1
|
Liu H, Zhong YL, Huang X. Specific static and dynamic functional network connectivity changes in thyroid-associated ophthalmopathy and it predictive values using machine learning. Front Neurosci 2024; 18:1429084. [PMID: 39247050 PMCID: PMC11377277 DOI: 10.3389/fnins.2024.1429084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024] Open
Abstract
Background Thyroid-associated ophthalmopathy (TAO) is a prevalent autoimmune disease characterized by ocular symptoms like eyelid retraction and exophthalmos. Prior neuroimaging studies have revealed structural and functional brain abnormalities in TAO patients, along with central nervous system symptoms such as cognitive deficits. Nonetheless, the changes in the static and dynamic functional network connectivity of the brain in TAO patients are currently unknown. This study delved into the modifications in static functional network connectivity (sFNC) and dynamic functional network connectivity (dFNC) among thyroid-associated ophthalmopathy patients using independent component analysis (ICA). Methods Thirty-two patients diagnosed with thyroid-associated ophthalmopathy and 30 healthy controls (HCs) underwent resting-state functional magnetic resonance imaging (rs-fMRI) scanning. ICA method was utilized to extract the sFNC and dFNC changes of both groups. Results In comparison to the HC group, the TAO group exhibited significantly increased intra-network functional connectivity (FC) in the right inferior temporal gyrus of the executive control network (ECN) and the visual network (VN), along with significantly decreased intra-network FC in the dorsal attentional network (DAN), the default mode network (DMN), and the left middle cingulum of the ECN. On the other hand, FNC analysis revealed substantially reduced connectivity intra- VN and inter- cerebellum network (CN) and high-level cognitive networks (DAN, DMN, and ECN) in the TAO group compared to the HC group. Regarding dFNC, TAO patients displayed abnormal connectivity across all five states, characterized by notably reduced intra-VN connectivity and CN connectivity with high-level cognitive networks (DAN, DMN, and ECN), alongside compensatory increased connectivity between DMN and low-level perceptual networks (VN and basal ganglia network). No significant differences were observed between the two groups for the three dynamic temporal metrics. Furthermore, excluding the classification outcomes of FC within VN (with an accuracy of 51.61% and area under the curve of 0.35208), the FC-based support vector machine (SVM) model demonstrated improved performance in distinguishing between TAO and HC, achieving accuracies ranging from 69.35 to 77.42% and areas under the curve from 0.68229 to 0.81667. The FNC-based SVM classification yielded an accuracy of 61.29% and an area under the curve of 0.57292. Conclusion In summary, our study revealed that significant alterations in the visual network and high-level cognitive networks. These discoveries contribute to our understanding of the neural mechanisms in individuals with TAO, offering a valuable target for exploring future central nervous system changes in thyroid-associated eye diseases.
Collapse
Affiliation(s)
- Hao Liu
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yu-Lin Zhong
- Department of Ophthalmology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Xin Huang
- Department of Ophthalmology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Wang G, Chen X, Wang X, Duan Y, Gao H, Ji X, Zhu Y, Xiang X, Ma H, Li Y, Xue Q. Abnormal brain spontaneous neural activity in neuromyelitis optica spectrum disorder with neuropathic pain. Front Neurol 2024; 15:1408759. [PMID: 38938780 PMCID: PMC11210278 DOI: 10.3389/fneur.2024.1408759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/30/2024] [Indexed: 06/29/2024] Open
Abstract
Background Neuropathic pain is one of the most common symptoms in neuromyelitis optica spectrum disorder (NMOSD). Notwithstanding, its underlying mechanism remains obscure. Methods The amplitude of low-frequency fluctuations (ALFF) metric was employed to investigate spontaneous neural activity alterations via resting-state functional magnetic resonance imaging (rs-MRI) data from a 3.0 T MRI scanner, in a sample of 26 patients diagnosed with NMOSD with neuropathic pain (NMOSD-WNP), 20 patients with NMOSD but without neuropathic pain (NMOSD-WoNP), and 38 healthy control (HC) subjects matched for age and sex without the comorbidity of depressive or anxious symptoms. Results It was observed that patients with NMOSD-WNP displayed a significant ALFF decrease in the left amygdala and right anterior insula, relative to both patients with NMOSD-WoNP and HC subjects. Furthermore, ALFF values in the left amygdala were negatively correlated with the scores of the Douleur Neuropathique en 4 Questions and McGill Pain Questionnaire (both sensory and affective descriptors) in patients with NMOSD-WNP. Additionally, there were negative correlations between the ALFF values in the right anterior insula and the duration of pain and the number of relapses in patients with NMOSD-WNP. Conclusion The present study characterizes spontaneous neural activity changes in brain regions associated with sensory and affective processing of pain and its modulation, which underscore the central aspects in patients with NMOSD-WNP. These findings might contribute to a better understanding of the pathophysiologic basis of neuropathic pain in NMOSD.
Collapse
Affiliation(s)
- Gendi Wang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Neurology, Yancheng Third People’s Hospital, Yancheng, China
| | - Xiang Chen
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoyuan Wang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yinghui Duan
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hanqing Gao
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaopei Ji
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yunfei Zhu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xuanyi Xiang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hairong Ma
- Department of Neurology, Kunshan Hospital of Chinese Medicine, Suzhou, China
| | - Yonggang Li
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Medical Imaging, Soochow University, Suzhou, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qun Xue
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Clinical Immunology, Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
3
|
Yang L, Xu C, Qin Y, Chen K, Xie Y, Zhou X, Liu T, Tan S, Liu J, Yao D. Exploring resting-state EEG oscillations in patients with Neuromyelitis Optica Spectrum Disorder. Brain Res Bull 2024; 208:110900. [PMID: 38364986 DOI: 10.1016/j.brainresbull.2024.110900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/24/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND AND OBJECTIVE Quantitative resting-state electroencephalography (rs-EEG) is a convenient method for characterizing the functional impairments and adaptations of the brain that has been shown to be valuable for assessing many neurological and psychiatric disorders, especially in monitoring disease status and assisting neuromodulation treatment. However, it has not yet been explored in patients with neuromyelitis optica spectrum disorder (NMOSD). This study aimed to investigate the rs-EEG features of NMOSD patients and explore the rs-EEG features related to disease characteristics and complications (such as anxiety, depression, and fatigue). METHODS A total of 32 NMOSD patients and 20 healthy controls (HCs) were recruited; their demographic and disease information were collected, and their anxiety, depression, and fatigue symptoms were evaluated. The rs-EEG power spectra of all the participants were obtained. After excluding the participants with low-quality rs-EEG data during processing, statistical analysis was conducted based on the clinical information and rs-EEG data of 29 patients and 19 HCs. The rs-EEG power (the mean spectral energy (MSE) of absolute power and relative power in all frequency bands, as well as the specific power for all electrode sites) of NMOSD patients and HCs was compared. Furthermore, correlation analyses were performed between rs-EEG power and other variables for NMOSD patients (including the disease characteristics and complications). RESULTS The distribution of the rs-EEG power spectra in NMOSD patients was similar to that in HCs. The dominant alpha-peaks shifted significantly towards a lower frequency for patients when compared to HCs. The delta and theta power was significantly increased in the NMOSD group compared to that in the HC group. The alpha oscillation power was found to be significantly negatively associated with the degree of anxiety (reflected by the anxiety subscore of hospital anxiety and depression scale (HADS)) and the degree of depression (reflected by the depression subscore of HADS). The gamma oscillation power was revealed to be significantly positively correlated with the fatigue severity scale (FSS) score, while further analysis indicated that the electrode sites of almost the whole brain region showing correlations with fatigue. Regarding the disease variables, no statistically significant rs-EEG features were related to the main disease features in NMOSD patients. CONCLUSION The results of this study suggest that the rs-EEG power spectra of NMOSD patients show increased slow oscillations and are potential biomarkers of widespread white matter microstructural damage in NMOSD. Moreover, this study revealed the rs-EEG features associated with anxiety, depression, and fatigue in NMOSD patients, which might help in the evaluation of these complications and the development of neuromodulation treatment. Quantitative rs-EEG analysis may play an important role in the management of NMOSD patients, and future studies are warranted to more comprehensively understand its application value.
Collapse
Affiliation(s)
- Lili Yang
- Department of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Congyu Xu
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yun Qin
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Kai Chen
- Department of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Xie
- Department of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaobo Zhou
- Department of Psychosomatic, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Tiejun Liu
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Song Tan
- Department of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Sichuan Provincial Key Laboratory for Human Disease Gene Study, Chengdu, China.
| | - Jie Liu
- Department of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Dezhong Yao
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
4
|
Wang Y, Yang Z, Zheng X, Liang X, Chen J, He T, Zhu Y, Wu L, Huang M, Zhang N, Zhou F. Temporal and topological properties of dynamic networks reflect disability in patients with neuromyelitis optica spectrum disorders. Sci Rep 2024; 14:4199. [PMID: 38378887 PMCID: PMC10879085 DOI: 10.1038/s41598-024-54518-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 02/13/2024] [Indexed: 02/22/2024] Open
Abstract
Approximately 36% of patients with neuromyelitis optica spectrum disorders (NMOSD) suffer from severe visual and motor disability (blindness or light perception or unable to walk) with abnormalities of whole-brain functional networks. However, it remains unclear how whole-brain functional networks and their dynamic properties are related to clinical disability in patients with NMOSD. Our study recruited 30 NMOSD patients (37.70 ± 11.99 years) and 45 healthy controls (HC, 41.84 ± 11.23 years). The independent component analysis, sliding-window approach and graph theory analysis were used to explore the static strength, time-varying and topological properties of large-scale functional networks and their associations with disability in NMOSD. Compared to HC, NMOSD patients showed significant alterations in dynamic networks rather than static networks. Specifically, NMOSD patients showed increased occurrence (fractional occupancy; P < 0.001) and more dwell times of the low-connectivity state (P < 0.001) with fewer transitions (P = 0.028) between states than HC, and higher fractional occupancy, increased dwell times of the low-connectivity state and lower transitions were related to more severe disability. Moreover, NMOSD patients exhibited altered small-worldness, decreased degree centrality and reduced clustering coefficients of hub nodes in dynamic networks, related to clinical disability. NMOSD patients exhibited higher occurrence and more dwell time in low-connectivity states, along with fewer transitions between states and decreased topological organizations, revealing the disrupted communication and coordination among brain networks over time. Our findings could provide new perspective to help us better understand the neuropathological mechanism of the clinical disability in NMOSD.
Collapse
Affiliation(s)
- Yao Wang
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, 330006, Jiangxi Province, China
| | - Ziwei Yang
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, 330006, Jiangxi Province, China
| | - Xiumei Zheng
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, 330006, Jiangxi Province, China
| | - Xiao Liang
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, 330006, Jiangxi Province, China
| | - Jin Chen
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Ting He
- Department of Radiology, Pingxiang People's Hospital, Pingxiang, 337055, Jiangxi Province, China
| | - Yanyan Zhu
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, 330006, Jiangxi Province, China
| | - Lin Wu
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, 330006, Jiangxi Province, China
| | - Muhua Huang
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, 330006, Jiangxi Province, China
| | - Ningnannan Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China.
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|