1
|
Bertapelli F, Silveira SL, Agiovlasitis S, Motl RW. Development and Cross-Validation of a Simple Model to Estimate Percent Body Fat in Persons with Multiple Sclerosis. Int J MS Care 2021; 23:193-198. [PMID: 34720758 DOI: 10.7224/1537-2073.2020-034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background Persons with multiple sclerosis (MS) have higher body composition variability compared with the general population. Monitoring body composition requires accurate methods for estimating percent body fat (%BF). We developed and cross-validated an equation for estimating %BF from body mass index (BMI) and sex in persons with MS. Methods Seventy-seven adults with MS represented the sample for the equation development. A separate sample of 33 adults with MS permitted the equation cross-validation. Dual-energy x-ray absorptiometry (DXA) provided the criterion %BF. Results The model including BMI and sex (mean ± SD age: women, 49.2 ± 8.8 years; men, 48.6 ± 9.8 years) had high predictive ability for estimating %BF (P < .001, R2 = 0.77, standard error of estimate = 4.06%). Age, MS type, Patient-Determined Disease Steps score, and MS duration did not improve the model. The equation was %BF = 3.168 + (0.895 × BMI) - (10.191 × sex); sex, 0 = woman; 1 = man. The equation was cross-validated in the separate sample (age: women, 48.4 ± 9.4 years; men, 43.8 ± 15.4 years) based on high accuracy as indicated by strong association (r = 0.89, P < .001), nonsignificant difference (mean: 0.2%, P > .05), small absolute error (mean: 2.7%), root mean square error (3.5%), and small differences and no bias in Bland-Altman analysis (mean difference: 0.2%, 95% CI: -6.98 to 6.55, rs = -0.07, P = .702) between DXA-determined and equation-estimated %BF. Conclusions Health care providers can use this developed and cross-validated equation for estimating adiposity in persons with MS when DXA is unavailable.
Collapse
Affiliation(s)
- Fabio Bertapelli
- School of Medical Sciences, University of Campinas, Campinas, Brazil (FB).,Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, AL, USA (FB, SLS, RWM)
| | - Stephanie L Silveira
- Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, AL, USA (FB, SLS, RWM)
| | | | - Robert W Motl
- Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, AL, USA (FB, SLS, RWM)
| |
Collapse
|
2
|
Possible Role of Butyrylcholinesterase in Fat Loss and Decreases in Inflammatory Levels in Patients with Multiple Sclerosis after Treatment with Epigallocatechin Gallate and Coconut Oil: A Pilot Study. Nutrients 2021; 13:nu13093230. [PMID: 34579104 PMCID: PMC8465111 DOI: 10.3390/nu13093230] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
(1) Background. Multiple sclerosis (MS) is characterised by the loss of muscle throughout the course of the disease, which in many cases is accompanied by obesity and related to inflammation. Nonetheless, consuming epigallocatechin gallate (EGCG) and ketone bodies (especially β-hydroxybutyrate (βHB)) produced after metabolising coconut oil, have exhibited anti-inflammatory effects and a decrease in body fat. In addition, butyrylcholinesterase (BuChE), seems to be related to the pathogenesis of the disease associated with inflammation, and serum concentrations have been related to lipid metabolism. Objective. The aim of the study was to determine the role of BuChE in the changes caused after treatment with EGCG and ketone bodies on the levels of body fat and inflammation state in MS patients. (2) Methods. A pilot study was conducted for 4 months with 51 MS patients who were randomly divided into an intervention group and a control group. The intervention group received 800 mg of EGCG and 60 mL of coconut oil, and the control group was prescribed a placebo. Fat percentage and concentrations of the butyrylcholinesterase enzyme (BuChE), paraoxonase 1 (PON1) activity, triglycerides, interleukin 6 (IL-6), albumin and βHB in serum were measured. (3) Results. The intervention group exhibited significant decreases in IL-6 and fat percentage and significant increases in BuChE, βHB, PON1, albumin and functional capacity (determined by the Expanded Disability Status Scale (EDSS)). On the other hand, the control group only exhibited a decrease in IL-6. After the intervention, BuChE was positively correlated with the activity of PON1, fat percentage and triglycerides in the intervention group, whereas these correlations were not observed in the control group (4). Conclusions. BuChE seems to have an important role in lipolytic activity and the inflammation state in MS patients, evidenced after administering EGCG and coconut oil as a βHB source.
Collapse
|
3
|
Benlloch M, Cuerda-Ballester M, Drehmer E, Platero JL, Carrera-Juliá S, López-Rodríguez MM, Ceron JJ, Tvarijonaviciute A, Navarro MÁ, Moreno ML, de la Rubia Ortí JE. Possible Reduction of Cardiac Risk after Supplementation with Epigallocatechin Gallate and Increase of Ketone Bodies in the Blood in Patients with Multiple Sclerosis. A Pilot Study. Nutrients 2020; 12:nu12123792. [PMID: 33322022 PMCID: PMC7763038 DOI: 10.3390/nu12123792] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease that causes anthropometric changes characterised by functional disability, increase in fat mass, and decrease in lean mass. All these variables are related to a greater cardiac risk. The polyphenol epigallocatechin gallate (EGCG) and an increase in ketone bodies in the blood have been shown to have beneficial effects on anthropometric and biochemical variables related to cardiovascular activity. The aim of this study was to analyse the impact of the intervention with EGCG and ketone bodies on cardiac risk in MS patients. A population of 51 MS patients were randomly assigned to a control group and an intervention group (daily dose of 800 mg of EGCG and 60 mL of coconut oil). Both groups followed an isocaloric diet for 4 months. Levels of beta-hydroxybutyrate (BHB), albumin, paraoxonase 1 (PON1) and C-reactive protein (CRP) were measured in serum before and after the intervention, as well as determining functional ability, waist circumference, waist-to-hip ratio (WHR), waist-to-height ratio (WHtR), fat percentage and muscle percentage. After 4 months, in the intervention group there was a significant increase in BHB, PON1 and albumin, while CRP did not vary; a significant decrease in cardiac risk associated with a significant decline in WHR; as well as a significant increase in muscle percentage. By contrast, these changes were not observed in the control group. Finally, results from analysis of variance (ANOVA) revealed a significant time–condition interaction effect, observing that WHtR and fat mass decreased in the intervention group, while they increased in the control group.
Collapse
Affiliation(s)
- María Benlloch
- Department of Nursing, Catholic University of Valencia San Vicente Mártir, C/Espartero, 7, 46007 Valencia, Spain;
| | - María Cuerda-Ballester
- Doctoral Degree School, Catholic University of Valencia San Vicente Mártir, C/Quevedo, 2, 46001 Valencia, Spain; (M.C.-B.); (J.L.P.)
| | - Eraci Drehmer
- Department of Basic Sciences, Catholic University of Valencia San Vicente Mártir, C/Ramiro de Maeztu, 14, 46900 Torrente, Valencia, Spain; (E.D.); (M.Á.N.)
| | - Jose Luis Platero
- Doctoral Degree School, Catholic University of Valencia San Vicente Mártir, C/Quevedo, 2, 46001 Valencia, Spain; (M.C.-B.); (J.L.P.)
| | - Sandra Carrera-Juliá
- Department of Nutrition and Dietetics, Catholic University of Valencia San Vicente Mártir, C/Quevedo, 2, 46001 Valencia, Spain;
| | - María Mar López-Rodríguez
- Department of Nursing, Physiotherapy and Medicine, University of Almería, Carretera Sacramento, C/San Urbano, s/n, La Cañada, 04120 Almería, Spain;
| | - Jose Joaquin Ceron
- Interdisciplinary Laboratory of Clinical Analysis, Campus of Excellence Mare Nostrum, University of Murcia, 30100 Murcia, Spain; (J.J.C.); (A.T.)
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis, Campus of Excellence Mare Nostrum, University of Murcia, 30100 Murcia, Spain; (J.J.C.); (A.T.)
| | - Marí Ángeles Navarro
- Department of Basic Sciences, Catholic University of Valencia San Vicente Mártir, C/Ramiro de Maeztu, 14, 46900 Torrente, Valencia, Spain; (E.D.); (M.Á.N.)
| | - Mari Luz Moreno
- Department of Basic Sciences, Catholic University of Valencia San Vicente Mártir, C/Ramiro de Maeztu, 14, 46900 Torrente, Valencia, Spain; (E.D.); (M.Á.N.)
- Correspondence: (M.L.M.); (J.E.d.l.R.O.); Tel.: +34-96-363-74-12 (ext. 5538) (M.L.M.); +34-96-363-74-12 (ext. 44014) (J.E.d.l.R.O.)
| | - Jose Enrique de la Rubia Ortí
- Department of Nursing, Catholic University of Valencia San Vicente Mártir, C/Espartero, 7, 46007 Valencia, Spain;
- Correspondence: (M.L.M.); (J.E.d.l.R.O.); Tel.: +34-96-363-74-12 (ext. 5538) (M.L.M.); +34-96-363-74-12 (ext. 44014) (J.E.d.l.R.O.)
| |
Collapse
|
4
|
Arellano-Orden E, Calero C, López-Ramírez C, Sánchez-López V, López-Villalobos JL, Abad Arranz M, Blanco-Orozco A, Otero-Candelera R, López-Campos JL. Evaluation of lung parenchyma, blood vessels, and peripheral blood lymphocytes as a potential source of acute phase reactants in patients with COPD. Int J Chron Obstruct Pulmon Dis 2019; 14:1323-1332. [PMID: 31417249 PMCID: PMC6592023 DOI: 10.2147/copd.s188567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 03/18/2019] [Indexed: 01/14/2023] Open
Abstract
Background: Previous studies have shown that the arterial wall is a potential source of inflammatory markers in COPD. Here, we sought to compare the expression of acute phase reactants (APRs) in COPD patients and controls both at the local (pulmonary arteries and lung parenchyma) and systemic (peripheral blood leukocytes and plasma) compartments. Methods: Consecutive patients undergoing elective surgery for suspected primary lung cancer were eligible for the study. Patients were categorized either as COPD or control group based on the spirometry results. Pulmonary arteries and lung parenchyma sections, peripheral blood leukocytes, and plasma samples were obtained from all participants. Gene expression levels of C-reactive protein (CRP) and serum amyloid A (SAA1, SAA2, and SAA4) were evaluated in tissue samples and peripheral blood leukocytes by reverse transciption-PCR. Plasma CRP and SAA protein levels were measured by enzyme-linked immunosorbent assays. Proteins were evaluated in paraffin-embedded lung tissues by immunohistochemistry. Results: A total of 40 patients with COPD and 62 controls were enrolled. We did not find significant differences in the gene expression between COPD and control group. Both CRP and SAA were overexpressed in the lung parenchyma compared with pulmonary arteries and peripheral blood leukocytes. The expression of SAA was significantly higher in the lung parenchyma than in the pulmonary artery (2-fold higher for SAA1 and SAA4, P=0.015 and P<0.001, respectively; 8-fold higher for SAA2, P<0.001) and peripheral blood leukocytes (16-fold higher for SAA1, 439-fold higher for SAA2, and 5-fold higher for SAA4; P<0.001). No correlation between plasma levels of inflammatory markers and their expression in the lung and peripheral blood leukocytes was observed. Conclusions: The expression of SAA in lung parenchyma is higher than in pulmonary artery and peripheral blood leukocytes. Notably, no associations were noted between lung expression of APRs and their circulating plasma levels, making the leakage of inflammatory proteins from the lung to the bloodstream unlikely. Based on these results, other potential sources of systemic inflammation in COPD (eg, the liver) need further scrutiny.
Collapse
Affiliation(s)
- Elena Arellano-Orden
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Seville, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Calero
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Seville, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Cecilia López-Ramírez
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Seville, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Verónica Sánchez-López
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Seville, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - José Luis López-Villalobos
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Seville, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - María Abad Arranz
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Seville, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Blanco-Orozco
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Seville, Spain
| | - Remedios Otero-Candelera
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Seville, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - José Luis López-Campos
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Seville, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|