1
|
Pandey AK, Yoon H, Pain J, Dancis A, Pain D. Mitochondrial acyl carrier protein, Acp1, required for iron-sulfur cluster assembly in mitochondria and cytoplasm in Saccharomyces cerevisiae. Mitochondrion 2024; 79:101955. [PMID: 39251117 DOI: 10.1016/j.mito.2024.101955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/07/2024] [Accepted: 08/31/2024] [Indexed: 09/11/2024]
Abstract
Mitochondria perform vital biosynthetic processes, including fatty acid synthesis and iron-sulfur (FeS) cluster biogenesis. In Saccharomyces cerevisiae mitochondria, the acyl carrier protein Acp1 participates in type II fatty acid synthesis, requiring a 4-phosphopantetheine (PP) prosthetic group. Acp1 also interacts with the mitochondrial FeS cluster assembly complex that contains the cysteine desulfurase Nfs1. Here we investigated the role of Acp1 in FeS cluster biogenesis in mitochondria and cytoplasm. In the Acp1-depleted (Acp1↓) cells, biogenesis of mitochondrial FeS proteins was impaired, likely due to greatly reduced Nfs1 protein and/or its persulfide-forming activity. Formation of cytoplasmic FeS proteins was also deficient, suggesting a disruption in generating the (Fe-S)int intermediate, that is exported from mitochondria and is subsequently utilized for cytoplasmic FeS cluster assembly. Iron homeostasis was perturbed, with enhanced iron uptake into the cells and accumulation of iron in mitochondria. The Δppt2 strain, lacking the mitochondrial ability to add PP to Acp1, phenocopied the Acp1↓ cells. These data suggest that the holo form of Acp1 with the PP-conjugated acyl chain is required for stability of the Nfs1 protein and/or stimulation of its persulfide-forming activity. Thus, mitochondria lacking Acp1 (or Ppt2) cannot support FeS cluster biogenesis in mitochondria or cytoplasm, leading to disrupted iron homeostasis.
Collapse
Affiliation(s)
- Ashutosh K Pandey
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, United States
| | - Heeyong Yoon
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Jayashree Pain
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, United States
| | - Andrew Dancis
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Debkumar Pain
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, United States.
| |
Collapse
|
2
|
Lee BM, Park YJ, Pang WK, Ryu DY, Rahman MS, Lee DY, Pang MG. Boar fertility is controlled through systematic changes of mitochondrial protein expression during sperm capacitation. Int J Biol Macromol 2023; 248:125955. [PMID: 37494999 DOI: 10.1016/j.ijbiomac.2023.125955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/10/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Vigorous activation of mitochondria in spermatozoa during capacitation induces the biological and morphological changes of spermatozoa to acquire fertilizing ability. To in-depth understand the dynamic roles of mitochondrial and male fertility, this study was to identify how the mitochondrial proteins are changed during sperm capacitation and regulate male fertility using boar spermatozoa. The mitochondrial proteins were differentially changed during sperm capacitation according to fertility status, i.e., superior litter size (SL) and normal litter size (NL). Following sperm capacitation, ubiquitin-cytochrome c reductase core protein (UQCRC1) and ATP synthase F1 (ATP5F1) increased in NL, while cytochrome c oxidase subunit 5B (COX5B), and cytochrome c1 (CYC1) proteins decreased. In contrast, only and ubiquinone oxidoreductase core subunit 8 (NDUFS8) protein was increased in SL following capacitation. The protein expression difference value of CYC1, COX5B, and NDUFS8 following sperm capacitation was lower in NL than SL boars. Based on these complicated changes during sperm capacitation, the accuracy for predicting male fertility of NDUFS8 was increased to 87 %. Overall, considering the systematic orchestration of mitochondrial protein expression according to sperm capacitation status, it will be possible to better understand male fertility.
Collapse
Affiliation(s)
- Byeong-Mu Lee
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Yoo-Jin Park
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Won-Ki Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Do-Yeal Ryu
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Md Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Dae-Young Lee
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
3
|
Hoffmann GR. Twenty Years of Reflections in Mutation Research. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 780:106-120. [PMID: 31395355 DOI: 10.1016/j.mrrev.2019.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/25/2019] [Indexed: 11/18/2022]
Abstract
Reflections is a component of Mutation Research Reviews devoted to historical and philosophical themes pertaining to the subject of mutation. Reflections was initiated in 1999 and has included a broad array of topics centered on mutation research, but overlapping other scientific fields and touching upon history, sociology, politics, philosophy and ethics. This commentary offers an editor's reflections on the 44 papers in the Reflections series, including the people who contributed to the series and the topics that they discussed.
Collapse
Affiliation(s)
- George R Hoffmann
- Department of Biology, College of the Holy Cross, One College Street, Worcester, MA 01610, USA.
| |
Collapse
|
4
|
Yoon H, Knight SAB, Pandey A, Pain J, Turkarslan S, Pain D, Dancis A. Turning Saccharomyces cerevisiae into a Frataxin-Independent Organism. PLoS Genet 2015; 11:e1005135. [PMID: 25996596 PMCID: PMC4440810 DOI: 10.1371/journal.pgen.1005135] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/10/2015] [Indexed: 01/08/2023] Open
Abstract
Frataxin (Yfh1 in yeast) is a conserved protein and deficiency leads to the neurodegenerative disease Friedreich's ataxia. Frataxin is a critical protein for Fe-S cluster assembly in mitochondria, interacting with other components of the Fe-S cluster machinery, including cysteine desulfurase Nfs1, Isd11 and the Isu1 scaffold protein. Yeast Isu1 with the methionine to isoleucine substitution (M141I), in which the E. coli amino acid is inserted at this position, corrected most of the phenotypes that result from lack of Yfh1 in yeast. This suppressor Isu1 behaved as a genetic dominant. Furthermore frataxin-bypass activity required a completely functional Nfs1 and correlated with the presence of efficient scaffold function. A screen of random Isu1 mutations for frataxin-bypass activity identified only M141 substitutions, including Ile, Cys, Leu, or Val. In each case, mitochondrial Nfs1 persulfide formation was enhanced, and mitochondrial Fe-S cluster assembly was improved in the absence of frataxin. Direct targeting of the entire E. coli IscU to ∆yfh1 mitochondria also ameliorated the mutant phenotypes. In contrast, expression of IscU with the reverse substitution i.e. IscU with Ile to Met change led to worsening of the ∆yfh1 phenotypes, including severely compromised growth, increased sensitivity to oxygen, deficiency in Fe-S clusters and heme, and impaired iron homeostasis. A bioinformatic survey of eukaryotic Isu1/prokaryotic IscU database entries sorted on the amino acid utilized at the M141 position identified unique groupings, with virtually all of the eukaryotic scaffolds using Met, and the preponderance of prokaryotic scaffolds using other amino acids. The frataxin-bypassing amino acids Cys, Ile, Leu, or Val, were found predominantly in prokaryotes. This amino acid position 141 is unique in Isu1, and the frataxin-bypass effect likely mimics a conserved and ancient feature of the prokaryotic Fe-S cluster assembly machinery.
Collapse
Affiliation(s)
- Heeyong Yoon
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Simon A. B. Knight
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Alok Pandey
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Jayashree Pain
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Serdar Turkarslan
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Debkumar Pain
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Andrew Dancis
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
5
|
Yoon H, Knight SAB, Pandey A, Pain J, Zhang Y, Pain D, Dancis A. Frataxin-bypassing Isu1: characterization of the bypass activity in cells and mitochondria. Biochem J 2014; 459:71-81. [PMID: 24433162 PMCID: PMC4021491 DOI: 10.1042/bj20131273] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Frataxin is a conserved mitochondrial protein, and deficiency underlies the neurodegenerative disease Friedreich's ataxia. Frataxin interacts with the core machinery for Fe-S cluster assembly in mitochondria. Recently we reported that in frataxin-deleted yeast strains, a spontaneously occurring mutation in one of two genes encoding redundant Isu scaffold proteins, bypassed the mutant phenotypes. In the present study we created strains expressing a single scaffold protein, either Isu1 or the bypass mutant M107I Isu1. Our results show that in the frataxin-deletion strain expressing the bypass mutant Isu1, cell growth, Fe-S cluster protein activities, haem proteins and iron homoeostasis were restored to normal or close to normal. The bypass effects were not mediated by changes in Isu1 expression level. The persulfide-forming activity of the cysteine desulfurase was diminished in the frataxin deletion (∆yfh1 ISU1) and was improved by expression of the bypass Isu1 (∆yfh1 M107I ISU1). The addition of purified bypass M107I Isu1 protein to a ∆yfh1 lysate conferred similar enhancement of cysteine desulfurase as did frataxin, suggesting that this effect contributed to the bypass mechanism. Fe-S cluster-forming activity in isolated mitochondria was stimulated by the bypass Isu1, albeit at a lower rate. The rescuing effects of the bypass Isu1 point to ways that the core defects in Friedreich's ataxia mitochondria can be restored.
Collapse
Affiliation(s)
- Heeyong Yoon
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
| | - Simon A. B. Knight
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
| | - Alok Pandey
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University, Newark, NJ 07101, U.S.A
| | - Jayashree Pain
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University, Newark, NJ 07101, U.S.A
| | - Yan Zhang
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
| | - Debkumar Pain
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University, Newark, NJ 07101, U.S.A
| | - Andrew Dancis
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
| |
Collapse
|
6
|
Ben-Yehezkel T, Zur H, Marx T, Shapiro E, Tuller T. Mapping the translation initiation landscape of an S. cerevisiae gene using fluorescent proteins. Genomics 2013; 102:419-29. [DOI: 10.1016/j.ygeno.2013.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/15/2013] [Accepted: 05/17/2013] [Indexed: 01/11/2023]
|
7
|
Abstract
The mitochondrion is arguably the most complex organelle in the budding yeast cell cytoplasm. It is essential for viability as well as respiratory growth. Its innermost aqueous compartment, the matrix, is bounded by the highly structured inner membrane, which in turn is bounded by the intermembrane space and the outer membrane. Approximately 1000 proteins are present in these organelles, of which eight major constituents are coded and synthesized in the matrix. The import of mitochondrial proteins synthesized in the cytoplasm, and their direction to the correct soluble compartments, correct membranes, and correct membrane surfaces/topologies, involves multiple pathways and macromolecular machines. The targeting of some, but not all, cytoplasmically synthesized mitochondrial proteins begins with translation of messenger RNAs localized to the organelle. Most proteins then pass through the translocase of the outer membrane to the intermembrane space, where divergent pathways sort them to the outer membrane, inner membrane, and matrix or trap them in the intermembrane space. Roughly 25% of mitochondrial proteins participate in maintenance or expression of the organellar genome at the inner surface of the inner membrane, providing 7 membrane proteins whose synthesis nucleates the assembly of three respiratory complexes.
Collapse
|
8
|
|
9
|
Timberlake WE, Frizzell MA, Richards KD, Gardner RC. A new yeast genetic resource for analysis and breeding. Yeast 2010; 28:63-80. [PMID: 20853274 DOI: 10.1002/yea.1821] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 08/11/2010] [Indexed: 11/09/2022] Open
Abstract
We made a library of Saccharomyces cerevisiae F(1) hybrids from all possible crosses of 16 wild-type strains, including two common laboratory strains and two commercial winemaking varieties. Fourteen of the starting strains have been sequenced. Thus, the sequences of both genomes are known in 182 novel hybrids, and the sequence of one genome is known in 56. All tested strains sporulated. Fertilities were in the range 0-100%. Hybrids showed no more variation than parental strains for ethanol production, ethanol tolerance or growth at temperature extremes, but some F(1) s appeared to display hybrid vigour (heterosis). We tested four tetrads from one hybrid for their ability to grow at low temperature or in the presence of an inhibitory concentration of ethanol. Only one F(2) was as tolerant as the most tolerant F(0) parent. A few showed intermediate tolerance, but most were less tolerant than either parent or the F(1) hybrid, consistent with uncoupling of genes contributing to an optimized quantitative trait. The diversity and structure of the library should make it useful for analysis of genetic interactions among diverse strains, quantitative inheritance and heterosis, and for breeding.
Collapse
|
10
|
Kresge N, Simoni RD, Hill RL. Isolation and Characterization of Cytochrome c Mutants: the Work of Fred Sherman. J Biol Chem 2010. [DOI: 10.1074/jbc.o110.000234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
11
|
Ferraro E, Pulicati A, Cencioni MT, Cozzolino M, Navoni F, di Martino S, Nardacci R, Carrì MT, Cecconi F. Apoptosome-deficient cells lose cytochrome c through proteasomal degradation but survive by autophagy-dependent glycolysis. Mol Biol Cell 2008; 19:3576-88. [PMID: 18550800 DOI: 10.1091/mbc.e07-09-0858] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cytochrome c release from mitochondria promotes apoptosome formation and caspase activation. The question as to whether mitochondrial permeabilization kills cells via a caspase-independent pathway when caspase activation is prevented is still open. Here we report that proneural cells of embryonic origin, when induced to die but rescued by apoptosome inactivation are deprived of cytosolic cytochrome c through proteasomal degradation. We also show that, in this context, those cells keep generating ATP by glycolysis for a long period of time and that they keep their mitochondria in a depolarized state that can be reverted. Moreover, under these conditions, such apoptosome-deficient cells activate a Beclin 1-dependent autophagy pathway to sustain glycolytic-dependent ATP production. Our findings contribute to elucidating what the point-of-no-return in apoptosis is. They also help in clarifying the issue of survival of apoptosome-deficient proneural cells under stress conditions. Unraveling this issue could be highly relevant for pharmacological intervention and for therapies based on neural stem cell transfer in the treatment of neurological disorders.
Collapse
Affiliation(s)
- Elisabetta Ferraro
- Laboratory of Molecular Neuroembryology, IRCCS Fondazione Santa Lucia, 00143, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bertini I, Grassi E, Luchinat C, Quattrone A, Saccenti E. Monomorphism of human cytochrome c. Genomics 2006; 88:669-72. [PMID: 16934433 DOI: 10.1016/j.ygeno.2006.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 07/07/2006] [Accepted: 07/19/2006] [Indexed: 11/16/2022]
Abstract
Cytochrome c (Cyt c) has key roles in both mitochondrial electron transfer and apoptosis onset and is therefore likely undergoing a strong selective pressure against amino acid variation. Nevertheless, a phylogenetically fast amino acid replacement rate in the Cyt c of species of the anthropoid primate lineage was recently reported. We therefore looked for the presence of nonsynonymous single nucleotide polymorphisms (nsSNPs) in the human Cyt c (HGNC approved gene symbol: CYCS), which, given its cellular constraints, could have important functional consequences, and found a large number of putative nsSNPs reported in the dbSNP database. We then subjected these putative SNPs to experimental validation by sequencing the Cyt c gene in a panel of 95 individuals assumed as a standard reference of the human population diversity. Surprisingly, none of the putative SNPs survived experimental validation. We conclude that non-rare allelic variants of the Cyt c protein are absent in the human populations analyzed in this study.
Collapse
Affiliation(s)
- Ivano Bertini
- Magnetic Resonance Center, University of Florence, 50019 Sesto Fiorentino, Italy.
| | | | | | | | | |
Collapse
|
13
|
Current awareness on yeast. Yeast 2005; 22:919-26. [PMID: 16201058 DOI: 10.1002/yea.1167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|