1
|
Alfredsson L, Olsson T, Hedström AK. Inverse association between Mediterranean diet and risk of multiple sclerosis. Mult Scler 2023; 29:1118-1125. [PMID: 37366345 DOI: 10.1177/13524585231181841] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
OBJECTIVE There is some evidence implicating diet in the development of inflammatory diseases. We aimed to study the influence of dietary habits on the risk of developing multiple sclerosis (MS). METHODS We used a population-based case-control study recruiting incident cases of MS (1953 cases, 3557 controls). Subjects with different dietary habits 5 years prior to MS diagnosis were compared regarding MS risk by calculating odds ratios (OR) with 95% confidence intervals (CI) using logistic regression models. Adjustment was made for a large number of environmental and lifestyle habits, including ancestry, smoking, alcohol consumption, body mass index, physical activity, and sun exposure habits. RESULTS Mediterranean diet was associated with lower risk of developing MS (adjusted OR = 0.54, 95% CI: 0.34-0.86, p = 0.009), compared with Western-style diet. There was no significant association between vegetarian/vegan diet and MS risk (adjusted OR = 0.96, 95% CI: 0.75-1.24, p = 0.976), nor between diet with low glycemic index and MS risk (adjusted OR = 0.93, 95% CI: 0.60-1.42, p = 0.518). CONCLUSIONS Mediterranean diet may exert a protective influence regarding the risk of subsequently developing MS compared with Western-style diet.
Collapse
Affiliation(s)
- Lars Alfredsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden/Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Tomas Olsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden/Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Karin Hedström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Alhaj OA, Trabelsi K, Younes AM, Shivappa N, Bragazzi NL, Hebert JR, Jahrami HA. Diet-related inflammation increases the odds of multiple sclerosis: Results from a large population-based prevalent case-control study in Jordan. Front Nutr 2023; 10:1098883. [PMID: 37090771 PMCID: PMC10113660 DOI: 10.3389/fnut.2023.1098883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/21/2023] [Indexed: 04/25/2023] Open
Abstract
Background Multiple sclerosis, a chronic inflammatory disease in young and middle-aged adults, is one of the leading causes of non-traumatic disability in adults. Diet is known to have an important role in the modulating inflammatory processes and influencing molecular pathways. Purpose This study aims to examine the association of the inflammatory capacity of diet measured by DII with MS in Jordan. Methods This prevalent case-control study included participants of both sexes, aged between 20 and 60 years. The cases (n = 541) had a confirmed diagnosis of prevalent Multiple Sclerosis (MS) in the previous 3 years, and controls (n = 607) were apparently healthy individuals matched on sex and age (42 ± 4 years). A validated Arabic food frequency questionnaire (FFQ) was utilized to obtain estimated dietary intake. Dietary data from the FFQ were analyzed using ESHA's Food Processor® nutrition analysis software, and the results were used to calculate the DII scores. Logistic regression analyses, controlling for covariates such as age, sex, body mass index, and smoking status, were used to measure the association between DII score and MS outcomes. Results Cases represent a mixed sample of MS phenotypes and controls were comparable on age and sex. However, controls tended to be taller, lighter, had a lower BMI, and had a lower smoking rate. After controlling for age, BMI, sex, and smoking status, there was a consistent increase in MS risk according to DII score, with a 10-fold increase in odds in quartile 4 vs. quartile 1 [ORquartile 4vs1 = 10.17 (95% CI: 6.88; 15.04)]. For each point increase in DII score, there was nearly a doubling of odds [OR1 = 1.75 (95% CI: 1.59; 1.92)]. Individual nutrients and food values aligned according to their contribution to the DII score calculations. Conclusion The findings of this study, obtained in MS patients with varied illness duration over the previous 3 years, are consistent with an association between the overall inflammatory potential of diet and MS odds. Our findings among MS participants showed a significantly more pro-inflammatory DII scores than age- and sex-matched controls. Our results also suggest that MS group had a diet rich in pro-inflammatory foods and nutrients.
Collapse
Affiliation(s)
- Omar A. Alhaj
- Department of Nutrition, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Khaled Trabelsi
- High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | | | - Nitin Shivappa
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
- The Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, United States
- Department of Nutrition, Connecting Health Innovations LLC, Columbia, SC, United States
| | - Nicola L. Bragazzi
- Laboratory for Industrial and Applied Mathematics, Department of Statistics, York University, Toronto, ON, Canada
- Human Nutrition Unit, Department of Food and Drugs, University of Parma Medical School, Parma, Italy
| | - James R. Hebert
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
- The Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, United States
- Department of Nutrition, Connecting Health Innovations LLC, Columbia, SC, United States
| | - Haitham A. Jahrami
- Department of Psychiatry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
- Ministry of Health, Government Hospitals, Manama, Bahrain
| |
Collapse
|
3
|
Plafker SM, Titcomb T, Zyla-Jackson K, Kolakowska A, Wahls T. Overview of diet and autoimmune demyelinating optic neuritis: a narrative review. IMMUNOMETABOLISM (COBHAM, SURREY) 2023; 5:e00022. [PMID: 37128292 PMCID: PMC10144304 DOI: 10.1097/in9.0000000000000022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
This review summarizes the cellular and molecular underpinnings of autoimmune demyelinating optic neuritis (ADON), a common sequela of multiple sclerosis and other demyelinating diseases. We further present nutritional interventions tested for people with multiple sclerosis focusing on strategies that have shown efficacy or associations with disease course and clinical outcomes. We then close by discuss the potential dietary guidance for preventing and/or ameliorating ADON.
Collapse
Affiliation(s)
- Scott M. Plafker
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tyler Titcomb
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Katarzyna Zyla-Jackson
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Aneta Kolakowska
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Terry Wahls
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
4
|
Düking T, Spieth L, Berghoff SA, Piepkorn L, Schmidke AM, Mitkovski M, Kannaiyan N, Hosang L, Scholz P, Shaib AH, Schneider LV, Hesse D, Ruhwedel T, Sun T, Linhoff L, Trevisiol A, Köhler S, Pastor AM, Misgeld T, Sereda M, Hassouna I, Rossner MJ, Odoardi F, Ischebeck T, de Hoz L, Hirrlinger J, Jahn O, Saher G. Ketogenic diet uncovers differential metabolic plasticity of brain cells. SCIENCE ADVANCES 2022; 8:eabo7639. [PMID: 36112685 PMCID: PMC9481126 DOI: 10.1126/sciadv.abo7639] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
To maintain homeostasis, the body, including the brain, reprograms its metabolism in response to altered nutrition or disease. However, the consequences of these challenges for the energy metabolism of the different brain cell types remain unknown. Here, we generated a proteome atlas of the major central nervous system (CNS) cell types from young and adult mice, after feeding the therapeutically relevant low-carbohydrate, high-fat ketogenic diet (KD) and during neuroinflammation. Under steady-state conditions, CNS cell types prefer distinct modes of energy metabolism. Unexpectedly, the comparison with KD revealed distinct cell type-specific strategies to manage the altered availability of energy metabolites. Astrocytes and neurons but not oligodendrocytes demonstrated metabolic plasticity. Moreover, inflammatory demyelinating disease changed the neuronal metabolic signature in a similar direction as KD. Together, these findings highlight the importance of the metabolic cross-talk between CNS cells and between the periphery and the brain to manage altered nutrition and neurological disease.
Collapse
Affiliation(s)
- Tim Düking
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Lena Spieth
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Stefan A. Berghoff
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Lars Piepkorn
- Neuroproteomics Group, Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Translational Neuroproteomics Group, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Annika M. Schmidke
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Miso Mitkovski
- City Campus Light Microscopy Facility, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Nirmal Kannaiyan
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Leon Hosang
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Patricia Scholz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Ali H. Shaib
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute for Neuro- and Sensory Physiology, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Lennart V. Schneider
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Dörte Hesse
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Neuroproteomics Group, Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Torben Ruhwedel
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Electron Microscopy Core Unit, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Ting Sun
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Lisa Linhoff
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Translational Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Andrea Trevisiol
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Susanne Köhler
- Carl-Ludwig-Institute for Physiology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Adrian Marti Pastor
- Institute of Neuronal Cell Biology, Technische Universität München, Cluster for Systems Neurology (SyNergy), German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Thomas Misgeld
- Institute of Neuronal Cell Biology, Technische Universität München, Cluster for Systems Neurology (SyNergy), German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Michael Sereda
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Translational Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Imam Hassouna
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Moritz J. Rossner
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Francesca Odoardi
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
- Institute of Plant Biology and Biotechnology (IBBP), Green Biotechnology, University of Münster, Münster, Germany
| | - Livia de Hoz
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Neurowissenschafliches Forschungszentrum, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Hirrlinger
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Carl-Ludwig-Institute for Physiology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Olaf Jahn
- Neuroproteomics Group, Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Translational Neuroproteomics Group, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Gesine Saher
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|