1
|
Lai L, Xie K. Pain Control Paradigms: A Comparative Review of Anesthesia Techniques in Trigeminal Neuralgia Therapy. Pain Ther 2025; 14:881-889. [PMID: 40232612 PMCID: PMC12085525 DOI: 10.1007/s40122-025-00738-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Accepted: 04/03/2025] [Indexed: 04/16/2025] Open
Abstract
This review summarizes the intraoperative anesthesia protocols for radiofrequency thermal coagulation in the treatment of trigeminal neuralgia, focusing on the advantages and disadvantages of two primary anesthesia approaches. The first approach involves the injection of local anesthetics, such as lidocaine, at the radiofrequency target, which can alleviate pain during the procedure but carries potential risks. The second approach discusses the efficacy of intravenous administration of propofol for pain control, highlighting the necessity for vigilant monitoring of vital signs during the procedure. This article aims to provide the latest evidence-based guidance for anesthesia protocol selection in clinical practice.
Collapse
Affiliation(s)
- Lan Lai
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhong-Huan-South Road, Jiaxing, 314000, People's Republic of China
| | - Keyue Xie
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhong-Huan-South Road, Jiaxing, 314000, People's Republic of China.
| |
Collapse
|
2
|
Dirrichs T, Tietz E, Rüffer A, Hanten J, Nguyen TD, Dethlefsen E, Kuhl CK. Photon-counting versus Dual-Source CT of Congenital Heart Defects in Neonates and Infants: Initial Experience. Radiology 2023; 307:e223088. [PMID: 37219443 DOI: 10.1148/radiol.223088] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Background Photon-counting CT (PCCT) has been shown to improve cardiovascular CT imaging in adults. Data in neonates, infants, and young children under the age of 3 years are missing. Purpose To compare image quality and radiation dose of ultrahigh-pitch PCCT with that of ultrahigh-pitch dual-source CT (DSCT) in children suspected of having congenital heart defects. Materials and Methods This is a prospective analysis of existing clinical CT studies in children suspected of having congenital heart defects who underwent contrast-enhanced PCCT or DSCT in the heart and thoracic aorta between January 2019 and October 2022. CT dose index and dose-length product were used to calculate effective radiation dose. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated by standardized region-of-interest analysis. SNR and CNR dose ratios were calculated. Visual image quality was assessed by four independent readers on a five-point scale: 5, excellent or absent; 4, good or minimal; 3, moderate; 2, limited or substantial; and 1, poor or massive. Results Contrast-enhanced PCCT (n = 30) or DSCT (n = 84) was performed in 113 children (55 female and 58 male participants; median age, 66 days [IQR, 15-270]; median height, 56 cm [IQR, 52-67]; and median weight, 4.5 kg [IQR, 3.4-7.1]). A diagnostic image quality score of at least 3 was obtained in 29 of 30 (97%) with PCCT versus 65 of 84 (77%) with DSCT. Mean overall image quality ratings were higher for PCCT versus DSCT (4.17 vs 3.16, respectively; P < .001). SNR and CNR were higher for PCCT versus DSCT with SNR (46.3 ± 16.3 vs 29.9 ± 15.3, respectively; P = .007) and CNR (62.0 ± 50.3 vs 37.2 ± 20.8, respectively; P = .001). Mean effective radiation doses were similar for PCCT and DSCT (0.50 mSv vs 0.52 mSv; P = .47). Conclusion At a similar radiation dose, PCCT offers a higher SNR and CNR and thus better cardiovascular imaging quality than DSCT in children suspected of having cardiac heart defects. © RSNA, 2023.
Collapse
Affiliation(s)
- Timm Dirrichs
- From the Department of Diagnostic and Interventional Radiology (T.D., E.T., E.D., C.K.K.), Department of Pediatric Heart Surgery (A.R., T.D.N.), and Department of Pediatric Cardiology (J.H.), RWTH Aachen University Hospital, Pauwelsstr 30, 52074 Aachen, Germany
| | - Eric Tietz
- From the Department of Diagnostic and Interventional Radiology (T.D., E.T., E.D., C.K.K.), Department of Pediatric Heart Surgery (A.R., T.D.N.), and Department of Pediatric Cardiology (J.H.), RWTH Aachen University Hospital, Pauwelsstr 30, 52074 Aachen, Germany
| | - André Rüffer
- From the Department of Diagnostic and Interventional Radiology (T.D., E.T., E.D., C.K.K.), Department of Pediatric Heart Surgery (A.R., T.D.N.), and Department of Pediatric Cardiology (J.H.), RWTH Aachen University Hospital, Pauwelsstr 30, 52074 Aachen, Germany
| | - Jens Hanten
- From the Department of Diagnostic and Interventional Radiology (T.D., E.T., E.D., C.K.K.), Department of Pediatric Heart Surgery (A.R., T.D.N.), and Department of Pediatric Cardiology (J.H.), RWTH Aachen University Hospital, Pauwelsstr 30, 52074 Aachen, Germany
| | - Thai Duy Nguyen
- From the Department of Diagnostic and Interventional Radiology (T.D., E.T., E.D., C.K.K.), Department of Pediatric Heart Surgery (A.R., T.D.N.), and Department of Pediatric Cardiology (J.H.), RWTH Aachen University Hospital, Pauwelsstr 30, 52074 Aachen, Germany
| | - Ebba Dethlefsen
- From the Department of Diagnostic and Interventional Radiology (T.D., E.T., E.D., C.K.K.), Department of Pediatric Heart Surgery (A.R., T.D.N.), and Department of Pediatric Cardiology (J.H.), RWTH Aachen University Hospital, Pauwelsstr 30, 52074 Aachen, Germany
| | - Christiane K Kuhl
- From the Department of Diagnostic and Interventional Radiology (T.D., E.T., E.D., C.K.K.), Department of Pediatric Heart Surgery (A.R., T.D.N.), and Department of Pediatric Cardiology (J.H.), RWTH Aachen University Hospital, Pauwelsstr 30, 52074 Aachen, Germany
| |
Collapse
|
3
|
Lanzafame LRM, Bucolo GM, Muscogiuri G, Sironi S, Gaeta M, Ascenti G, Booz C, Vogl TJ, Blandino A, Mazziotti S, D’Angelo T. Artificial Intelligence in Cardiovascular CT and MR Imaging. Life (Basel) 2023; 13:507. [PMID: 36836864 PMCID: PMC9968221 DOI: 10.3390/life13020507] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
The technological development of Artificial Intelligence (AI) has grown rapidly in recent years. The applications of AI to cardiovascular imaging are various and could improve the radiologists' workflow, speeding up acquisition and post-processing time, increasing image quality and diagnostic accuracy. Several studies have already proved AI applications in Coronary Computed Tomography Angiography and Cardiac Magnetic Resonance, including automatic evaluation of calcium score, quantification of coronary stenosis and plaque analysis, or the automatic quantification of heart volumes and myocardial tissue characterization. The aim of this review is to summarize the latest advances in the field of AI applied to cardiovascular CT and MR imaging.
Collapse
Affiliation(s)
- Ludovica R. M. Lanzafame
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy
| | - Giuseppe M. Bucolo
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy
| | - Giuseppe Muscogiuri
- Department of Radiology, Istituto Auxologico Italiano IRCCS, San Luca Hospital, 20149 Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Milan, Italy
| | - Sandro Sironi
- Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Milan, Italy
- Department of Radiology, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Michele Gaeta
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy
| | - Giorgio Ascenti
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy
| | - Christian Booz
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany
| | - Thomas J. Vogl
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany
| | - Alfredo Blandino
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy
| | - Silvio Mazziotti
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy
| | - Tommaso D’Angelo
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 Rotterdam, The Netherlands
| |
Collapse
|
4
|
Saraya S, Ahmad YM, Soliman HH, Saraya M, Louis M. Validity of cardiovascular magnetic resonance in pre- and post-operative evaluation of pulmonary arteries and ventricular functions in pediatric conotruncal anomalies. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2021. [DOI: 10.1186/s43055-021-00510-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The aim of this work is to evaluate the validity of magnetic resonance (MR) imaging in assessment of pulmonary arteries and ventricular functions with conotruncal anomalies in the pediatric population.
Results
Between March 2018 and December 2019, 42 patients ranging in age from 6 months to 18 years and diagnosed with conotruncal anomalies by echocardiographic examination were submitted for cardiac MRI followed by assessment of their morphological (intra- and extra-cardiac anatomy) and functional parameters. The most common conotruncal anomaly was tetralogy of Fallot which represented 45% of the cases. Cardiac magnetic resonance (CMR) compared to echocardiography showed 46% agreement in the assessment of right ventricular volumes and function. There was only 37% agreement between echocardiography and MRI in delineation of MAPCAS.
Conclusion
CMR provides a powerful tool, giving anatomical and physiological information that echocardiography and catheterization alone cannot provide in conotruncal anomalies.
Collapse
|
5
|
John S, Schoeneberg L, Greenleaf CE, Salazar JD, Adebo DA. Pre- and post-operative cardiovascular CT in Stage I single ventricle palliation. J Card Surg 2021; 37:322-328. [PMID: 34845746 DOI: 10.1111/jocs.16162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/18/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVES The aim of this study is to describe clinical utility of low dose cardiac computed tomography (CT) in the evaluation of single ventricle physiology before and after Stage I palliation. BACKGROUND Despite the increased utilization of CT imaging and advancement of CT technology, there are limited studies describing the routine clinical use of cardiac CT and radiation dose parameters in the single ventricle Stage I palliation. METHODS This single center, retrospective study included 57 infants with single ventricle physiology who underwent cardiac CT scans between January 1, 2016 and November 30, 2020. Patients' demographic information, diagnosis, indication, total dose length product (DLP), computed tomographic dose index volume (CTDIvol), cardiac CT findings and intraoperative or intraprocedural findings were reviewed. Estimated effective radiation dose was calculated using a previously published conversion rate. RESULTS The studies were performed using different generations of CT scanners over the 4 years period: Somatom AS 128, Somatom definition edge, Somatom Force (Siemens Medical Solutions). The studies performed with dual source scanner with prospective gated technique have lower radiation dose exposure with median effective radiation dose of 0.32 mSv. CONCLUSION Pre- and post-operative cardiovascular CT in Stage I single ventricle palliation using newer generation scanners with prospective gated technique can be done with minimal radiation exposure and good image quality. Cardiac CT is a powerful imaging modality for better management planning in this group of patients.
Collapse
Affiliation(s)
- Sheba John
- Division of Pediatric Cardiology, Children's Heart Institute, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Laura Schoeneberg
- Division of Pediatric Cardiology, Children's Heart Institute, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Christopher E Greenleaf
- Division of Cardiothoracic Surgery, Children's Heart Institute, Memorial Hermann Hospital, University of Texas Health McGovern Medical School, Houston, Texas, USA
| | - Jorge D Salazar
- Division of Cardiothoracic Surgery, Children's Heart Institute, Memorial Hermann Hospital, University of Texas Health McGovern Medical School, Houston, Texas, USA
| | - Dilachew A Adebo
- Division of Pediatric Cardiology, Children's Heart Institute, University of Texas Medical School at Houston, Houston, Texas, USA
| |
Collapse
|
6
|
Yao X, Hu L, Peng Y, Feng F, Ouyang R, Xie W, Wang Q, Sun A, Zhong Y. Right and left ventricular function and flow quantification in pediatric patients with repaired tetralogy of Fallot using four-dimensional flow magnetic resonance imaging. BMC Med Imaging 2021; 21:161. [PMID: 34719378 PMCID: PMC8559379 DOI: 10.1186/s12880-021-00693-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/26/2021] [Indexed: 11/10/2022] Open
Abstract
Background To assess the accuracy and reproducibility of right ventricular (RV) and left ventricular (LV) function and flow measurements in children with repaired tetralogy of Fallot (rTOF) using four-dimensional (4D) flow, compared with conventional two-dimensional (2D) magnetic resonance imaging (MRI) sequences. Methods Thirty pediatric patients with rTOF were retrospectively enrolled to undergo 2D balanced steady-state free precession cine (2D b-SSFP cine), 2D phase contrast (PC), and 4D flow cardiac MRI. LV and RV volumes and flow in the ascending aorta (AAO) and main pulmonary artery (MPA) were quantified. Pearson’s or Spearman’s correlation tests, paired t-tests, the Wilcoxon signed-rank test, Bland–Altman analysis, and intraclass correlation coefficients (ICC) were performed. Results The 4D flow scan time was shorter compared with 2D sequences (P < 0.001). The biventricular volumes between 4D flow and 2D b-SSFP cine had no significant differences (P > 0.05), and showed strong correlations (r > 0.90, P < 0.001) and good consistency. The flow measurements of the AAO and MPA between 4D flow and 2D PC showed moderate to good correlations (r > 0.60, P < 0.001). There was good internal consistency in cardiac output. There was good intraobserver and interobserver biventricular function agreement (ICC > 0.85). Conclusions RV and LV function and flow quantification in pediatric patients with rTOF using 4D flow MRI can be measured accurately and reproducibly compared to those with conventional 2D sequences.
Collapse
Affiliation(s)
- Xiaofen Yao
- Department of Radiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road, Shanghai, 200127, China
| | - Liwei Hu
- Department of Radiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road, Shanghai, 200127, China
| | - Yafeng Peng
- Department of Radiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road, Shanghai, 200127, China
| | - Fei Feng
- AI Imaging, GE Healthcare, No. 1 Huatuo Road, Shanghai, 201203, China
| | - Rongzhen Ouyang
- Department of Radiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road, Shanghai, 200127, China
| | - Weihui Xie
- Department of Radiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road, Shanghai, 200127, China
| | - Qian Wang
- Department of Radiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road, Shanghai, 200127, China
| | - Aimin Sun
- Department of Radiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road, Shanghai, 200127, China
| | - Yumin Zhong
- Department of Radiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road, Shanghai, 200127, China.
| |
Collapse
|
7
|
Orii M, Sugawara T, Takagi H, Nakano S, Ueda H, Takizawa Y, Fujiwara J, Takahashi S, Oyama K, Lai P, Janich MA, Nozaki A, Yoshioka K. Reliability of respiratory-triggered two-dimensional cine k-adaptive-t-autocalibrating reconstruction for Cartesian sampling for the assessment of biventricular volume and function in patients with repaired tetralogy of Fallot. Br J Radiol 2021; 94:20201249. [PMID: 33733811 PMCID: PMC8010533 DOI: 10.1259/bjr.20201249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To compare left ventricular (LV) and right ventricular (RV) volume, function, and image quality of a respiratory-triggered two-dimensional (2D)-cine k-adaptive-t-autocalibrating reconstruction for Cartesian sampling (2D kat-ARC) with those of the standard reference, namely, breath-hold 2D balanced steady-state free precession (2D SSFP), in patients with repaired tetralogy of Fallot (TOF). METHODS 30 patients (14 males, mean age 32.2 ± 13.9 years) underwent cardiac magnetic resonance, and 2D kat-ARC and 2D SSFP images were acquired on short-axis view. Biventricular end-diastolic volume (EDV) and end-systolic volume (ESV), stroke volume (SV), ejection fraction (EF), and LV mass (LVM) were analysed. RESULTS The 2D kat-ARC had significantly shorter scan time (35.2 ± 9.1 s vs 80.4 ± 16.7 s; p < 0.0001). Despite an analysis of image quality showed significant impairment using 2D kat-ARC compared to 2D SSFP cine (p < 0.0001), the two sequences demonstrated no significant difference in terms of biventricular EDV, LVESV, LVSV, LVEF, and LVM. However, the RVESV was overestimated for 2D kat-ARC compared with that for 2D SSFP (73.8 ± 43.2 ml vs 70.3 ± 44.5 ml, p = 0.0002) and the RVSV and RVEF were underestimated (RVSV = 46.2±20.5 ml vs 49.4 ± 20.4 ml, p = 0.0024; RVEF = 40.2±12.7% vs. 43.5±14.0%, p = 0.0002). CONCLUSION Respiratory-triggered 2D kat-ARC cine is a reliable technique that could be used in the evaluation of LV volumes and function. ADVANCES IN KNOWLEDGE 2D cine kat-ARC is a reliable technique for the assessment LV volume and function in patients with repaired TOF.
Collapse
Affiliation(s)
- Makoto Orii
- Department of Radiology, Iwate Medical University, Iwate, Japan
| | - Tsuyoshi Sugawara
- Department of Radiology Service, Iwate Medical University, Iwate, Japan
| | | | - Satoshi Nakano
- Department of Pediatrics, Iwate Medical University, Iwate, Japan
| | - Hironobu Ueda
- Division of Cardiology, Department of Internal Medicine, Iwate Medical University, Iwate, Japan
| | - Yurie Takizawa
- Department of Pediatrics, Iwate Medical University, Iwate, Japan
| | - Jumpei Fujiwara
- Division of Cardiology, Department of Internal Medicine, Iwate Medical University, Iwate, Japan
| | - Shin Takahashi
- Department of Pediatrics, Iwate Medical University, Iwate, Japan
| | - Kotaro Oyama
- Department of Pediatrics, Iwate Medical University, Iwate, Japan
| | | | - Martin A Janich
- MR Applications and Workflow, GE Healthcare, Munich, Germany
| | - Atsushi Nozaki
- MR Applications and Workflow, GE Healthcare, Tokyo, Japan
| | | |
Collapse
|
8
|
Geiger J, Callaghan FM, Burkhardt BEU, Valsangiacomo Buechel ER, Kellenberger CJ. Additional value and new insights by four-dimensional flow magnetic resonance imaging in congenital heart disease: application in neonates and young children. Pediatr Radiol 2021; 51:1503-1517. [PMID: 33313980 PMCID: PMC8266722 DOI: 10.1007/s00247-020-04885-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/08/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022]
Abstract
Cardiovascular MRI has become an essential imaging modality in children with congenital heart disease (CHD) in the last 15-20 years. With use of appropriate sequences, it provides important information on cardiovascular anatomy, blood flow and function for initial diagnosis and post-surgical or -interventional monitoring in children. Although considered as more sophisticated and challenging than CT, in particular in neonates and infants, MRI is able to provide information on intra- and extracardiac haemodynamics, in contrast to CT. In recent years, four-dimensional (4-D) flow MRI has emerged as an additional MR technique for retrospective assessment and visualisation of blood flow within the heart and any vessel of interest within the acquired three-dimensional (3-D) volume. Its application in young children requires special adaptations for the smaller vessel size and faster heart rate compared to adolescents or adults. In this article, we provide an overview of 4-D flow MRI in various types of complex CHD in neonates and infants to demonstrate its potential indications and beneficial application for optimised individual cardiovascular assessment. We focus on its application in clinical routine cardiovascular workup and, in addition, show some examples with pathologies other than CHD to highlight that 4-D flow MRI yields new insights in disease understanding and therapy planning. We shortly review the essentials of 4-D flow data acquisition, pre- and post-processing techniques in neonates, infants and young children. Finally, we conclude with some details on accuracy, limitations and pitfalls of the technique.
Collapse
Affiliation(s)
- Julia Geiger
- Department of Diagnostic Imaging, University Children's Hospital Zürich, Steinwiesstr 75, 8032, Zürich, Switzerland. .,Children's Research Centre, University Children's Hospital Zürich, Zürich, Switzerland.
| | - Fraser M. Callaghan
- Children’s Research Centre, University Children’s Hospital Zürich, Zürich, Switzerland ,Center for MR research, University Children’s Hospital Zürich, Zürich, Switzerland
| | - Barbara E. U. Burkhardt
- Children’s Research Centre, University Children’s Hospital Zürich, Zürich, Switzerland ,Department of Pediatric Cardiology, University Hospital Zürich, Zürich, Switzerland
| | - Emanuela R. Valsangiacomo Buechel
- Children’s Research Centre, University Children’s Hospital Zürich, Zürich, Switzerland ,Department of Pediatric Cardiology, University Hospital Zürich, Zürich, Switzerland
| | - Christian J. Kellenberger
- Department of Diagnostic Imaging, University Children’s Hospital Zürich, Steinwiesstr 75, 8032 Zürich, Switzerland ,Children’s Research Centre, University Children’s Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
9
|
Zanardo M, Sardanelli F, Rainford L, Monti CB, Murray JG, Secchi F, Cradock A. Technique and protocols for cardiothoracic time-resolved contrast-enhanced magnetic resonance angiography sequences: a systematic review. Clin Radiol 2020; 76:156.e9-156.e18. [PMID: 33008622 DOI: 10.1016/j.crad.2020.08.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022]
Abstract
AIM To review contrast medium administration protocols used for cardiothoracic applications of time-resolved, contrast-enhanced magnetic resonance angiography (MRA) sequences. MATERIALS AND METHODS A systematic search of the literature (Medline/EMBASE) was performed to identify articles utilising time-resolved MRA sequences, focusing on type of sequence, adopted technical parameters, contrast agent (CA) issues, and acquisition workflow. Study design, year of publication, population, magnetic field strength, type, dose, and injection parameters of CA, as well as technical parameters of time-resolved MRA sequences were extracted. RESULTS Of 117 retrieved articles, 16 matched the inclusion criteria. The study design was prospective in 9/16 (56%) articles, and study population ranged from 5 to 185 patients, for a total of 506 patients who underwent cardiothoracic time-resolved MRA. Magnetic field strength was 1.5 T in 13/16 (81%), and 3 T in 3/16 (19%) articles. The administered CA was gadobutrol (Gadovist) in 6/16 (37%) articles, gadopentetate dimeglumine (Magnevist) in 5/16 (31%), gadobenate dimeglumine (MultiHance) in 2/16 (13%), gadodiamide (Omniscan) in 2/16 (13%), gadofosveset trisodium (Ablavar, previously Vasovist) in 1/16 (6%). CA showed highly variable doses among studies: fixed amount or based on patient body weight (0.02-0.2 mmol/kg) and was injected with a flow rate ranging 1-5 ml/s. Sequences were TWIST in 13/16 (81%), TRICKS in 2/16 (13%), and CENTRA 1/16 articles (6%). CONCLUSION Time-resolved MRA sequences were adopted in different clinical settings with a large spectrum of technical approaches, mostly in association with different CA dose, type, and injection method. Further studies in relation to specific clinical indications are warranted to provide a common standardised acquisition protocol.
Collapse
Affiliation(s)
- M Zanardo
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy.
| | - F Sardanelli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy; Unit of Radiology, IRCCS Policlinico San Donato, Via Morandi 30, 20097 San Donato Milanese, Italy
| | - L Rainford
- Radiography and Diagnostic Imaging, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - C B Monti
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy
| | - J G Murray
- Department of Radiology, Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - F Secchi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy; Unit of Radiology, IRCCS Policlinico San Donato, Via Morandi 30, 20097 San Donato Milanese, Italy
| | - A Cradock
- Radiography and Diagnostic Imaging, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
10
|
Abstract
Artificial intelligence (AI) is entering the clinical arena, and in the early stage, its implementation will be focused on the automatization tasks, improving diagnostic accuracy and reducing reading time. Many studies investigate the potential role of AI to support cardiac radiologist in their day-to-day tasks, assisting in segmentation, quantification, and reporting tasks. In addition, AI algorithms can be also utilized to optimize image reconstruction and image quality. Since these algorithms will play an important role in the field of cardiac radiology, it is increasingly important for radiologists to be familiar with the potential applications of AI. The main focus of this article is to provide an overview of cardiac-related AI applications for CT and MRI studies, as well as non-imaging-based applications for reporting and image optimization.
Collapse
|
11
|
Repaired Congenital Heart Disease in Older Children and Adults: Up-to-Date Practical Assessment and Characteristic Imaging Findings. Radiol Clin North Am 2020; 58:503-516. [PMID: 32276700 DOI: 10.1016/j.rcl.2019.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Because of a recent increase in survival rates and life expectancy of patients with congenital heart disease (CHD), radiologists are facing new challenges when imaging the peculiar anatomy of individuals with repaired CHD. Cardiac computed tomography and magnetic resonance are paramount noninvasive imaging tools that are useful in assessing patients with repaired CHD, and both techniques are increasingly performed in centers where CHD is not the main specialization. This review provides general radiologists with insight into the main issues of imaging patients with repaired CHD, and the most common findings and complications of each individual pathology and its repair.
Collapse
|
12
|
Muscogiuri G, Gatti M, Dell'Aversana S, Pica S, Andreini D, Guaricci AI, Guglielmo M, Baggiano A, Mushtaq S, Conte E, Gripari P, Annoni A, Formenti A, Mancini ME, Rabbat MG, Pepi M, Pontone G. Reliability of single breath hold three-dimensional cine kat-ARC for the assessment of biventricular dimensions and function. Eur J Radiol 2020; 124:108820. [PMID: 31951894 DOI: 10.1016/j.ejrad.2020.108820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 11/27/2019] [Accepted: 12/30/2019] [Indexed: 11/17/2022]
Abstract
PURPOSE To assess the accuracy and reproducibility of 3D-cine k-adaptative-t-autocalibrating reconstruction for cartesian sampling (3D cine kat-ARC) for quantification of biventricular volumes, ejection fraction and LV mass in clinical practice. METHOD 74 patients underwent cardiac magnetic resonance for clinical indications. In the whole population 3D cine kat-ARC and 2D cine bSSFP images were acquired on short axis view. Subsequently, the population was divided in three subgroups (dilated, hypetrophic, other phenotypes). Two experienced observers performed analysis of volumes, biventricular function and left ventricular mass in the overall population and subgroups using an off-line workstation. Statistical analysis was performed using Student's t-test, linear regression and Bland-Altman plot, correlation coefficient η2 and the intraclass correlation coefficient (ICC). A cut-off value of p < 0.05 was considered statistically significant. RESULTS Biventricular volumes, function and left ventricular mass evaluated with 3D cine kat-ARC sequences did not show any significant difference compared to 2D bSSFP sequences in the overall population (p > 0.05). Bland-Altman analysis showed limited bias and narrow limits of the agreement for all measurements in overall population. Subgroup analysis showed a statistically significant difference (p = 0.04) for left ventricular ejection fraction (LVEF) in patients with a dilated phenotype; showing a minimum overestimation tendency for 3D cine kat ARC (2D cine bSSFP LVEF = 46.44 ± 15.83% vs 3D cine kat-ARC LVEF = 48.36 ± 16.50 %). CONCLUSIONS 3D cine kat-ARC 3D sequences allow an accurate evaluation of biventricular volumes and function in a single breath hold.
Collapse
Affiliation(s)
| | - Marco Gatti
- Department of Surgical Sciences, Radiology Institute, University of Turin, Turin, Italy.
| | - Serena Dell'Aversana
- Department of Advanced Biomedical Sciences, University of Naples "Federico II,", Naples, Italy.
| | - Silvia Pica
- Multimodality Cardiac Imaging Section, IRCCS Policlinico San Donato, Milan, Italy.
| | - Daniele Andreini
- Centro Cardiologico Monzino, IRCCS, Milan, Italy; Department of Cardiovascular Sciences and Community Health, University of Milan, Italy.
| | - Andrea I Guaricci
- Institute of Cardiovascular Disease, Department of Emergency and Organ Transplantation, University Hospital "Policlinico Consorziale" of Bari, Bari, Italy; Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| | | | | | | | | | | | | | | | | | - Mark G Rabbat
- Loyola University of Chicago, Chicago, IL, United States; Edward Hines Jr. VA Hospital, Hines, IL, United States.
| | - Mauro Pepi
- Centro Cardiologico Monzino, IRCCS, Milan, Italy.
| | | |
Collapse
|