1
|
Rocha RB, Bomtempo FF, Tadinac ACB, Allioni GA, Silva GD, Telles JPM. Heterogenous relapse and efficacy endpoint definitions for neuromyelitis optica spectrum disorder studies: A systematic review. Mult Scler Relat Disord 2024; 91:105868. [PMID: 39260224 DOI: 10.1016/j.msard.2024.105868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/09/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Over the last years, multiple studies have been dedicated to evaluate the efficacy of different treatment options for Neuromyelitis Optica Spectrum Disorder (NMOSD). However, there is a wide variety of endpoints employed across these studies. Our goal is to conduct a systematic review describing the endpoints utilized in studies related to NMOSD. METHODS Medline, Embase, and Cochrane were searched from inception to May 2023, to identify studies analyzing treatment options in patients with NMOSD. We collected data on baseline study characteristics and all efficacy outcomes available. RESULTS We included 127 studies and identified approximately 40 different efficacy endpoints, categorized into 1) relapse, 2) disability, 3) visual acuity, and 4) surrogate outcomes. Most studies were retrospective (54.3 %) and aimed at attack prevention (81.4 %). The most common relapse-related outcomes were annualized relapse rate (73.2 %), followed by relapse rate (50.4 %), and relapse-free rate (36.2 %). The relapse definition also varied widely among studies, with only 73 (57.4 %) studies explicitly addressing the definition used. The most common disability outcome was the Expanded Disability Scale (97.6 %), followed by the Modified Rankin Scale (7.9 %). Visual Acuity Score was employed in 14.2 % of studies, followed by Visual Evoked Potentials (6.3 %). Imaging was the most common surrogate (20.5 %), followed by the fraction of B cells (18.1 %). CONCLUSION Publications were heterogeneous in measuring efficacy, with different use of endpoints and relapse definitions. Standardization across studies would improve data analysis and application in clinical practice.
Collapse
Affiliation(s)
- Rebeka Bustamante Rocha
- School of Medicine, Federal University of Amazonas, R. Afonso Pena, 1053, Manaus, AM, 69020-160, Brazil.
| | - Fernanda Ferreira Bomtempo
- School of Medicine, Faculty of Medical Sciences of Minas Gerais, Alameda Ezequiel Dias, 275, Belo Horizonte, MG, 30130-110, Brazil
| | | | - Gabriela Abrahao Allioni
- Department of Neurology, University of São Paulo, Av. Dr. Enéas Carvalho de Aguiar 255, São Paulo, SP, 05403-000, Brazil
| | - Guilherme Diogo Silva
- Department of Neurology, University of São Paulo, Av. Dr. Enéas Carvalho de Aguiar 255, São Paulo, SP, 05403-000, Brazil
| | - João Paulo Mota Telles
- Department of Neurology, University of São Paulo, Av. Dr. Enéas Carvalho de Aguiar 255, São Paulo, SP, 05403-000, Brazil
| |
Collapse
|
2
|
Chen X, Roberts N, Zheng Q, Peng Y, Han Y, Luo Q, Feng J, Luo T, Li Y. Comparison of diffusion tensor imaging (DTI) tissue characterization parameters in white matter tracts of patients with multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD). Eur Radiol 2024; 34:5263-5275. [PMID: 38175221 DOI: 10.1007/s00330-023-10550-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/25/2023] [Accepted: 11/11/2023] [Indexed: 01/05/2024]
Abstract
OBJECTIVE To investigate the microstructural properties of T2 lesion and normal-appearing white matter (NAWM) in 20 white matter tracts between multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) and correlations between the tissue damage and clinical variables. METHODS The white matter (WM) compartment of the brain was segmented for 56 healthy controls (HC), 48 patients with MS, and 38 patients with NMOSD, and for the patients further subdivided into T2 lesion and NAWM. Subsequently, the diffusion tensor imaging (DTI) tissue characterization parameters of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were compared for 20 principal white matter tracts. The correlation between tissue damage and clinical variables was also investigated. RESULTS The higher T2 lesion volumes of 14 fibers were shown in MS compared to NMOSD. MS showed more microstructure damage in 13 fibers of T2 lesion, but similar microstructure in seven fibers compared to NMOSD. MS and NMOSD had microstructure damage of NAWM in 20 fibers compared to WM in HC, with more damage in 20 fibers in MS compared to NMOSD. MS patients showed higher correlation between the microstructure of T2 lesion areas and NAWM. The T2 lesion microstructure damage was correlated with duration and impaired cognition in MS. CONCLUSIONS Patients with MS and NMOSD show different patterns of microstructural damage in T2 lesion and NAWM areas. The prolonged disease course of MS may aggravate the microstructural damage, and the degree of microstructural damage is further related to cognitive impairment. CLINICAL RELEVANCE STATEMENT Microstructure differences between T2 lesion areas and normal-appearing white matter help distinguish multiple sclerosis and neuromyelitis optica spectrum disorder. In multiple sclerosis, lesions rather than normal-appearing white matter should be a concern, because the degree of lesion severity correlated both with normal-appearing white matter damage and cognitive impairment. KEY POINTS • Multiple sclerosis and neuromyelitis optica spectrum disorder have different damage patterns in T2 lesion and normal-appearing white matter areas. • The microstructure damage of normal-appearing white matter is correlated with the microstructure of T2 lesion in multiple sclerosis and neuromyelitis optica spectrum disorder. • The microstructure damage of T2 lesion in multiple sclerosis is correlated with duration and cognitive impairment.
Collapse
Affiliation(s)
- Xiaoya Chen
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Neil Roberts
- Edinburgh Imaging Facility QMRI, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Qiao Zheng
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yuling Peng
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yongliang Han
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qi Luo
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jinzhou Feng
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Tianyou Luo
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Yongmei Li
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
3
|
Czeisler BM. Emergent Management of Central Nervous System Demyelinating Disorders. Continuum (Minneap Minn) 2024; 30:781-817. [PMID: 38830071 DOI: 10.1212/con.0000000000001436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
OBJECTIVE This article reviews the various conditions that can present with acute and severe central nervous system demyelination, the broad differential diagnosis of these conditions, the most appropriate diagnostic workup, and the acute treatment regimens to be administered to help achieve the best possible patient outcomes. LATEST DEVELOPMENTS The discovery of anti-aquaporin 4 (AQP4) antibodies and anti-myelin oligodendrocyte glycoprotein (MOG) antibodies in the past two decades has revolutionized our understanding of acute demyelinating disorders, their evaluation, and their management. ESSENTIAL POINTS Demyelinating disorders comprise a large category of neurologic disorders seen by practicing neurologists. In the majority of cases, patients with these conditions do not require care in an intensive care unit. However, certain disorders may cause severe demyelination that necessitates intensive care unit admission because of numerous simultaneous multifocal lesions, tumefactive lesions, or lesions in certain brain locations that lead to acute severe neurologic dysfunction. Intensive care may be necessary for the management and prevention of complications for patients who have severely altered mental status, rapidly progressive neurologic worsening, elevated intracranial pressure, severe cerebral edema, status epilepticus, or respiratory failure.
Collapse
|
4
|
Seok JM, Cho W, Chung YH, Ju H, Kim ST, Seong JK, Min JH. Differentiation between multiple sclerosis and neuromyelitis optica spectrum disorder using a deep learning model. Sci Rep 2023; 13:11625. [PMID: 37468553 DOI: 10.1038/s41598-023-38271-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023] Open
Abstract
Multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) are autoimmune inflammatory disorders of the central nervous system (CNS) with similar characteristics. The differential diagnosis between MS and NMOSD is critical for initiating early effective therapy. In this study, we developed a deep learning model to differentiate between multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) using brain magnetic resonance imaging (MRI) data. The model was based on a modified ResNet18 convolution neural network trained with 5-channel images created by selecting five 2D slices of 3D FLAIR images. The accuracy of the model was 76.1%, with a sensitivity of 77.3% and a specificity of 74.8%. Positive and negative predictive values were 76.9% and 78.6%, respectively, with an area under the curve of 0.85. Application of Grad-CAM to the model revealed that white matter lesions were the major classifier. This compact model may aid in the differential diagnosis of MS and NMOSD in clinical practice.
Collapse
Affiliation(s)
- Jin Myoung Seok
- Department of Neurology, Soonchunhyang University Hospital Cheonan, Soonchunhyang University College of Medicine, Cheonan, South Korea
| | - Wanzee Cho
- Department of Artificial Intelligence, Korea University, Seoul, South Korea
| | - Yeon Hak Chung
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Neurology, Neuroscience Center, Samsung Medical Center, Seoul, South Korea
| | - Hyunjin Ju
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Neurology, Neuroscience Center, Samsung Medical Center, Seoul, South Korea
| | - Sung Tae Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Joon-Kyung Seong
- Department of Artificial Intelligence, Korea University, Seoul, South Korea.
- School of Biomedical Engineering, Korea University, Seoul, South Korea.
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, South Korea.
| | - Ju-Hong Min
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
- Department of Neurology, Neuroscience Center, Samsung Medical Center, Seoul, South Korea.
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, 50 Irwon-dong, Gangnam-gu, Seoul, 135-710, South Korea.
| |
Collapse
|
5
|
Sun J, Xu S, Tian D, Duan Y, Xu X, Lv S, Cao G, Shi FD, Chard D, Barkhof F, Zhuo Z, Zhang X, Liu Y. Periventricular gradients in NAWM abnormalities differ in MS, NMOSD and MOGAD. Mult Scler Relat Disord 2023; 75:104732. [PMID: 37167759 DOI: 10.1016/j.msard.2023.104732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/24/2023] [Indexed: 05/13/2023]
Affiliation(s)
- Jun Sun
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Tiantan Image Research Center, China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Siyao Xu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Tiantan Image Research Center, China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Decai Tian
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing 100070, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100070, China
| | - Yunyun Duan
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Tiantan Image Research Center, China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Xiaolu Xu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Tiantan Image Research Center, China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Shan Lv
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Tiantan Image Research Center, China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Guanmei Cao
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Tiantan Image Research Center, China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Fu-Dong Shi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing 100070, China; Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Declan Chard
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom; National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre, London, United Kingdom
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam 1007 MB, the Netherlands; Queen Square Institute of Neurology and Center for Medical Image Computing, University College London, London, United Kingdom
| | - Zhizheng Zhuo
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Tiantan Image Research Center, China National Clinical Research Center for Neurological Diseases, Beijing 100070, China.
| | - Xinghu Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Tiantan Image Research Center, China National Clinical Research Center for Neurological Diseases, Beijing 100070, China.
| |
Collapse
|
6
|
Zakani M, Nigritinou M, Ponleitner M, Takai Y, Hofmann D, Hillebrand S, Höftberger R, Bauer J, Lasztoczi B, Misu T, Kasprian G, Rommer P, Bradl M. Paths to hippocampal damage in neuromyelitis optica spectrum disorders. Neuropathol Appl Neurobiol 2023; 49:e12893. [PMID: 36811295 PMCID: PMC10947283 DOI: 10.1111/nan.12893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023]
Abstract
AIMS Many patients with neuromyelitis optica spectrum disorders (NMOSD) suffer from cognitive impairment affecting memory, processing speed and attention and suffer from depressive symptoms. Because some of these manifestations could trace back to the hippocampus, several magnetic resonance imaging (MRI) studies have been performed in the past, with a number of groups describing volume loss of the hippocampus in NMOSD patients, whereas others did not observe such changes. Here, we addressed these discrepancies. METHODS We performed pathological and MRI studies on the hippocampi of NMOSD patients, combined with detailed immunohistochemical analysis of hippocampi from experimental models of NMOSD. RESULTS We identified different pathological scenarios for hippocampal damage in NMOSD and its experimental models. In the first case, the hippocampus was compromised by the initiation of astrocyte injury in this brain region and subsequent local effects of microglial activation and neuronal damage. In the second case, loss of hippocampal volume was seen by MRI in patients with large tissue-destructive lesions in the optic nerves or the spinal cord, and the pathological work-up of tissue derived from a patient with such lesions revealed subsequent retrograde neuronal degeneration affecting different axonal tracts and neuronal networks. It remains to be seen whether remote lesions and associated retrograde neuronal degeneration on their own are sufficient to cause extensive volume loss of the hippocampus, or whether they act in concert with small astrocyte-destructive, microglia-activating lesions in the hippocampus that escape detection by MRI, either due to their small size or due to the chosen time window for examination. CONCLUSIONS Different pathological scenarios can culminate in hippocampal volume loss in NMOSD patients.
Collapse
Affiliation(s)
- Mona Zakani
- Division of Neuroimmunology, Center for Brain ResearchMedical University of ViennaViennaAustria
| | - Magdalini Nigritinou
- Division of Neuroimmunology, Center for Brain ResearchMedical University of ViennaViennaAustria
| | | | - Yoshiki Takai
- Department of NeurologyTohoku University Graduate School of MedicineSendaiJapan
| | - Daniel Hofmann
- Division of Neuroimmunology, Center for Brain ResearchMedical University of ViennaViennaAustria
| | - Sophie Hillebrand
- Division of Neuroimmunology, Center for Brain ResearchMedical University of ViennaViennaAustria
| | - Romana Höftberger
- Department of Neurology, Division of Neuropathology and NeurochemistryMedical University of ViennaViennaAustria
| | - Jan Bauer
- Division of Neuroimmunology, Center for Brain ResearchMedical University of ViennaViennaAustria
| | - Balint Lasztoczi
- Division of Cognitive Neurobiology, Center for Brain ResearchMedical University of ViennaViennaAustria
| | - Tatsuro Misu
- Department of NeurologyTohoku University Graduate School of MedicineSendaiJapan
| | - Gregor Kasprian
- Division of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| | - Paulus Rommer
- Department of NeurologyMedical University of ViennaViennaAustria
| | - Monika Bradl
- Division of Neuroimmunology, Center for Brain ResearchMedical University of ViennaViennaAustria
| |
Collapse
|
7
|
Okuda DT, Stanley T, McCreary M, Smith AD, Burgess KW, Wilson A, Guo X, Moog TM. Dorsal medulla surface texture: Differentiating neuromyelitis optica spectrum disorder from multiple sclerosis. J Neuroimaging 2022; 32:1090-1097. [PMID: 36181675 DOI: 10.1111/jon.13059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE The timely and accurate diagnosis of neuromyelitis optica spectrum disorder (NMOSD) is essential and exposure to multiple sclerosis (MS) disease-modifying therapies may result in permanent neurological disability. METHODS Standardized 3-Tesla 3-dimensional brain MRI studies were retrospectively studied from people with NMOSD, MS, other CNS neurological diseases, and healthy control subjects. Comparisons of surface texture characteristics at the area postrema involving absolute introverted planar triangle counts, representing more complex and concave tissue topography, along with the spatial dissemination pattern of these triangles were performed cross-sectionally and longitudinally. An ideal introverted planar triangle threshold separating groups with NMOSD and MS was accomplished using the highest Youden's J statistic. For the classification of NMOSD, out-of-sample and in-sample measurements of the following were acquired: sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). RESULTS The study cohort included 60 people with NMOSD, 100 people with MS, 12 with other neurological diseases, and five healthy controls. Significantly higher cross-sectional median introverted triangle counts were observed when the NMOSD (median [interquartile range]: 100 [23.5]) group was compared to MS (65 [20.25]; p < .0001) and other neurological diseases (66 [13.75]; p < .0001). Distinct spatial dissemination patterns of triangles extending craniocaudally at the region of interest within the dorsal medulla was also seen between groups with NMOSD and MS (p < .0001). For the identification of NMOSD, out-of-sample sensitivity (83%), specificity (100%), PPV (100%), and NPV (60%) were achieved. CONCLUSIONS Cross-sectional and longitudinal dorsal medulla surface texture differences within selective regions of vulnerability differentiate NMOSD from MS.
Collapse
Affiliation(s)
- Darin T Okuda
- Department of Neurology, Neuroinnovation Program, Multiple Sclerosis and Neuroimmunology Imaging Program, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Thomas Stanley
- Department of Computer Science, University of Texas at Dallas, Dallas, Texas, USA
| | - Morgan McCreary
- Department of Neurology, Neuroinnovation Program, Multiple Sclerosis and Neuroimmunology Imaging Program, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Alexander D Smith
- Department of Neurology, Neuroinnovation Program, Multiple Sclerosis and Neuroimmunology Imaging Program, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Katy W Burgess
- Department of Neurology, Neuroinnovation Program, Multiple Sclerosis and Neuroimmunology Imaging Program, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Andrew Wilson
- Department of Computer Science, University of Texas at Dallas, Dallas, Texas, USA
| | - Xiaohu Guo
- Department of Computer Science, University of Texas at Dallas, Dallas, Texas, USA
| | - Tatum M Moog
- Department of Neurology, Neuroinnovation Program, Multiple Sclerosis and Neuroimmunology Imaging Program, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| |
Collapse
|
8
|
Zveik O, Rechtman A, Haham N, Adini I, Canello T, Lavon I, Brill L, Vaknin-Dembinsky A. Sera of Neuromyelitis Optica Patients Increase BID-Mediated Apoptosis in Astrocytes. Int J Mol Sci 2022; 23:ijms23137117. [PMID: 35806122 PMCID: PMC9266359 DOI: 10.3390/ijms23137117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022] Open
Abstract
Neuromyelitis optica (NMO) is a rare disease usually presenting with bilateral or unilateral optic neuritis with simultaneous or sequential transverse myelitis. Autoantibodies directed against aquaporin-4 (AQP4-IgG) are found in most patients. They are believed to cross the blood−brain barrier, target astrocytes, activate complement, and eventually lead to astrocyte destruction, demyelination, and axonal damage. However, it is still not clear what the primary pathological event is. We hypothesize that the interaction of AQP4-IgG and astrocytes leads to DNA damage and apoptosis. We studied the effect of sera from seropositive NMO patients and healthy controls (HCs) on astrocytes’ immune gene expression and viability. We found that sera from seropositive NMO patients led to higher expression of apoptosis-related genes, including BH3-interacting domain death agonist (BID), which is the most significant differentiating gene (p < 0.0001), and triggered more apoptosis in astrocytes compared to sera from HCs. Furthermore, NMO sera increased DNA damage and led to a higher expression of immunological genes that interact with BID (TLR4 and NOD-1). Our findings suggest that sera of seropositive NMO patients might cause astrocytic DNA damage and apoptosis. It may be one of the mechanisms implicated in the primary pathological event in NMO and provide new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Omri Zveik
- Department of Neurology and Laboratory of Neuroimmunology, The Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (O.Z.); (A.R.); (N.H.); (T.C.); (I.L.); (L.B.)
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Ariel Rechtman
- Department of Neurology and Laboratory of Neuroimmunology, The Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (O.Z.); (A.R.); (N.H.); (T.C.); (I.L.); (L.B.)
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Nitzan Haham
- Department of Neurology and Laboratory of Neuroimmunology, The Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (O.Z.); (A.R.); (N.H.); (T.C.); (I.L.); (L.B.)
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Irit Adini
- Department of Surgery, Harvard Medical School, Center for Engineering in Medicine & Surgery, Massachusetts General Hospital, 51 Blossom Street, Boston, MA 02114, USA;
| | - Tamar Canello
- Department of Neurology and Laboratory of Neuroimmunology, The Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (O.Z.); (A.R.); (N.H.); (T.C.); (I.L.); (L.B.)
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
- Leslie and Michael Gaffin Center for Neuro-Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Iris Lavon
- Department of Neurology and Laboratory of Neuroimmunology, The Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (O.Z.); (A.R.); (N.H.); (T.C.); (I.L.); (L.B.)
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
- Leslie and Michael Gaffin Center for Neuro-Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Livnat Brill
- Department of Neurology and Laboratory of Neuroimmunology, The Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (O.Z.); (A.R.); (N.H.); (T.C.); (I.L.); (L.B.)
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Adi Vaknin-Dembinsky
- Department of Neurology and Laboratory of Neuroimmunology, The Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (O.Z.); (A.R.); (N.H.); (T.C.); (I.L.); (L.B.)
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
- Correspondence: ; Tel.: +972-2-677-7741
| |
Collapse
|
9
|
Molazadeh N, Filippatou AG, Vasileiou ES, Levy M, Sotirchos ES. Evidence for and against subclinical disease activity and progressive disease in MOG antibody disease and neuromyelitis optica spectrum disorder. J Neuroimmunol 2021; 360:577702. [PMID: 34547512 DOI: 10.1016/j.jneuroim.2021.577702] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022]
Abstract
Myelin oligodendrocyte glycoprotein antibody disease (MOGAD) and aquaporin-4 IgG seropositive neuromyelitis optica spectrum disorder (AQP4-IgG+ NMOSD) are generally considered to be relapsing disorders, without clinical progression or subclinical disease activity outside of clinical relapses, in contrast to multiple sclerosis (MS). With advances in the diagnosis and treatment of these conditions, prolonged periods of remission without relapses can be achieved, and the question of whether progressive disease courses can occur has re-emerged. In this review, we focus on studies exploring evidence for and against relapse-independent clinical progression and/or subclinical disease activity in patients with MOGAD and AQP4-IgG+ NMOSD.
Collapse
Affiliation(s)
- Negar Molazadeh
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | | | - Eleni S Vasileiou
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA.
| | - Michael Levy
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Elias S Sotirchos
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
10
|
Clarke L, Arnett S, Lilley K, Liao J, Bhuta S, Broadley SA. Magnetic resonance imaging in neuromyelitis optica spectrum disorder. Clin Exp Immunol 2021; 206:251-265. [PMID: 34080180 DOI: 10.1111/cei.13630] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/30/2022] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory disease of the central nervous system (CNS) associated with antibodies to aquaporin-4 (AQP4), which has distinct clinical, radiological and pathological features, but also has some overlap with multiple sclerosis and myelin oligodendrocyte glycoprotein (MOG) antibody associated disease. Early recognition of NMOSD is important because of differing responses to both acute and preventive therapy. Magnetic resonance (MR) imaging has proved essential in this process. Key MR imaging clues to the diagnosis of NMOSD are longitudinally extensive lesions of the optic nerve (more than half the length) and spinal cord (three or more vertebral segments), bilateral optic nerve lesions and lesions of the optic chiasm, area postrema, floor of the IV ventricle, periaqueductal grey matter, hypothalamus and walls of the III ventricle. Other NMOSD-specific lesions are denoted by their unique morphology: heterogeneous lesions of the corpus callosum, 'cloud-like' gadolinium (Gd)-enhancing white matter lesions and 'bright spotty' lesions of the spinal cord. Other lesions described in NMOSD, including linear periventricular peri-ependymal lesions and patch subcortical white matter lesions, may be less specific. The use of advanced MR imaging techniques is yielding further useful information regarding focal degeneration of the thalamus and optic radiation in NMOSD and suggests that paramagnetic rim patterns and changes in normal appearing white matter are specific to MS. MR imaging is crucial in the early recognition of NMOSD and in directing testing for AQP4 antibodies and guiding immediate acute treatment decisions. Increasingly, MR imaging is playing a role in diagnosing seronegative cases of NMOSD.
Collapse
Affiliation(s)
- Laura Clarke
- Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, Nathan, QLD, Australia.,Department of Neurology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Simon Arnett
- Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, Nathan, QLD, Australia.,Department of Neurology, Gold Coast University Hospital, Southport, QLD, Australia
| | - Kate Lilley
- Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, Nathan, QLD, Australia.,Department of Neurology, Gold Coast University Hospital, Southport, QLD, Australia
| | - Jacky Liao
- Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, Nathan, QLD, Australia
| | - Sandeep Bhuta
- Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, Nathan, QLD, Australia.,Department of Radiology, Gold Coast University Hospital, Southport, QLD, Australia
| | - Simon A Broadley
- Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, Nathan, QLD, Australia.,Department of Neurology, Gold Coast University Hospital, Southport, QLD, Australia
| |
Collapse
|
11
|
Solomon JM, Paul F, Chien C, Oh J, Rotstein DL. A window into the future? MRI for evaluation of neuromyelitis optica spectrum disorder throughout the disease course. Ther Adv Neurol Disord 2021; 14:17562864211014389. [PMID: 34035837 PMCID: PMC8111516 DOI: 10.1177/17562864211014389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is a relapsing, inflammatory disease of the central nervous system marked by relapses often associated with poor recovery and long-term disability. Magnetic resonance imaging (MRI) is recognized as an important tool for timely diagnosis of NMOSD as, in combination with serologic testing, it aids in distinguishing NMOSD from possible mimics. Although the role of MRI for disease monitoring after diagnosis is not as well established, MRI may provide important prognostic information and help differentiate between relapses and pseudorelapses. Increasing evidence of subclinical disease activity and the emergence of newly approved, highly effective immunotherapies for NMOSD adjure us to re-evaluate MRI as a tool to guide optimal treatment selection and escalation throughout the disease course. In this article we review the role of MRI in NMOSD diagnosis, prognostication, disease monitoring, and treatment selection.
Collapse
Affiliation(s)
- Jacqueline M. Solomon
- University of Toronto, Department of Medicine, Toronto, ON, Canada
- St. Michael’s Hospital, Toronto, ON, Canada
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité Universitaetsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité Universitaetsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Claudia Chien
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité Universitaetsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité Universitaetsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité Universitaetsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jiwon Oh
- University of Toronto, Department of Medicine, Toronto, ON, Canada
- St. Michael’s Hospital, Toronto, ON, Canada
| | - Dalia L. Rotstein
- St. Michael’s Hospital, 30 Bond Street, Shuter 3-018, Toronto, ON, M5B 1W8, Canada
| |
Collapse
|