1
|
Hahn KR, Kwon HJ, Kim DW, Hwang IK, Yoon YS. Therapeutic Options of Crystallin Mu and Protein Disulfide Isomerase A3 for Cuprizone-Induced Demyelination in Mouse Hippocampus. Neurochem Res 2024; 49:3078-3093. [PMID: 39164609 PMCID: PMC11449959 DOI: 10.1007/s11064-024-04227-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024]
Abstract
This study investigates the changes in hippocampal proteomic profiles during demyelination and remyelination using the cuprizone model. Employing two-dimensional gel electrophoresis and liquid chromatography-tandem mass spectrometry for protein profiling, we observed significant alterations in the expression of ketimine reductase mu-crystallin (CRYM) and protein disulfide isomerase A3 precursor (PDIA3) following exposure to and subsequent withdrawal from cuprizone. Immunohistochemical staining validated these protein expression patterns in the hippocampus, revealing that both PDIA3 and CRYM were downregulated in the hippocampal CA1 region during demyelination and upregulated during remyelination. Additionally, we explored the potential protective effects of CRYM and PDIA3 against cuprizone-induced demyelination by synthesizing cell-permeable Tat peptide-fusion proteins (Tat-CRYM and Tat-PDIA3) to facilitate their crossing through the blood-brain barrier. Our results indicated that administering Tat-CRYM and Tat-PDIA3 mitigated the reduction in proliferating cell and differentiated neuroblast counts compared to the group receiving cuprizone alone. Notably, Tat-PDIA3 demonstrated significant effects in enhancing myelin basic protein expression alongside phosphorylation of CREB in the hippocampus, suggesting its potential therapeutic role in the prevention or treatment of demyelination, and by extension, in conditions such as multiple sclerosis.
Collapse
Affiliation(s)
- Kyu Ri Hahn
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, South Korea
- Department of Biomedical Sciences, and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
2
|
Pazhouhandeh M, Sahraian MA, Siadat SD, Fateh A, Vaziri F, Tabrizi F, Ajorloo F, Arshadi AK, Fatemi E, Piri Gavgani S, Mahboudi F, Rahimi Jamnani F. A systems medicine approach reveals disordered immune system and lipid metabolism in multiple sclerosis patients. Clin Exp Immunol 2018; 192:18-32. [PMID: 29194580 DOI: 10.1111/cei.13087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/19/2017] [Accepted: 11/20/2017] [Indexed: 02/06/2023] Open
Abstract
Identification of autoimmune processes and introduction of new autoantigens involved in the pathogenesis of multiple sclerosis (MS) can be helpful in the design of new drugs to prevent unresponsiveness and side effects in patients. To find significant changes, we evaluated the autoantibody repertoires in newly diagnosed relapsing-remitting MS patients (NDP) and those receiving disease-modifying therapy (RP). Through a random peptide phage library, a panel of NDP- and RP-specific peptides was identified, producing two protein data sets visualized using Gephi, based on protein--protein interactions in the STRING database. The top modules of NDP and RP networks were assessed using Enrichr. Based on the findings, a set of proteins, including ATP binding cassette subfamily C member 1 (ABCC1), neurogenic locus notch homologue protein 1 (NOTCH1), hepatocyte growth factor receptor (MET), RAF proto-oncogene serine/threonine-protein kinase (RAF1) and proto-oncogene vav (VAV1) was found in NDP and was involved in over-represented terms correlated with cell-mediated immunity and cancer. In contrast, transcription factor RelB (RELB), histone acetyltransferase p300 (EP300), acetyl-CoA carboxylase 2 (ACACB), adiponectin (ADIPOQ) and phosphoenolpyruvate carboxykinase 2 mitochondrial (PCK2) had major contributions to viral infections and lipid metabolism as significant events in RP. According to these findings, further research is required to demonstrate the pathogenic roles of such proteins and autoantibodies targeting them in MS and to develop therapeutic agents which can ameliorate disease severity.
Collapse
Affiliation(s)
- M Pazhouhandeh
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
| | - M-A Sahraian
- MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - S D Siadat
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran.,Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - A Fateh
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran.,Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - F Vaziri
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran.,Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - F Tabrizi
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
| | - F Ajorloo
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran.,Department of Biology, Faculty of Science, Islamic Azad University, East Tehran Branch, Tehran, Iran
| | - A K Arshadi
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
| | - E Fatemi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - S Piri Gavgani
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
| | - F Mahboudi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - F Rahimi Jamnani
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran.,Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
3
|
Abstract
Central to the understanding of the relationships between diet, gut microbiota, and vitamins D and A in multiple sclerosis is low-grade inflammation, which is involved in all chronic inflammatory diseases and is influenced by each of the above effectors. We show that food components have either proinflammatory or anti-inflammatory effects and influence both the human metabolism (the "metabolome") and the composition of gut microbiota. Hypercaloric, high-animal-fat Western diets favor anabolism and change gut microbiota composition towards dysbiosis. Subsequent intestinal inflammation leads to leakage of the gut barrier, disruption of the blood-brain barrier, and neuroinflammation. Conversely, a vegetarian diet, rich in fiber, is coherent with gut eubiosis and a healthy condition. Vitamin D levels, mainly insufficient in a persistent low-grade inflammatory status, can be restored to optimal values only by administration of high amounts of cholecalciferol. At its optimal values (>30 ng/ml), vitamin D requires vitamin A for the binding to the vitamin D receptor and exert its anti-inflammatory action. Both vitamins must be supplied to the subjects lacking vitamin D. We conclude that nutrients, including the nondigestible dietary fibers, have a leading role in tackling the low-grade inflammation associated with chronic inflammatory diseases. Their action is mediated by gut microbiota and any microbial change induced by diet modifies host-microbe interactions in a consequent way, to improve the disease or worsen it.
Collapse
Affiliation(s)
- Paolo Riccio
- Department of Sciences, University of Basilicata, Viale dell'Ateneo Lucano, 10, 85100, Potenza, Italy.
| | - Rocco Rossano
- Department of Sciences, University of Basilicata, Viale dell'Ateneo Lucano, 10, 85100, Potenza, Italy
| |
Collapse
|
4
|
Shirazi HA, Rasouli J, Ciric B, Wei D, Rostami A, Zhang GX. 1,25-Dihydroxyvitamin D 3 suppressed experimental autoimmune encephalomyelitis through both immunomodulation and oligodendrocyte maturation. Exp Mol Pathol 2017; 102:515-521. [PMID: 28552332 PMCID: PMC11110837 DOI: 10.1016/j.yexmp.2017.05.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/05/2017] [Indexed: 02/01/2023]
Abstract
1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) has recently been found to have the anti-inflammatory potential to suppress experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis; however, its direct effect on neural cells is not clear. In the current study we show that 1,25(OH)2D3 treatment effectively suppressed clinical signs of ongoing EAE and reduced inflammation and demyelination scores in the central nervous system (CNS). The treatment significantly decreased production/expression of pro-inflammatory cytokines IFN-γ, GM-CSF and IL-17A, while it increased anti-inflammatory cytokines IL-4 and IL-10. Further, 1,25(OH)2D3 treatment effectively elevated the numbers of neural stem cells, oligodendrocyte precursor cells, as well as oligodendrocytes in disease lesions in the CNS. These results, together with its in vitro effect of inducing oligodendrocyte differentiation as shown in our previous findings, demonstrate that 1,25(OH)2D3 suppressed EAE not only by its immunomodulatory capacity, but also by its effect on oligodendrocyte differentiation and maturation, and thus has potential for remyelination and neural repair.
Collapse
Affiliation(s)
- Hasti Atashi Shirazi
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Javad Rasouli
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Bogoljub Ciric
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Danmeng Wei
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Abdolmohamad Rostami
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, United States.
| |
Collapse
|
5
|
Anastasiadou S, Liebenehm S, Sinske D, Meyer zu Reckendorf C, Moepps B, Nordheim A, Knöll B. Neuronal expression of the transcription factor serum response factor modulates myelination in a mouse multiple sclerosis model. Glia 2015; 63:958-76. [PMID: 25639799 DOI: 10.1002/glia.22794] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/08/2015] [Accepted: 01/08/2015] [Indexed: 12/14/2022]
Abstract
In multiple sclerosis (MS), neurons in addition to inflammatory cells are now considered to mediate disease origin and progression. So far, molecular and cellular mechanisms of neuronal MS contributions are poorly understood. Herein we analyzed whether neuron-restricted signaling by the neuroprotective transcription factor serum response factor (SRF) modulates de- and remyelination in a rodent MS model. In the mouse cuprizone model, neuron- (Srf (flox/flox;CaMKCreERT2)) but not glia-specific (Srf (flox/flox;PlpCreERT2)) SRF depletion impaired demyelination suggesting impaired debris clearance by astrocytes and microglia. This supports an important role of SRF expression in neurons but not oligodendrocytes in de- and remyelination. During remyelination, NG2- and OLIG2-positive cells of the oligodendrocyte lineage as well as de novo mRNA synthesis of myelin genes were also reduced in neuron-specific Srf mutants. Using the stripe assay, we demonstrate that cortices of cuprizone-fed wild-type mice elicited astrocyte and microglia activation whereas this was abrogated in cuprizone-fed neuron-specific Srf mutants. We identified CCL chemokines (e.g. CCL2) as neuron-derived SRF-regulated paracrine signals rescuing immune cell activation upon neuronal SRF deletion. In summary, we uncovered important roles of neurons and neuronally expressed SRF in MS associated de- and remyelination.
Collapse
Affiliation(s)
- Sofia Anastasiadou
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
The question whether dietary habits and lifestyle have influence on the course of multiple sclerosis (MS) is still a matter of debate, and at present, MS therapy is not associated with any information on diet and lifestyle. Here we show that dietary factors and lifestyle may exacerbate or ameliorate MS symptoms by modulating the inflammatory status of the disease both in relapsing-remitting MS and in primary-progressive MS. This is achieved by controlling both the metabolic and inflammatory pathways in the human cell and the composition of commensal gut microbiota. What increases inflammation are hypercaloric Western-style diets, characterized by high salt, animal fat, red meat, sugar-sweetened drinks, fried food, low fiber, and lack of physical exercise. The persistence of this type of diet upregulates the metabolism of human cells toward biosynthetic pathways including those of proinflammatory molecules and also leads to a dysbiotic gut microbiota, alteration of intestinal immunity, and low-grade systemic inflammation. Conversely, exercise and low-calorie diets based on the assumption of vegetables, fruit, legumes, fish, prebiotics, and probiotics act on nuclear receptors and enzymes that upregulate oxidative metabolism, downregulate the synthesis of proinflammatory molecules, and restore or maintain a healthy symbiotic gut microbiota. Now that we know the molecular mechanisms by which dietary factors and exercise affect the inflammatory status in MS, we can expect that a nutritional intervention with anti-inflammatory food and dietary supplements can alleviate possible side effects of immune-modulatory drugs and the symptoms of chronic fatigue syndrome and thus favor patient wellness.
Collapse
Affiliation(s)
- Paolo Riccio
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Rocco Rossano
- Department of Sciences, University of Basilicata, Potenza, Italy
| |
Collapse
|