1
|
Ding JQ, Zhang JQ, Zhao SJ, Jiang DB, Lu JR, Yang SY, Wang J, Sun YJ, Huang YN, Hu CC, Zhang XY, Zhang JX, Liu TY, Han CY, Qiao XP, Guo J, Zhao C, Yang K. Follicular CD8 + T cells promote immunoglobulin production and demyelination in multiple sclerosis and a murine model. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167303. [PMID: 38878831 DOI: 10.1016/j.bbadis.2024.167303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
Emerging evidence underscores the importance of CD8+ T cells in the pathogenesis of multiple sclerosis (MS), but the precise mechanisms remain ambiguous. This study intends to elucidate the involvement of a novel subset of follicular CD8+ T cells (CD8+CXCR5+ T) in MS and an experimental autoimmune encephalomyelitis (EAE) murine model. The expansion of CD8+CXCR5+ T cells was observed in both MS patients and EAE mice during the acute phase. In relapsing MS patients, higher frequencies of circulating CD8+CXCR5+ T cells were positively correlated with new gadolinium-enhancement lesions in the central nervous system (CNS). In EAE mice, frequencies of CD8+CXCR5+ T cells were also positively correlated with clinical scores. These cells were found to infiltrate into ectopic lymphoid-like structures in the spinal cords during the peak of the disease. Furthermore, CD8+CXCR5+ T cells, exhibiting high expression levels of ICOS, CD40L, IL-21, and IL-6, were shown to facilitate B cell activation and differentiation through a synergistic interaction between CD40L and IL-21. Transferring CD8+CXCR5+ T cells into naïve mice confirmed their ability to enhance the production of anti-MOG35-55 antibodies and contribute to the disease progression. Consequently, CD8+CXCR5+ T cells may play a role in CNS demyelination through heightening humoral immune responses.
Collapse
Affiliation(s)
- Jia-Qi Ding
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China; Department of Neurology, Tangdu Hospital, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Jun-Qi Zhang
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Si-Jia Zhao
- Department of Neurology, Tangdu Hospital, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Dong-Bo Jiang
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Jia-Rui Lu
- Department of Neurology, Tangdu Hospital, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Shu-Ya Yang
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Jing Wang
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Yuan-Jie Sun
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Yi-Nan Huang
- Department of Emergency, the Second Affiliated Hospital (Xixian New District Central Hospital), Shaanxi University of Chinese Medicine, Shaanxi, China
| | - Chen-Chen Hu
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Xi-Yang Zhang
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Jia-Xing Zhang
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Tian-Yue Liu
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Chen-Ying Han
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Xu-Peng Qiao
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Jun Guo
- Department of Neurology, Tangdu Hospital, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China.
| | - Cong Zhao
- Department of Neurology, Air Force Medical Center of PLA, Beijing, China.
| | - Kun Yang
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China.
| |
Collapse
|
2
|
Guo J, Wu J, Wang L, Liu H, Wu X, Yang H, Li W, Wang H, Bu B, Yang C, Zhou H, Guo S, Zhao Y, Wang Z, Li C, Tian DC, Chen S, Xue H, Zhang Y, Xu Y, Liang H, Wu Z, Zhang Y, Dong Q, Wang J, Quan C. Treatment algorithms of relapsing multiple sclerosis: an exploration based on the available disease-modifying therapies in China. Ther Adv Neurol Disord 2024; 17:17562864241239117. [PMID: 38616782 PMCID: PMC11015775 DOI: 10.1177/17562864241239117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/14/2024] [Indexed: 04/16/2024] Open
Abstract
Multiple sclerosis (MS) was defined as a rare disease in China due to its low prevalence. For a long time, interferon β was the only approved disease-modifying therapy (DMT). Since the first oral DMT was approved in 2018, DMT approval accelerated, and seven DMTs were approved within 5 years. With an increasing number of DMTs being prescribed in clinical practice, it is necessary to discuss the standardized MS treatment algorithms depending on the disease activity and DMT availability. In this review paper, more than 20 Chinese experts in MS have reviewed the therapeutic progress of MS in China and worldwide and discussed algorithms for treating relapsing MS (RMS) based on the available DMTs in China, providing insights for establishing the standardized RMS treatment algorithms in this country.
Collapse
Affiliation(s)
- Jun Guo
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Jiayong Wu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lihua Wang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Hongbo Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaomu Wu
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Wenyu Li
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Honghao Wang
- Department of Neurology, Guangzhou First People’s Hospital, Guangzhou, China
| | - Bitao Bu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunsheng Yang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongyu Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Shougang Guo
- Department of Neurology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, China
| | - Yinan Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhanhang Wang
- Department of Neurology, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Chunyang Li
- Department of Neurology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - De-Cai Tian
- Center for Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Sheng Chen
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiru Xue
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanlin Zhang
- Department of Neurology, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yongfeng Xu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hui Liang
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhe Wu
- Department of Neurology, The First Hospital of China Medical University, Shenyang, China
| | | | - Qiang Dong
- Department of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Jiawei Wang
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Chao Quan
- Department of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, No. 12, Middle Wulumuqi Road, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai, China
| |
Collapse
|
3
|
Benatar M, Wiendl H, Nowak R, Zheng Y, Macias W. Batoclimab as induction and maintenance therapy in patients with myasthenia gravis: rationale and study design of a phase 3 clinical trial. BMJ Neurol Open 2024; 6:e000536. [PMID: 38268752 PMCID: PMC10806862 DOI: 10.1136/bmjno-2023-000536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/08/2023] [Indexed: 01/26/2024] Open
Abstract
Introduction Batoclimab, a fully human monoclonal antibody that inhibits the neonatal fragment crystallisable receptor, has shown promising phase 2 clinical trial results in patients with generalised myasthenia gravis (gMG). Methods and analysis In this phase 3, randomised, quadruple-blind, placebo-controlled study, adults with gMG will be randomised 1:1:1 to induction therapy with batoclimab 680 mg, batoclimab 340 mg, or placebo, administered once weekly (QW) for 12 weeks as a subcutaneous injection. The primary endpoint is the change from baseline to week 12 on the Myasthenia Gravis Activities of Daily Living (MG-ADL) score. Batoclimab-treated patients achieving a ≥2-point improvement from baseline on MG-ADL at week 10 or week 12 will be re-randomised to maintenance treatment with batoclimab 340 mg QW, batoclimab 340 mg every other week (Q2W), or placebo for 12 weeks; batoclimab-treated patients with a <2-point improvement at week 10 and week 12 will be switched to placebo for the maintenance period and discontinued thereafter. Placebo-treated patients from the induction period will be re-randomised to batoclimab 340 mg QW or Q2W in the maintenance period. All patients who complete the maintenance period and achieve a ≥2-point improvement from baseline in MG-ADL during ≥1 of the final 2 visits of the induction and/or maintenance periods will continue their current batoclimab dose (or switch to batoclimab 340 mg QW for those on placebo) for a 52-week long-term extension (LTE-1). Patients who complete LTE-1 may enter a second, optional 52-week LTE (LTE-2). Ethics and dissemination This trial is being conducted in accordance with the International Council for Harmonisation Guideline for Good Clinical Practice, the Declaration of Helsinki, and each site's Institutional Review Board/Independent Ethics Committee. All patients must provide written informed consent. Results from this study will be published in peer-reviewed journals and presented at national and global conferences. Trial registration number NCT05403541.
Collapse
Affiliation(s)
- Michael Benatar
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Nordrhein-Westfalen, Germany
| | - Richard Nowak
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Yan Zheng
- Immunovant, Inc, New York, New York, USA
| | | |
Collapse
|