1
|
Amato A, Proia P, Alioto A, Rossi C, Pagliaro A, Ragonese P, Schirò G, Salemi G, Caldarella R, Vasto S, Nowak R, Kostrzewa-Nowak D, Musumeci G, Baldassano S. High-intensity interval training improves bone remodeling, lipid profile, and physical function in multiple sclerosis patients. Sci Rep 2024; 14:16195. [PMID: 39003295 PMCID: PMC11246443 DOI: 10.1038/s41598-024-66448-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024] Open
Abstract
Multiple sclerosis (MS) is a demyelinating and neurodegenerative disease due to an autoimmune chronic inflammatory response, yet the etiology is currently not completely understood. It is already known that physical activity plays an essential role in improving quality of life, especially in neuropathological conditions. The study was aimed to investigate the possible benefits of high-intensity interval training (HIIT) in bone and lipid metabolism markers, and neuromotor abilities in MS patients. 130 participants were recruited; 16 subjects with MS met the inclusion criteria and were included in the data analysis. The patients were randomly assigned to two groups: a Control group (CG) (34.88 ± 4.45 yrs) that didn't perform any physical activity and the Exercise group (EG) (36.20 ± 7.80 yrs) that performed HIIT protocol. The training program was conducted remotely by a kinesiologist. It was performed three times a week for 8 weeks. At the beginning (T0) and the end of the study (T1) physical function tests, bone remodelling markers, and lipid markers analyses were performed. After 8 weeks of training the wall squat (s) (T0 = 27.18 ± 4.21; T1 = 41.68 ± 5.38, p ≤ 0.01) and Time Up and Go test (s) (T0 = 7.65 ± 0.43; T1 = 6.34 ± 0.38 p ≤ 0.01) performances improved; lipid markers analysis showed a decrease in Total (mg/dl) (T0 = 187.22 ± 15.73; T1 = 173.44 ± 13.03, p ≤ 0.05) and LDL (mg/dl) (T0 = 108 ± 21.08; T1 = 95.02 ± 17.99, p < 0.05) cholesterol levels. Additionally, the levels of osteocalcin (µg/L), a marker of bone formation increased (T0 = 20.88 ± 4.22; T1 = 23.66 ± 6.24, p < 0.05), 25-OH Vitamin D (µg/L) improved after 8 weeks (T0 = 21.11 ± 7.11; T1 = 27.66 ± 7.59, p < 0.05). HIIT had an effect on lower limb strength and gait control, improved bone formation, and lipid management, in MS patients.
Collapse
Affiliation(s)
- Alessandra Amato
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia No 97, 95123, Catania, Italy
| | - Patrizia Proia
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, 90144, Palermo, Italy.
| | - Anna Alioto
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, 90144, Palermo, Italy
| | - Carlo Rossi
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, 90144, Palermo, Italy
| | - Andrea Pagliaro
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, 90144, Palermo, Italy
| | - Paolo Ragonese
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127, Palermo, Italy
| | - Giuseppe Schirò
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127, Palermo, Italy
| | - Giuseppe Salemi
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127, Palermo, Italy
| | - Rosalia Caldarella
- Department of Laboratory Medicine, "P. Giaccone" University Hospital, University of Palermo, 90127, Palermo, Italy
| | - Sonya Vasto
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128, Palermo, Italy
| | - Robert Nowak
- Institute of Physical Culture Sciences, University of Szczecin, 17C Narutowicza St, 70-240, Szczecin, Poland
- Department of Pathology, Pomeranian Medical University in Szczecin, 1 Unii Lubelskiej St, 71-242, Szczecin, Poland
| | - Dorota Kostrzewa-Nowak
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp. Al, 70-111, Szczecin, Poland
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia No 97, 95123, Catania, Italy
| | - Sara Baldassano
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128, Palermo, Italy
| |
Collapse
|
2
|
de Villers-Sidani É, Voss P, Bastien N, Cisneros-Franco JM, Hussein S, Mayo NE, Koch NA, Drouin-Picaro A, Blanchette F, Guitton D, Giacomini PS. Oculomotor analysis to assess brain health: preliminary findings from a longitudinal study of multiple sclerosis using novel tablet-based eye-tracking software. Front Neurol 2023; 14:1243594. [PMID: 37745656 PMCID: PMC10516298 DOI: 10.3389/fneur.2023.1243594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/07/2023] [Indexed: 09/26/2023] Open
Abstract
A growing body of evidence supports the link between eye movement anomalies and brain health. Indeed, the oculomotor system is composed of a diverse network of cortical and subcortical structures and circuits that are susceptible to a variety of degenerative processes. Here we show preliminary findings from the baseline measurements of an ongoing longitudinal cohort study in MS participants, designed to determine if disease and cognitive status can be estimated and tracked with high accuracy based on eye movement parameters alone. Using a novel gaze-tracking technology that can reliably and accurately track eye movements with good precision without the need for infrared cameras, using only an iPad Pro embedded camera, we show in this cross-sectional study that several eye movement parameters significantly correlated with clinical outcome measures of interest. Eye movement parameters were extracted from fixation, pro-saccade, anti-saccade, and smooth pursuit visual tasks, whereas the clinical outcome measures were the scores of several disease assessment tools and standard cognitive tests such as the Expanded Disability Status Scale (EDSS), Brief International Cognitive Assessment for MS (BICAMS), the Multiple Sclerosis Functional Composite (MSFC) and the Symbol Digit Modalities Test (SDMT). Furthermore, partial least squares regression analyses show that a small set of oculomotor parameters can explain up to 84% of the variance of the clinical outcome measures. Taken together, these findings not only replicate previously known associations between eye movement parameters and clinical scores, this time using a novel mobile-based technology, but also the notion that interrogating the oculomotor system with a novel eye-tracking technology can inform us of disease severity, as well as the cognitive status of MS participants.
Collapse
Affiliation(s)
- Étienne de Villers-Sidani
- Innodem Neurosciences, Montreal, QC, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Patrice Voss
- Innodem Neurosciences, Montreal, QC, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | | - J. Miguel Cisneros-Franco
- Innodem Neurosciences, Montreal, QC, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | | - Nancy E. Mayo
- Faculty of Medicine, School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada
| | - Nils A. Koch
- Innodem Neurosciences, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | | | | | - Daniel Guitton
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Paul S. Giacomini
- Innodem Neurosciences, Montreal, QC, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
3
|
de Villers-Sidani É, Voss P, Guitton D, Cisneros-Franco JM, Koch NA, Ducharme S. A novel tablet-based software for the acquisition and analysis of gaze and eye movement parameters: a preliminary validation study in Parkinson's disease. Front Neurol 2023; 14:1204733. [PMID: 37396780 PMCID: PMC10310943 DOI: 10.3389/fneur.2023.1204733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
The idea that eye movements can reflect certain aspects of brain function and inform on the presence of neurodegeneration is not a new one. Indeed, a growing body of research has shown that several neurodegenerative disorders, such as Alzheimer's and Parkinson's Disease, present characteristic eye movement anomalies and that specific gaze and eye movement parameters correlate with disease severity. The use of detailed eye movement recordings in research and clinical settings, however, has been limited due to the expensive nature and limited scalability of the required equipment. Here we test a novel technology that can track and measure eye movement parameters using the embedded camera of a mobile tablet. We show that using this technology can replicate several well-known findings regarding oculomotor anomalies in Parkinson's disease (PD), and furthermore show that several parameters significantly correlate with disease severity as assessed with the MDS-UPDRS motor subscale. A logistic regression classifier was able to accurately distinguish PD patients from healthy controls on the basis of six eye movement parameters with a sensitivity of 0.93 and specificity of 0.86. This tablet-based tool has the potential to accelerate eye movement research via affordable and scalable eye-tracking and aid with the identification of disease status and monitoring of disease progression in clinical settings.
Collapse
Affiliation(s)
- Étienne de Villers-Sidani
- Innodem Neurosciences, Montreal, QC, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Patrice Voss
- Innodem Neurosciences, Montreal, QC, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Daniel Guitton
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - J. Miguel Cisneros-Franco
- Innodem Neurosciences, Montreal, QC, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Nils A. Koch
- Innodem Neurosciences, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Simon Ducharme
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Douglas Mental Health University Institute, Montreal, QC, Canada
| |
Collapse
|
4
|
van Egmond EEA, van Gorp DAM, Jongen PJ, van der Klink JJL, Reneman MF, Arnoldus EPJ, Beenakker EAC, van Eijk JJJ, Frequin STFM, Gerlach OHH, Hengstman GJD, Moll JWB, Verhagen WIM, Middelkoop HAM, Visser LH, van der Hiele K. Self-reported work productivity in people with multiple sclerosis and its association with mental and physical health. Disabil Rehabil 2022; 44:7096-7105. [PMID: 34607481 DOI: 10.1080/09638288.2021.1981468] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE This study aimed to identify mental health, physical health, demographic and disease characteristics relating to work productivity in people with multiple sclerosis (MS). METHODS In this cross-sectional study, 236 employed people with MS (median age = 42 years, 78.8% female) underwent neurological and neuropsychological assessments. Additionally, they completed questionnaires inquiring about work productivity (presenteeism: reduced productivity while working, and absenteeism: loss of productivity due to absence from work), mental and physical health, demographic and disease characteristics. Multiple linear and logistic regression analyses were performed with presenteeism and absenteeism as dependent variables, respectively. RESULTS A model with mental and physical health factors significantly predicted presenteeism F(11,202) = 11.33, p < 0.001, R2 = 0.38; a higher cognitive (p < 0.001) and physical impact (p = 0.042) of fatigue were associated with more presenteeism. A model with only mental health factors significantly predicted absenteeism; χ2(11)=37.72, p < 0.001, with R2 = 0.27 (Nagelkerke) and R2 = 0.16 (Cox and Snell). Specifically, we observed that more symptoms of depression (p = 0.041) and a higher cognitive impact of fatigue (p = 0.011) were significantly associated with more absenteeism. CONCLUSIONS In people with MS, both cognitive and physical impact of fatigue are positively related to presenteeism, while symptoms of depression and cognitive impact of fatigue are positively related to absenteeism.Implications for rehabilitationMultiple sclerosis (MS) affects people of working age, significantly interfering with work productivity.Higher cognitive and physical impact of fatigue were associated with more presenteeism in workers with MS.A higher cognitive impact of fatigue and more depressive symptoms were associated with absenteeism in workers with MS.Occupational and healthcare professionals should be aware of the impact of both physical and mental health on work productivity in workers with MS.
Collapse
Affiliation(s)
- Elianne E A van Egmond
- Department of Neurology, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands.,Institute of Psychology, Health, Medical and Neuropsychology Unit, Leiden University, Leiden, The Netherlands.,National Multiple Sclerosis Foundation, Rotterdam, The Netherlands.,Department of Care Ethics, University of Humanistic Studies, Utrecht, The Netherlands
| | - Dennis A M van Gorp
- Department of Care Ethics, University of Humanistic Studies, Utrecht, The Netherlands
| | - Peter J Jongen
- MS4 Research Institute, Nijmegen, The Netherlands.,Department of Community & Occupational Medicine, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Jac J L van der Klink
- Tilburg School of Social and Behavioural Sciences, Tranzo Scientific Centre for Care and Welfare, Tilburg University, Tilburg, The Netherlands.,Optentia, North West University of South Africa, Vanderbijlpark, South Africa
| | - Michiel F Reneman
- Department of Rehabilitation Medicine, Centre for Rehabilitation, University of Groningen, University Medical Centre Groningen, Haren, The Netherlands
| | - Edo P J Arnoldus
- Department of Neurology, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
| | | | - Jeroen J J van Eijk
- Department of Neurology, Jeroen Bosch Hospital, 'S-Hertogenbosch, The Netherlands
| | | | - Oliver H H Gerlach
- Department of Neurology, Zuyderland Medical Centre, Sittard-Geleen, The Netherlands
| | | | - Johan W B Moll
- Department of Neurology, Maasstad Hospital, Rotterdam, The Netherlands
| | - Wim I M Verhagen
- Department of Neurology, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Huub A M Middelkoop
- Institute of Psychology, Health, Medical and Neuropsychology Unit, Leiden University, Leiden, The Netherlands.,Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Leo H Visser
- Department of Neurology, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands.,Department of Care Ethics, University of Humanistic Studies, Utrecht, The Netherlands
| | - Karin van der Hiele
- Institute of Psychology, Health, Medical and Neuropsychology Unit, Leiden University, Leiden, The Netherlands
| |
Collapse
|
5
|
García Cena CE, Gómez-Andrés D, Pulido-Valdeolivas I, Sánchez-Seco VG, Domingo-Santos A, Moreno-García S, Benito-León J. Toward an Automatic Assessment of Cognitive Dysfunction in Relapsing-Remitting Multiple Sclerosis Patients Using Eye Movement Analysis. SENSORS (BASEL, SWITZERLAND) 2022; 22:8220. [PMID: 36365918 PMCID: PMC9657913 DOI: 10.3390/s22218220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/13/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Despite the importance of cognitive function in multiple sclerosis, it is poorly represented in the Expanded Disability Status Scale (EDSS), the commonly used clinical measure to assess disability, suggesting that an analysis of eye movement, which is generated by an extensive and well-coordinated functional network that is engaged in cognitive function, could have the potential to extend and complement this more conventional measure. We aimed to measure the eye movement of a case series of MS patients with relapsing−remitting MS to assess their cognitive status using a conventional gaze tracker. A total of 41 relapsing−remitting MS patients and 43 age-matched healthy controls were recruited for this study. Overall, we could not find a clear common pattern in the eye motor abnormalities. Vertical eye movement was more impaired in MS patients than horizontal movement. Increased latencies were found in the prosaccades and reflexive saccades of antisaccade tests. The smooth pursuit was impaired with more corrections (backup and catchup movements, p<0.01). No correlation was found between eye movement variables and EDSS or disease duration. Despite significant alterations in the behavior of the eye movements in MS patients, which are compatible with altered cognitive status, there is no common pattern of these alterations. We interpret this as a consequence of the patchy, heterogeneous distribution of white matter involvement in MS that provokes multiple combinations of impairment at different points in the different networks involved in eye motor control. Further studies are therefore required.
Collapse
Affiliation(s)
- Cecilia E. García Cena
- Escuela Técnica Superior de Ingeniería y Diseño Industrial, Centre for Automation and Robotics, ETSIDI-CAR, Universidad Politécnica de Madrid, 28012 Madrid, Spain
| | - David Gómez-Andrés
- Child Neurology Unit, Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute (VHIR), Euro-NMD and ERN-RND, 08035 Barcelona, Spain
| | - Irene Pulido-Valdeolivas
- Anatomy, Histology and Neuroscience Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | - Angela Domingo-Santos
- Department of Neurology, “La Mancha Centro” General Hospital, Alcázar de San Juan, 13600 Ciudad Real, Spain
| | - Sara Moreno-García
- Department of Neurology, University Hospital “12 de Octubre”, 28041 Madrid, Spain
| | - Julián Benito-León
- Department of Neurology, University Hospital “12 de Octubre”, 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
- Department of Medicine, Complutense University, 28040 Madrid, Spain
| |
Collapse
|
6
|
Mui M, Ruben R, Ricker T, Dobryakova E, Sandry J. Ex-Gaussian Analysis of Simple Response Time as a Measure of Information Processing Speed and the Relationship with Brain Morphometry in Multiple Sclerosis. Mult Scler Relat Disord 2022; 63:103890. [DOI: 10.1016/j.msard.2022.103890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022]
|
7
|
Dillenseger A, Weidemann ML, Trentzsch K, Inojosa H, Haase R, Schriefer D, Voigt I, Scholz M, Akgün K, Ziemssen T. Digital Biomarkers in Multiple Sclerosis. Brain Sci 2021; 11:brainsci11111519. [PMID: 34827518 PMCID: PMC8615428 DOI: 10.3390/brainsci11111519] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
For incurable diseases, such as multiple sclerosis (MS), the prevention of progression and the preservation of quality of life play a crucial role over the entire therapy period. In MS, patients tend to become ill at a younger age and are so variable in terms of their disease course that there is no standard therapy. Therefore, it is necessary to enable a therapy that is as personalized as possible and to respond promptly to any changes, whether with noticeable symptoms or symptomless. Here, measurable parameters of biological processes can be used, which provide good information with regard to prognostic and diagnostic aspects, disease activity and response to therapy, so-called biomarkers Increasing digitalization and the availability of easy-to-use devices and technology also enable healthcare professionals to use a new class of digital biomarkers-digital health technologies-to explain, influence and/or predict health-related outcomes. The technology and devices from which these digital biomarkers stem are quite broad, and range from wearables that collect patients' activity during digitalized functional tests (e.g., the Multiple Sclerosis Performance Test, dual-tasking performance and speech) to digitalized diagnostic procedures (e.g., optical coherence tomography) and software-supported magnetic resonance imaging evaluation. These technologies offer a timesaving way to collect valuable data on a regular basis over a long period of time, not only once or twice a year during patients' routine visit at the clinic. Therefore, they lead to real-life data acquisition, closer patient monitoring and thus a patient dataset useful for precision medicine. Despite the great benefit of such increasing digitalization, for now, the path to implementing digital biomarkers is widely unknown or inconsistent. Challenges around validation, infrastructure, evidence generation, consistent data collection and analysis still persist. In this narrative review, we explore existing and future opportunities to capture clinical digital biomarkers in the care of people with MS, which may lead to a digital twin of the patient. To do this, we searched published papers for existing opportunities to capture clinical digital biomarkers for different functional systems in the context of MS, and also gathered perspectives on digital biomarkers under development or already existing as a research approach.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tjalf Ziemssen
- Correspondence: ; Tel.: +49-351-458-5934; Fax: +49-351-458-5717
| |
Collapse
|
8
|
Botchorishvili N, Shiukashvili N, Mikeladze N, Dzagnidze A, Mikava N, Tighashvili M, Janelidze M. Validity and reliability of the Georgian-language brief international cognitive assessment for multiple sclerosis (BICAMS). BMC Neurol 2021; 21:218. [PMID: 34107913 PMCID: PMC8188683 DOI: 10.1186/s12883-021-02249-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/17/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Cognitive impairment is one of the common features of multiple sclerosis (MS). Despite high prevalence, cognitive decline is often overlooked by neurologists. The Brief International Cognitive Assessment for MS (BICAMS) was therefore introduced by the international expert committee as a brief and effective tool for the assessment and monitoring of cognitive functions in patients with MS. The validity and reliability of BICAMS have been demonstrated in many countries. Our aim was to validate the BICAMS in Georgian patients with MS. METHODS A total of 68 patients with MS and 68 matched controls were assessed by the Georgian-language BICAMS. All healthy controls and seven patients were re-evaluated with identical tests to assess retest reliability. RESULTS In comparison to healthy controls, patients with MS performed significantly worse on all tests in the assessment battery. Test-retest reliability measures were good for all tests. The prevalence of cognitive impairment in patients with MS was 43%. CONCLUSION The Georgian-language BICAMS is a reliable and valid battery for the assessment of cognitive function in patients with MS.
Collapse
Affiliation(s)
| | - Nino Shiukashvili
- School of Natural Sciences and Medicine, Ilia State University, Kakutsa Cholokashvili avenue 3/5, 0162, Tbilisi, Georgia
| | - Nina Mikeladze
- Tbilisi State Medical University, Vazha Pshavela avenue 33, 0177, Tbilisi, Georgia
| | - Ann Dzagnidze
- Tbilisi State Medical University, Vazha Pshavela avenue 33, 0177, Tbilisi, Georgia
| | - Nino Mikava
- S. Khechinashvili University Hospital, Chavchavadze avenue 33, 0179, Tbilisi, Georgia
| | - Maia Tighashvili
- S. Khechinashvili University Hospital, Chavchavadze avenue 33, 0179, Tbilisi, Georgia
| | - Marina Janelidze
- Tbilisi State Medical University, Vazha Pshavela avenue 33, 0177, Tbilisi, Georgia
| |
Collapse
|
9
|
Quantification of smooth pursuit dysfunction in multiple sclerosis. Mult Scler Relat Disord 2021; 54:103073. [PMID: 34214878 DOI: 10.1016/j.msard.2021.103073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/31/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Smooth pursuit dysfunction is common in MS, but rarely quantified and may be missed on exam. METHODS NeuroFitONE™ smooth pursuit performance measures were compared between MS (n = 20) and healthy control (n = 19) participants. RESULTS Compared to controls, MS patients had lower proportion of smooth pursuit (0.63 vs. 0.73; p = 0.047), increased directional (10.1 vs. 8°; p = 0.014) and speed noise (4.3 vs. 3.1°/sec; p = 0.021) and reduced initiation acceleration (96.83 vs. 115.33°/sec2; p = 0.061). Significant univariate correlations with clinical scores (EDSS, T25-FW) were observed. CONCLUSION Smooth pursuit dysfunction in MS can be readily quantified and distinguishes MS eyes from healthy controls.
Collapse
|
10
|
Has Silemek AC, Ranjeva J, Audoin B, Heesen C, Gold SM, Kühn S, Weygandt M, Stellmann J. Delayed access to conscious processing in multiple sclerosis: Reduced cortical activation and impaired structural connectivity. Hum Brain Mapp 2021; 42:3379-3395. [PMID: 33826184 PMCID: PMC8249884 DOI: 10.1002/hbm.25440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 01/24/2023] Open
Abstract
Although multiple sclerosis (MS) is frequently accompanied by visuo‐cognitive impairment, especially functional brain mechanisms underlying this impairment are still not well understood. Consequently, we used a functional MRI (fMRI) backward masking task to study visual information processing stratifying unconscious and conscious in MS. Specifically, 30 persons with MS (pwMS) and 34 healthy controls (HC) were shown target stimuli followed by a mask presented 8–150 ms later and had to compare the target to a reference stimulus. Retinal integrity (via optical coherence tomography), optic tract integrity (visual evoked potential; VEP) and whole brain structural connectivity (probabilistic tractography) were assessed as complementary structural brain integrity markers. On a psychophysical level, pwMS reached conscious access later than HC (50 vs. 16 ms, p < .001). The delay increased with disease duration (p < .001, β = .37) and disability (p < .001, β = .24), but did not correlate with conscious information processing speed (Symbol digit modality test, β = .07, p = .817). No association was found for VEP and retinal integrity markers. Moreover, pwMS were characterized by decreased brain activation during unconscious processing compared with HC. No group differences were found during conscious processing. Finally, a complementary structural brain integrity analysis showed that a reduced fractional anisotropy in corpus callosum and an impaired connection between right insula and primary visual areas was related to delayed conscious access in pwMS. Our study revealed slowed conscious access to visual stimulus material in MS and a complex pattern of functional and structural alterations coupled to unconscious processing of/delayed conscious access to visual stimulus material in MS.
Collapse
Affiliation(s)
- Arzu C. Has Silemek
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS)Universitätsklinikum Hamburg‐Eppendorf (UKE)HamburgGermany
| | - Jean‐Philippe Ranjeva
- Aix‐Marseille UniversityCNRS, CRMBMMarseille CedexFrance
- APHMHopital de la Timone, CEMEREMMarseilleFrance
| | - Bertrand Audoin
- Aix‐Marseille UniversityCNRS, CRMBMMarseille CedexFrance
- APHMHopital de la Timone, CEMEREMMarseilleFrance
| | - Christoph Heesen
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS)Universitätsklinikum Hamburg‐Eppendorf (UKE)HamburgGermany
- Klinik und Poliklinik für NeurologieUniversitätsklinikum Hamburg‐EppendorfHamburgGermany
| | - Stefan M. Gold
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS)Universitätsklinikum Hamburg‐Eppendorf (UKE)HamburgGermany
- Charité ‐ Universitätsmedizin Berlin, Freie Universität BerlinHumboldt Universität zu Berlin, and Berlin Institute of Health (BIH), Klinik für Psychiatrie & Psychotherapie und Medizinische Klinik m.S. Psychosomatik, Campus Benjamin Franklin (CBF)BerlinGermany
| | - Simone Kühn
- Clinic for Psychiatry and PsychotherapyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Lise Meitner Group for Environmental NeuroscienceMax Planck Institute for Human DevelopmentBerlinGermany
| | - Martin Weygandt
- Max Delbrück Center for Molecular Medicine and Charité – Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt‐Universität zu Berlin, and Berlin Institute of Health, Experimental and Clinical Research CenterBerlinGermany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt‐Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research CenterBerlinGermany
| | - Jan‐Patrick Stellmann
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS)Universitätsklinikum Hamburg‐Eppendorf (UKE)HamburgGermany
- Aix‐Marseille UniversityCNRS, CRMBMMarseille CedexFrance
- APHMHopital de la Timone, CEMEREMMarseilleFrance
- Klinik und Poliklinik für NeurologieUniversitätsklinikum Hamburg‐EppendorfHamburgGermany
| |
Collapse
|
11
|
Jakimovski D, Benedict RHB, Weinstock-Guttman B, Ozel O, Fuchs TA, Lincoff N, Bergsland N, Dwyer MG, Zivadinov R. Visual deficits and cognitive assessment of multiple sclerosis: confounder, correlate, or both? J Neurol 2021; 268:2578-2588. [PMID: 33590339 DOI: 10.1007/s00415-021-10437-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND The relationship between visual impairment and cognitive performance in multiple sclerosis (MS) remains poorly understood. OBJECTIVE To determine associations between visual acuity and optical coherence tomography (OCT) measures with cognitive performance of MS patients and healthy controls (HCs). METHODS 141 MS patients (with and without MS optic neuritis; MSON) and 50 HCs underwent neuropsychological, visual, and OCT testing. California Verbal Learning Test (CVLT-II), Brief Visuospatial Memory Test (BVMT-R), and Symbol Digit Modalities Test (SDMT) were used. Patients with test performance below - 1.5 standard deviations of the mean HCs scores were labeled as cognitive impairment. Visual ability was assessed with 100%, 2.5%, and 1.25% low-contrast letter acuity (LCLA) charts. OCT-derived peripapillary retinal nerve fiber layer (pRNFL) thickness, macular volume (MV), macular ganglion cell inner plexiform (mGCIP) thickness (as a sum of GC and IP layers), and macular inner nuclear layer (mINL) were computed. RESULTS 100% and 2.5% LCLA associated with SDMT in MS and HCs (p < 0.001; and p < 0.012, respectively). In MSON patients, visually demanding tests were explained by pRNFL and macular volume for SDMT (β = 0.172, p = 0.039 and β = 0.27, p = 0.001) and MV for BVMT-R (β = 0.21, p = 0.012). In non-MSON, only mINL was predictor of CVLT-II. pRNFL and MV predicted cognitive impairment with an accuracy of 72.2% (Negelkerke R2 = 0.234). These findings were driven by associations within the progressive MS subgroup. HC's SDMT performance was explained by mGCIP (β = 0.316, p = 0.001). CONCLUSIONS Both LCLA and OCT-based measures (pRNFL and macular volume) were associated with MS cognitive performance. OCT-based measures were also significant predictors of cognitive status in MS patients. mGCIP associated with cognitive performance in HCs.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Department of Neurology, Buffalo Neuroimaging Analysis Center (BNAC), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 14203, USA. .,Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| | - Ralph H B Benedict
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Bianca Weinstock-Guttman
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Osman Ozel
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Tom A Fuchs
- Department of Neurology, Buffalo Neuroimaging Analysis Center (BNAC), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 14203, USA.,Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Norah Lincoff
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Niels Bergsland
- Department of Neurology, Buffalo Neuroimaging Analysis Center (BNAC), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 14203, USA.,Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.,IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Michael G Dwyer
- Department of Neurology, Buffalo Neuroimaging Analysis Center (BNAC), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 14203, USA.,Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Robert Zivadinov
- Department of Neurology, Buffalo Neuroimaging Analysis Center (BNAC), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 14203, USA.,Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.,Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
12
|
Gromisch ES, Dhari Z. Identifying Early Neuropsychological Indicators of Cognitive Involvement in Multiple Sclerosis. Neuropsychiatr Dis Treat 2021; 17:323-337. [PMID: 33574669 PMCID: PMC7872925 DOI: 10.2147/ndt.s256689] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/22/2021] [Indexed: 12/19/2022] Open
Abstract
Multiple sclerosis (MS) is a debilitating disease of the central nervous system that is most commonly seen in early to middle adulthood, although it can be diagnosed during childhood or later in life. While cognitive impairment can become more prevalent and severe as the disease progresses, signs of cognitive involvement can be apparent in the early stages of the disease. In this review, we discuss the prevalence and types of cognitive impairment seen in early MS, including the specific measures used to identify them, as well as the challenges in characterizing their frequency and progression. In addition to examining the progression of early cognitive involvement over time, we explore the clinical factors associated with early cognitive involvement, including demographics, level of physical disability, disease modifying therapy use, vocational status, and psychological and physical symptoms. Given the prevalence and functional impact these impairments can have for persons with MS, considerations for clinicians are provided, such as the role of early cognitive screenings and the importance of comprehensive neuropsychological assessments.
Collapse
Affiliation(s)
- Elizabeth S Gromisch
- Mandell Center for Multiple Sclerosis, Mount Sinai Rehabilitation Hospital, Trinity Health Of New England, Hartford, CT, USA
- Department of Rehabilitative Medicine, Frank H. Netter MD School of Medicine at Quinnipiac University, North Haven, CT, USA
- Department of Medical Sciences, Frank H. Netter MD School of Medicine at Quinnipiac University, North Haven, CT, USA
- Department of Neurology, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Zaenab Dhari
- Mandell Center for Multiple Sclerosis, Mount Sinai Rehabilitation Hospital, Trinity Health Of New England, Hartford, CT, USA
- Department of Rehabilitative Medicine, Frank H. Netter MD School of Medicine at Quinnipiac University, North Haven, CT, USA
| |
Collapse
|
13
|
Simmatis LE, Jin AY, Taylor SW, Bisson EJ, Scott SH, Baharnoori M. The feasibility of assessing cognitive and motor function in multiple sclerosis patients using robotics. Mult Scler J Exp Transl Clin 2020; 6:2055217320964940. [PMID: 33149931 PMCID: PMC7580159 DOI: 10.1177/2055217320964940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Background Multiple sclerosis (MS) causes pervasive motor, sensory and cognitive dysfunction. The Expanded Disability Status Scale (EDSS) is the gold standard for assessing MS disability. The EDSS is biased towards mobility and may not accurately measure MS-related disabilities in the upper limb or in cognitive functions (e.g. executive function). Objective Our objectives were to determine the feasibility of using the Kinarm robotic system to quantify neurological deficits related to arm function and cognition in MS patients, and examine relationships between traditional clinical assessments and Kinarm variables. Methods Individuals with MS performed 8 robotic tasks assessing motor, cognitive, and sensory ability. We additionally collected traditional clinical assessments and compared these to the results of the robotic assessment. Results Forty-three people with MS were assessed. Most participants could complete the robotic assessment. Twenty-six (60%) were impaired on at least one cognitive task and twenty-six (60%) were impaired on at least one upper-limb motor task. Cognitive domain task performance correlated most strongly with the EDSS. Conclusions Kinarm robotic assessment of people with MS is feasible, can identify a broad range of upper-limb motor and sensory, as well as cognitive, impairments, and complements current clinical rating scales in the assessment of MS-related disability.
Collapse
Affiliation(s)
- Leif Er Simmatis
- Centre for Neuroscience Studies, Queen's University, Kingston, Canada
| | | | - Sean W Taylor
- Centre for Neuroscience Studies, Queen's University, Kingston, Canada
| | - Etienne J Bisson
- Centre for Neuroscience Studies, Queen's University, Kingston, Canada
| | - Stephen H Scott
- Centre for Neuroscience Studies, Queen's University, Kingston, Canada
| | - Moogeh Baharnoori
- Centre for Neuroscience Studies, Queen's University, Kingston, Canada
| |
Collapse
|
14
|
Clinical outcome measures in multiple sclerosis: A review. Autoimmun Rev 2020; 19:102512. [DOI: 10.1016/j.autrev.2020.102512] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023]
|
15
|
|
16
|
Gil-Casas A, Piñero DP, Molina-Martin A. Binocular, Accommodative and Oculomotor Alterations In Multiple Sclerosis: A Review. Semin Ophthalmol 2020; 35:103-115. [PMID: 32228341 DOI: 10.1080/08820538.2020.1744671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Multiple sclerosis (MS) is an acquired demyelinating and inflammatory neurodegenerative disease affecting the central nervous system (CNS). Clinical and subclinical ocular disturbances occur in almost all patients with MS. The objective of this narrative review was to collect and summarize the available scientific information on oculomotor, accommodative and binocular alterations that have been reported in MS. A systematic search strategy with the following descriptors was carried out: multiple sclerosis, ocular motility disorders, internuclear ophthalmoplegia, nystagmus, vergences, fixation, pupil reflex, accommodation and stereopsis. According to the search, some oculomotor alterations were found to be commonly reported in MS, such as alterations in saccades and nystagmus. In contrast, accommodative, vergence and stereopsis alterations have not been comprehensively studied despite their relevance, with only minimal evidence showing a potential negative impact of the disease on these aspects. In conclusion, oculomotor impairment is a common component of disability in MS patients and should be considered when managing this type of patients. More research is still needed to know the real impact of this disease on binocular vision and accommodation.
Collapse
Affiliation(s)
- Amparo Gil-Casas
- Clínica Optométrica, Foundation Lluís Alcanyís, University of Valencia, Valencia, Spain
| | - David P Piñero
- Optics and Visual Perception Group (GOPV). Department of Optics, Pharmacology and Anatomy, University of Alicante, Alicante, Spain
| | - Ainhoa Molina-Martin
- Optics and Visual Perception Group (GOPV). Department of Optics, Pharmacology and Anatomy, University of Alicante, Alicante, Spain
| |
Collapse
|
17
|
Tao L, Wang Q, Liu D, Wang J, Zhu Z, Feng L. Eye tracking metrics to screen and assess cognitive impairment in patients with neurological disorders. Neurol Sci 2020; 41:1697-1704. [PMID: 32125540 DOI: 10.1007/s10072-020-04310-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 02/20/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Eye tracking is a powerful method to investigate the relationship between behavior and neural mechanisms. In recent years, eye movement analysis has been used in patients with neurological disorders to assess cognitive function. In this review, we explore the latest eye tracking researches in neurological disorders that are commonly associated with cognitive deficits, specifically, amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), and epilepsy. We focus on the application of ocular measures in these disorders, with the goal of understanding how eye tracking technology can be used in the clinical setting. FINDINGS Eye tracking tasks (especially saccadic tasks) are often used as an adjunct to traditional scales for cognitive assessment. Eye tracking data confirmed that executive dysfunction is common in PD and ALS, whereas AD and MS are characterized by attention deficits. Research in evaluating cognitive function in epilepsy using eye tracking is still in its early stages, but this approach has shown advantages as a sensitive quantitative method with high temporal and spatial resolution. Eye tracking technology can facilitate the assessment of cognitive impairment with higher temporal resolution and finer granularity than traditional cognitive assessment. Oculomotor data collected during cognitive tasks can provide insight into biological processes. Eye tracking provides a nonverbal and less cognitively demanding method of measuring disease progression in cognitively impaired patients.
Collapse
Affiliation(s)
- Ling Tao
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Quan Wang
- Key Laboratory of Biomedical Spectroscopy of Xi' An, Key Laboratory of Spectral Imaging technology, Xi'an, Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi' An, China
| | - Ding Liu
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ziqing Zhu
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
18
|
Yousef A, Devereux M, Gourraud PA, Jonzzon S, Suleiman L, Waubant E, Green A, Graves JS. Subclinical Saccadic Eye Movement Dysfunction in Pediatric Multiple Sclerosis. J Child Neurol 2019; 34:38-43. [PMID: 30463467 DOI: 10.1177/0883073818807787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Efferent visual dysfunction in children could lead to impaired quality of life at home and school. Eye-tracking can detect subtle efferent dysfunction missed on bedside examination but has not been validated in the pediatric multiple sclerosis population. OBJECTIVE We sought to determine the feasibility of eye-tracking in children and associations with multiple sclerosis. METHODS Participants meeting criteria for pediatric multiple sclerosis without acute efferent vision abnormalities and healthy controls were recruited. Multiple sclerosis participants underwent a clinical assessment and saccade and antisaccade testing paradigms. Intraclass correlation coefficients were generated for intertest repeatability. Adjusting for age and intereye correlations, generalized estimating equations compared latencies with case status, Expanded Disability Status Scale and Symbol Digit Modalities Test (SDMT) scores. RESULTS We eye-tracked 15 children with multiple sclerosis (n = 30 eyes, mean age 15.6 ± 2.1, mean disease duration 3.9 years, median Expanded Disability Status Scale 1.5) compared to 6 healthy controls (n = 12 eyes, age 14.3 ± .95). The intraclass correlation coefficient for repeated trials was 0.85. Adjusting for age, saccadic latency was 60 milliseconds (ms) longer for cases than controls (95% confidence interval = 26.4, 93.8; P = .0005). For antisaccadic latency, we observed a similar trend of 60 ms longer for cases than controls ( P = .06). CONCLUSION Eye-tracking is a short noninvasive examination, and high intertest repeatability supports use of eye-tracking technology in pediatric multiple sclerosis. Longer saccadic latencies were seen in children with multiple sclerosis despite short disease duration and low Expanded Disability Status Scale scores.
Collapse
Affiliation(s)
- Andrew Yousef
- 1 Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Michael Devereux
- 1 Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Pierre-Antoine Gourraud
- 2 Université de Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, Nantes, France.,3 CHU de Nantes, Institut de Transplantation Urologie Néphrologie (ITUN), Nantes, France
| | - Soren Jonzzon
- 1 Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Leena Suleiman
- 1 Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Emmanuelle Waubant
- 1 Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Ari Green
- 1 Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Jennifer S Graves
- 1 Department of Neurology, University of California San Francisco, San Francisco, CA, USA.,4 Department of Neuroscience, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
19
|
Role of Demographic and Clinical Factors in Cognitive Functioning of Persons with Relapsing-Remitting and Progressive Multiple Sclerosis. J Int Neuropsychol Soc 2018; 24:139-146. [PMID: 28830576 DOI: 10.1017/s1355617717000777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Age and time post-diagnosis can significantly impact cognitive and motor functions in multiple sclerosis (MS); however, studies often fail to account for these factors when assessing differences between disease courses. OBJECTIVES Examine differences between relapsing-remitting and progressive MS in cognition, motor function, and everyday activities, controlling for age, education, and time post-diagnosis. METHODS Twenty-one persons with relapsing-remitting MS (RRMS group), 21 with progressive MS (PMS group), and 21 healthy participants (HCs), matched on age, education, and time post-diagnosis, completed tests of cognitive abilities, motor functions, and everyday functional activities. RESULTS The two groups with MS did not differ on cognitive performance. Poorer performance in processing speed was noted in both MS groups in comparison with the HC group. Motor function was worse for the PMS group compared with the HC and RRMS groups. The RRMS group showed poorer upper limb functioning compared to the HC group. The PMS group had more difficulty with everyday activities as compared with both the RRMS and HC group. CONCLUSIONS When comparing differences in functioning between MS disease courses, attention should be paid to the demographic characteristics of the samples. (JINS, 2018, 24, 139-146).
Collapse
|
20
|
Højsgaard Chow H, Schreiber K, Magyari M, Ammitzbøll C, Börnsen L, Romme Christensen J, Ratzer R, Soelberg Sørensen P, Sellebjerg F. Progressive multiple sclerosis, cognitive function, and quality of life. Brain Behav 2018; 8:e00875. [PMID: 29484253 PMCID: PMC5822575 DOI: 10.1002/brb3.875] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 09/22/2017] [Accepted: 10/10/2017] [Indexed: 01/18/2023] Open
Abstract
Background Patients with progressive multiple sclerosis (MS) often have cognitive impairment in addition to physical impairment. The burden of cognitive and physical impairment progresses over time, and may be major determinants of quality of life. The aim of this study was to assess to which degree quality of life correlates with physical and cognitive function in progressive MS. Methods This is a retrospective study of 52 patients with primary progressive (N = 18) and secondary progressive MS (N = 34). Physical disability was assessed using the Expanded Disability Status Scale, Timed 25 Foot Walk (T25FW) test and 9-Hole Peg Test (9HPT). Cognitive function was assessed using Symbol Digit Modalities Test (SDMT), Paced Auditory Serial Addition Test, and Trail Making Test B (TRAIL-B). In addition, quality of life was assessed by the Short Form 36 (SF-36) questionnaire. Results Only measures of cognitive function correlated with the overall SF-36 quality of life score and the Mental Component Summary score from the SF-36. The only physical measure that correlated with a measure of quality of life was T25FW test, which correlated with the Physical Component Summary from the SF-36. We found no other significant correlations between the measures of cognitive function and the overall physical measures but interestingly, we found a possible relationship between the 9HPT score for the nondominant hand and the SDMT and TRAIL-B. Conclusion Our findings support inclusion of measures of cognitive function in the assessment of patients with progressive MS as these correlated closer with quality of life than measures of physical impairment.
Collapse
Affiliation(s)
- Helene Højsgaard Chow
- Department of NeurologyDanish Multiple Sclerosis CenterRigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - Karen Schreiber
- Department of NeurologyDanish Multiple Sclerosis CenterRigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - Melinda Magyari
- Department of NeurologyDanish Multiple Sclerosis CenterRigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - Cecilie Ammitzbøll
- Department of NeurologyDanish Multiple Sclerosis CenterRigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - Lars Börnsen
- Department of NeurologyDanish Multiple Sclerosis CenterRigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - Jeppe Romme Christensen
- Department of NeurologyDanish Multiple Sclerosis CenterRigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - Rikke Ratzer
- Department of NeurologyDanish Multiple Sclerosis CenterRigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - Per Soelberg Sørensen
- Department of NeurologyDanish Multiple Sclerosis CenterRigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - Finn Sellebjerg
- Department of NeurologyDanish Multiple Sclerosis CenterRigshospitaletUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
21
|
Yousef A, Jonzzon S, Suleiman L, Arjona J, Graves JS. Biosensing in multiple sclerosis. Expert Rev Med Devices 2017; 14:901-912. [PMID: 28975814 DOI: 10.1080/17434440.2017.1388162] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION The goal of using wearable biosensors in multiple sclerosis (MS) is to provide outcome metrics with higher sensitivity to deficits and better inter-test and inter-rater reliability than standard neurological exam bedside maneuvers. A wearable biosensor not only has the potential to enhance physical exams, but also offers the promise of remote evaluations of the patient either at home or with local non-specialist providers. Areas covered: We performed a structured literature review on the use of wearable biosensors in studies of multiple sclerosis. This included accelerometers, gyroscopes, eye-trackers, grip sensors, and multi-sensors. Expert commentary: Wearable sensors that are sensitive to change in function over time have great potential to serve as outcome metrics in clinical trials. Key features of generalizability are simplicity in the application of the device and delivery of data to the provider. Another important feature to establish is best sampling rate. Having too high of a sampling rate can lead to over-interpretation of noisy data On the other hand, a low sampling rate can result in an insensitive test thus missing subtle changes of clinical interest. Of most importance is to establish metrics derived from wearable devices that provide meaningful data in longitudinal studies.
Collapse
Affiliation(s)
- Andrew Yousef
- a Department of Neurology , University of California , San Francisco , CA , USA
| | - Soren Jonzzon
- a Department of Neurology , University of California , San Francisco , CA , USA
| | - Leena Suleiman
- a Department of Neurology , University of California , San Francisco , CA , USA
| | - Jennifer Arjona
- a Department of Neurology , University of California , San Francisco , CA , USA
| | - Jennifer S Graves
- a Department of Neurology , University of California , San Francisco , CA , USA
| |
Collapse
|