1
|
M’Kacher R, Colicchio B, Junker S, El Maalouf E, Heidingsfelder L, Plesch A, Dieterlen A, Jeandidier E, Carde P, Voisin P. High Resolution and Automatable Cytogenetic Biodosimetry Using In Situ Telomere and Centromere Hybridization for the Accurate Detection of DNA Damage: An Overview. Int J Mol Sci 2023; 24:ijms24065699. [PMID: 36982772 PMCID: PMC10054499 DOI: 10.3390/ijms24065699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
In the event of a radiological or nuclear accident, or when physical dosimetry is not available, the scoring of radiation-induced chromosomal aberrations in lymphocytes constitutes an essential tool for the estimation of the absorbed dose of the exposed individual and for effective triage. Cytogenetic biodosimetry employs different cytogenetic assays including the scoring of dicentrics, micronuclei, and translocations as well as analyses of induced premature chromosome condensation to define the frequency of chromosome aberrations. However, inherent challenges using these techniques include the considerable time span from sampling to result, the sensitivity and specificity of the various techniques, and the requirement of highly skilled personnel. Thus, techniques that obviate these challenges are needed. The introduction of telomere and centromere (TC) staining have successfully met these challenges and, in addition, greatly improved the efficiency of cytogenetic biodosimetry through the development of automated approaches, thus reducing the need for specialized personnel. Here, we review the role of the various cytogenetic dosimeters and their recent improvements in the management of populations exposed to genotoxic agents such as ionizing radiation. Finally, we discuss the emerging potentials to exploit these techniques in a wider spectrum of medical and biological applications, e.g., in cancer biology to identify prognostic biomarkers for the optimal triage and treatment of patients.
Collapse
Affiliation(s)
- Radhia M’Kacher
- Cell Environment DNA Damage R&D, Genopole, 91000 Evry-Courcouronnes, France
- Correspondence: ; Tel.: +33-160878918
| | - Bruno Colicchio
- IRIMAS, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, 69093 Mulhouse, France
| | - Steffen Junker
- Institute of Biomedicine, University of Aarhus, DK-8000 Aarhus, Denmark
| | - Elie El Maalouf
- Cell Environment DNA Damage R&D, Genopole, 91000 Evry-Courcouronnes, France
| | | | - Andreas Plesch
- MetaSystems GmbH, Robert-Bosch-Str. 6, D-68804 Altlussheim, Germany
| | - Alain Dieterlen
- IRIMAS, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, 69093 Mulhouse, France
| | - Eric Jeandidier
- Laboratoire de Génétique, Groupe Hospitalier de la Région de Mulhouse Sud-Alsace, 69093 Mulhouse, France
| | - Patrice Carde
- Department of Hematology, Institut Gustave Roussy, 94804 Villejuif, France
| | - Philippe Voisin
- Cell Environment DNA Damage R&D, Genopole, 91000 Evry-Courcouronnes, France
| |
Collapse
|
2
|
Lomonosova EE, Nugis VY, Snigiryova GP, Kozlova MG, Nikitina VA, Galstyan IA. Cytogenetic Analysis of the Peripheral Blood Lymphocyte Cultures of a Patient Some Time after Accidental Irradiation Using the Three-Color FISH Method. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022120093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
3
|
Zannino L, Casali C, Siciliani S, Biggiogera M. The dynamics of the nuclear environment and their impact on gene function. J Biochem 2021; 169:259-264. [PMID: 32745171 DOI: 10.1093/jb/mvaa091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/15/2020] [Indexed: 01/04/2023] Open
Abstract
In the last decades, it has become increasingly clear how the modulation of spatial organization of chromatin over time and through the cell cycle is closely connected to gene function regulation. Different physicochemical stimuli contribute to the realization of specific transcriptional programs and finally to a specific cellular phenotype. In this review, we aim to describe the current knowledge about the dynamics regulating the movements and the interactions of molecules within the nucleus and their impact on gene functions. In particular, taking into account that these forces exert their effect in a nuclear environment characterized by a high concentration of molecules, we will discuss the role of proteins and structures that regulate these movements and transduce physicochemical signals acting on the cell to the nucleus.
Collapse
Affiliation(s)
- Lorena Zannino
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Stella Siciliani
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | |
Collapse
|
4
|
Albertini RJ, Kaden DA. Mutagenicity monitoring in humans: Global versus specific origin of mutations. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 786:108341. [PMID: 33339577 DOI: 10.1016/j.mrrev.2020.108341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 10/08/2020] [Accepted: 10/14/2020] [Indexed: 01/19/2023]
Abstract
An underappreciated aspect of human mutagenicity biomonitoring is tissue specificity reflected in different assays, especially those that measure events that can only occur in developing bone marrow (BM) cells. Reviewed here are 9 currently-employed human mutagenicity biomonitoring assays. Several assays measure chromosome-level events in circulating T-lymphocytes (T-cells), i.e., traditional analyses of aberrations, translocation studies involving chromosome painting and fluorescence in situ hybridization (FISH) and determinations of micronuclei (MN). Other T-cell assays measure gene mutations. i.e., hypoxanthine-guanine phosphoriboslytransferase (HPRT) and phosphoribosylinositol glycan class A (PIGA). In addition to the T-cell assays, also reviewed are those assays that measure events in peripheral blood cells that necessarily arose in BM cells, i.e., MN in reticulocytes; glycophorin A (GPA) gene mutations in red blood cells (RBCs), and PIGA gene mutations in RBC or granulocytes. This review considers only cell culture- or cytometry-based assays to describe endpoints measured, methods, optimal sampling times, and sample summaries of typical quantitative and qualitative results. However, to achieve its intended focus on the target cells where events occur, kinetics of the cells of peripheral blood that derive at some point from precursor cells are reviewed to identify body sites and tissues where the genotoxic events originate. Kinetics indicate that in normal adults, measured events in T-cells afford global assessments of in vivo mutagenicity but are not specific for BM effects. Therefore, an agent's capacity for inducing mutations in BM cells cannot be reliably inferred from T-cell assays as the magnitude of effect in BM, if any, is unknown. By contrast, chromosome or gene level mutations measured in RBCs/reticulocytes or granulocytes must originate in BM cells, i.e. in RBC or granulocyte precursors, thereby making them specific indicators for effects in BM. Assays of mutations arising directly in BM cells may quantitatively reflect the mutagenicity of potential leukemogenic agents.
Collapse
Affiliation(s)
- Richard J Albertini
- University of Vermont, 111 Colchester Avenue, Burlington, VT 05401, United States
| | - Debra A Kaden
- Ramboll US Consulting, Inc., 101 Federal Street, Suite 1900, Boston, MA 02110, United States.
| |
Collapse
|
5
|
Utilizing multiplex fluor LAMPs to illuminate multiple gene expressions in situ. PLoS One 2019; 14:e0223333. [PMID: 31584968 PMCID: PMC6777751 DOI: 10.1371/journal.pone.0223333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/18/2019] [Indexed: 11/23/2022] Open
Abstract
In situ gene expression detection is the best way to determine temporal and spatial differences in gene expression. However, in situ hybridization procedures are inherently difficult to execute and typically suffer from degradation of sample tissues, limited sensitivity to genes with low expression, high background, and limitation to single gene detections. We propose to utilize an isothermal gene amplification technique, LAMP (Loop-Mediated Isothermal Amplification), to solve these problems in a novel way. LAMP greatly amplifies the signal of expressed genes and can use multiple sets of primers and different fluorescent-labeled probes to produce multiplex gene detection. LAMP is a rapid, isothermal reaction that reduces the handling and degradation of tissue by cutting down on the washing steps required by other methods. Using this technique, we have successfully amplified 3 target genes, have produced positive fluorescent in situ results simultaneously for two genes. We have also demonstrated that LAMP can be used to exploit standard NBT/BCIP (nitro-blue tetrazolium chloride/5-bromo-4-chloro-3'-indolyphosphate p-toluidine salt) detection of single expression. In situ LAMP is a robust and applicable method that can be exploited for detection of gene expression in plant species, as well as in animals and bacteria.
Collapse
|
6
|
Hoffmann GR. Twenty Years of Reflections in Mutation Research. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 780:106-120. [PMID: 31395355 DOI: 10.1016/j.mrrev.2019.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/25/2019] [Indexed: 11/18/2022]
Abstract
Reflections is a component of Mutation Research Reviews devoted to historical and philosophical themes pertaining to the subject of mutation. Reflections was initiated in 1999 and has included a broad array of topics centered on mutation research, but overlapping other scientific fields and touching upon history, sociology, politics, philosophy and ethics. This commentary offers an editor's reflections on the 44 papers in the Reflections series, including the people who contributed to the series and the topics that they discussed.
Collapse
Affiliation(s)
- George R Hoffmann
- Department of Biology, College of the Holy Cross, One College Street, Worcester, MA 01610, USA.
| |
Collapse
|
7
|
Kus A, Kwasniewska J, Szymanowska-Pułka J, Hasterok R. Dissecting the chromosomal composition of mutagen-induced micronuclei in Brachypodium distachyon using multicolour FISH. ANNALS OF BOTANY 2018; 122:1161-1171. [PMID: 29982446 PMCID: PMC6324755 DOI: 10.1093/aob/mcy115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 06/01/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND AND AIMS Brachypodium distachyon (Brachypodium) is a model species for temperate cereals and other economically important grasses. Its favourable cytogenetic features and advanced molecular infrastructure make it a good model for understanding the mechanisms of instability of plant genomes after mutagenic treatment. The aim of this study was to qualitatively and quantitatively assess the composition and origin of micronuclei arising from genomic fracture, and to detect possible 'hot spots' for mutagen-induced DNA breaks. METHODS Seeds of Brachypodium were treated with maleic hydrazide (MH) or X-rays. The structure of mutagen-induced micronuclei was analysed in root-tip meristematic cells using multicolour fluorescence in situ hybridization (mcFISH) with various repetitive (5S rDNA, 25S rDNA, telomeric, centromeric) and low-repeat [small and large pools of bacterial artificial chromosome (BAC) clones specific for chromosome Bd1] DNA sequences. KEY RESULTS The majority of micronuclei derive from large, acentric fragments. X-rays caused more interstitial DNA breaks than MH. Double-strand breaks rarely occurred in distal chromosome regions. Bd1 contributed to the formation of more mutagen-induced micronuclei than expected from random chromosome involvement. CONCLUSIONS mcFISH with chromosome-specific BAC clones offers insight into micronuclei composition, in so far as it allows their origin and formation to be determined more specifically. A reliable assay for micronuclei composition is crucial for the development of modern genotoxicity tests using plant cells. The combination of mutagenic treatments and well-developed cytomolecular resources in Brachypodium make this model species very promising for plant mutagenesis research.
Collapse
Affiliation(s)
- Arita Kus
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Jolanta Kwasniewska
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Joanna Szymanowska-Pułka
- Department of Biophysics and Plant Morphogenesis, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Robert Hasterok
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
8
|
Kirsch-Volders M, Pacchierotti F, Parry EM, Russo A, Eichenlaub-Ritter U, Adler ID. Risks of aneuploidy induction from chemical exposure: Twenty years of collaborative research in Europe from basic science to regulatory implications. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 779:126-147. [PMID: 31097149 DOI: 10.1016/j.mrrev.2018.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/26/2018] [Indexed: 12/13/2022]
Abstract
Although Theodor Boveri linked abnormal chromosome numbers and disease more than a century ago, an in-depth understanding of the impact of mitotic and meiotic chromosome segregation errors on cell proliferation and diseases is still lacking. This review reflects on the efforts and results of a large European research network that, from the 1980's until 2004, focused on protection against aneuploidy-inducing factors and tackled the following problems: 1) the origin and consequences of chromosome imbalance in somatic and germ cells; 2) aneuploidy as a result of environmental factors; 3) dose-effect relationships; 4) the need for validated assays to identify aneugenic factors and classify them according to their modes of action; 5) the need for reliable, quantitative data suitable for regulating exposure and preventing aneuploidy induction; 6) the need for mechanistic insight into the consequences of aneuploidy for human health. This activity brought together a consortium of experts from basic science and applied genetic toxicology to prepare the basis for defining guidelines and to encourage regulatory activities for the prevention of induced aneuploidy. Major strengths of the EU research programmes on aneuploidy were having a valuable scientific approach based on well-selected compounds and accurate methods that allow the determination of precise dose-effect relationships, reproducibility and inter-laboratory comparisons. The work was conducted by experienced scientists stimulated by a fascination with the complex scientific issues surrounding aneuploidy; a key strength was asking the right questions at the right time. The strength of the data permitted evaluation at the regulatory level. Finally, the entire enterprise benefited from a solid partnership under the lead of an inspired and stimulating coordinator. The research programme elucidated the major modes of action of aneugens, developed scientifically sound assays to assess aneugens in different tissues, and achieved the international validation of relevant assays with the goal of protecting human populations from aneugenic chemicals. The role of aneuploidy in tumorigenesis will require additional research, and the study of effects of exposure to multiple agents should become a priority. It is hoped that these reflections will stimulate the implementation of aneuploidy testing in national and OECD guidelines.
Collapse
Affiliation(s)
- Micheline Kirsch-Volders
- Laboratory for Cell Genetics, Faculty of Sciences and Bioengineering, Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | | - Antonella Russo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Ursula Eichenlaub-Ritter
- Institute of Gene Technology/Microbiology, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
| | | |
Collapse
|