1.02 ± 0.30 μm2/ms) and T2 (117.0 ± 31.1 vs. 97.1 ± 25.1 ms) compared with the ICs. The density of the cancer glands was significantly (p = 0.04) lower in the UCs. The percentage of the Gleason 4 component in Gleason 3 + 4 lesions was nominally (p = 0.15) higher in the ICs (20 ± 12%) compared with the UCs (15 ± 8%). The UCs had a significantly lower epithelium (32.9 ± 21.5 vs. 47.6 ± 13.1%, p = 0.034) and higher lumen volume (20.4 ± 10.0 vs. 13.3 ± 4.1%, p = 0.021) compared with the ICs. Independent from size and Gleason score, the tissue composition differences, specifically, the higher lumen and lower epithelium in UCs, can explain why some of the prostate cancers cannot be identified on mpMRI.
Collapse
Affiliation(s)
- Aritrick Chatterjee
- Department of Radiology, University of Chicago, Chicago, IL 60637, USA; (X.F.); (M.M.); (G.S.K.); (A.O.)
- Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago, Chicago, IL 60637, USA
| | - Alexander Gallan
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Xiaobing Fan
- Department of Radiology, University of Chicago, Chicago, IL 60637, USA; (X.F.); (M.M.); (G.S.K.); (A.O.)
- Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago, Chicago, IL 60637, USA
| | - Milica Medved
- Department of Radiology, University of Chicago, Chicago, IL 60637, USA; (X.F.); (M.M.); (G.S.K.); (A.O.)
- Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago, Chicago, IL 60637, USA
| | | | - Roger M. Bourne
- Discipline of Medical Imaging Science, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Tatjana Antic
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA;
| | - Gregory S. Karczmar
- Department of Radiology, University of Chicago, Chicago, IL 60637, USA; (X.F.); (M.M.); (G.S.K.); (A.O.)
- Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago, Chicago, IL 60637, USA
| | - Aytekin Oto
- Department of Radiology, University of Chicago, Chicago, IL 60637, USA; (X.F.); (M.M.); (G.S.K.); (A.O.)
- Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Evaluation of prostate multi parameter bone structures for martial arts practitioners based on magnetic resonance imaging. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2023. [DOI: 10.1016/j.jrras.2023.100549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
3
|
Hu L, Wei L, Wang S, Fu C, Benker T, Zhao J. Better lesion conspicuity translates into improved prostate cancer detection: comparison of non-parallel-transmission-zoomed-DWI with conventional-DWI. Abdom Radiol (NY) 2021; 46:5659-5668. [PMID: 34514538 DOI: 10.1007/s00261-021-03268-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE To compare advanced non-parallel transmission zoomed diffusion-weighted imaging (nonPTX zoom-DWI) to conventional DWI (conv-DWI) for the assessment of prostate cancer (PCa). METHODS This retrospective study included 98 patients who underwent conv-DWI, nonPTX zoom-DWI, and T2-weighted imaging of the prostate. The image qualities of the two DWI sets, including the distortion of the prostate and the existence of artifacts, were evaluated. To compare the overall PCa and clinically important PCa (ciPCa) detection ability between the sets, lesions were scored using the Prostate Imaging Reporting and Data System (PI-RADS) version 2. Apparent diffusion coefficient (ADC) values of the lesions were also measured and compared. The Mann-Whitney U test was used to compare continuous variables, and the χ2 test was used to compare categorical variables. Two-sided P values of < 0.05 were considered significant. RESULTS Non-PTX zoom-DWI yielded significantly better image quality and image analysis reproducibility than conv-DWI (all P < 0.001). Compared with conv-ADC, nonPTX zoom-ADC showed slightly better detection performance for overall PCa (AUC: 0.827 vs. 0.797; P = 0.55) and ciPCa (AUC: 0.822 vs. 0.749; P = 0.58). At a PI-RADS score of 4 as the cutoff value for PCa prediction, nonPTX zoom-DWI showed significantly higher diagnostic efficiency for overall PCa detection (sensitivity: 87.9% vs. 72.4%; specificity: 87.5% vs. 77.5%; both P < 0.05) and ciPCa detection (sensitivity: 86.3% vs. 74.5%; specificity: 72.3% vs. 63.8%; both P ≤ 0.001). CONCLUSION Non-PTX zoom-DWI yields better image quality and higher PCa detection performance than Conv-DWI.
Collapse
|
4
|
Chatterjee A, Mercado C, Bourne RM, Yousuf A, Hess B, Antic T, Eggener S, Oto A, Karczmar GS. Validation of Prostate Tissue Composition by Using Hybrid Multidimensional MRI: Correlation with Histologic Findings. Radiology 2021; 302:368-377. [PMID: 34751615 PMCID: PMC8805656 DOI: 10.1148/radiol.2021204459] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Tissue estimates obtained by using microstructure imaging techniques, such as hybrid multidimensional (HM) MRI, may improve prostate cancer diagnosis but require histologic validation. Purpose To validate prostate tissue composition measured by using HM MRI, with quantitative histologic evaluation from whole-mount prostatectomy as the reference standard. Materials and Methods In this HIPAA-compliant study, from December 2016 to July 2018, prospective participants with biopsy-confirmed prostate cancer underwent 3-T MRI before radical prostatectomy. Axial HM MRI was performed with all combinations of echo times (57, 70, 150, and 200 msec) and b values (0, 150, 750, and 1500 sec/mm2). Data were fitted by using a three-compartment signal model to generate volumes for each tissue component (stroma, epithelium, lumen). Quantitative histologic evaluation was performed to calculate volume fractions for each tissue component for regions of interest corresponding to MRI. Tissue composition measured by using HM MRI and quantitative histologic evaluation were compared (paired t test) and correlated (Pearson correlation coefficient), and agreement (concordance correlation) was assessed. Receiver operating characteristic curve analysis for cancer diagnosis was performed. Results Twenty-five participants (mean age, 60 years ± 7 [standard deviation]; 30 cancers and 45 benign regions of interest) were included. Prostate tissue composition measured with HM MRI and quantitative histologic evaluation did not differ (stroma, 45% ± 11 vs 44% ± 11 [P = .23]; epithelium, 31% ± 15 vs 34% ± 15 [P = .08]; and lumen, 24% ± 13 vs 22% ± 11 [P = .80]). Between HM MRI and histologic evaluation, there was excellent correlation (Pearson r: overall, 0.91; stroma, 0.82; epithelium, 0.93; lumen, 0.90 [all P < .05]) and agreement (concordance correlation coefficient: overall, 0.91; stroma, 0.81; epithelium, 0.90; and lumen, 0.87). High areas under the receiver operating characteristic curve obtained with HM MRI (0.96 for epithelium and 0.94 for lumen, P < .001) and histologic evaluation (0.94 for epithelium and 0.88 for lumen, P < .001) were found for differentiation between benign tissue and prostate cancer. Conclusion Tissue composition measured by using hybrid multidimensional MRI had excellent correlation with quantitative histologic evaluation as the reference standard. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Muglia in this issue.
Collapse
|
5
|
Abstract
Prostate MRI has seen increasing interest in recent years and has led to the development of new MRI techniques and sequences to improve prostate cancer (PCa) diagnosis which are reviewed in this article. Numerous studies have focused on improving image quality (segmented DWI) and faster acquisition (compressed sensing, k-t-SENSE, PROPELLER). An increasing number of studies have developed new quantitative and computer-aided diagnosis methods including artificial intelligence (PROSTATEx challenge) that mitigate the subjective nature of mpMRI interpretation. MR fingerprinting allows rapid, simultaneous generation of quantitative maps of multiple physical properties (T1, T2), where PCa are characterized by lower T1 and T2 values. New techniques like luminal water imaging (LWI), restriction spectrum imaging (RSI), VERDICT and hybrid multi-dimensional MRI (HM-MRI) have been developed for microstructure imaging, which provide information similar to histology. The distinct MR properties of tissue components and their change with the presence of cancer is used to diagnose prostate cancer. LWI is a T2-based imaging technique where long T2-component corresponding to luminal water is reduced in PCa. RSI and VERDICT are diffusion-based techniques where PCa is characterized by increased signal from intra-cellular restricted water and increased intracellular volume fraction, respectively, due to increased cellularity. VERDICT also reveal loss of extracellular-extravascular space in PCa due to loss of glandular structure. HM-MRI measures volumes of prostate tissue components, where PCa has reduced lumen and stromal and increased epithelium volume similar to results shown in histology. Similarly, molecular imaging using hyperpolarized 13C imaging has been utilized.
Collapse
|
6
|
Nelson CR, Ekberg J, Fridell K. Prostate Cancer Detection in Screening Using Magnetic Resonance Imaging and Artificial Intelligence. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/1874061802006010001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Prostate cancer is a leading cause of death among men who do not participate in a screening programme. MRI forms a possible alternative for prostate analysis of a higher level of sensitivity than the PSA test or biopsy. Magnetic resonance is a non-invasive method and magnetic resonance tomography produces a large amount of data. If a screening programme were implemented, a dramatic increase in radiologist workload and patient waiting time will follow. Computer Aided-Diagnose (CAD) could assist radiologists to decrease reading times and cost, and increase diagnostic effectiveness. CAD mimics radiologist and imaging guidelines to detect prostate cancer.
Aim:
The purpose of this study was to analyse and describe current research in MRI prostate examination with the aid of CAD. The aim was to determine if CAD systems form a reliable method for use in prostate screening.
Methods:
This study was conducted as a systematic literature review of current scientific articles. Selection of articles was carried out using the “Preferred Reporting Items for Systematic Reviews and for Meta-Analysis” (PRISMA). Summaries were created from reviewed articles and were then categorised into relevant data for results.
Results:
CAD has shown that its capability concerning sensitivity or specificity is higher than a radiologist. A CAD system can reach a peak sensitivity of 100% and two CAD systems showed a specificity of 100%. CAD systems are highly specialised and chiefly focus on the peripheral zone, which could mean missing cancer in the transition zone. CAD systems can segment the prostate with the same effectiveness as a radiologist.
Conclusion:
When CAD analysed clinically-significant tumours with a Gleason score greater than 6, CAD outperformed radiologists. However, their focus on the peripheral zone would require the use of more than one CAD system to analyse the entire prostate.
Collapse
|