1
|
Sawan H, Li C, Buch S, Bernitsas E, Haacke EM, Ge Y, Chen Y. Reduced oxygen extraction fraction in deep cerebral veins associated with cognitive impairment in multiple sclerosis. J Cereb Blood Flow Metab 2024; 44:1298-1305. [PMID: 38820447 PMCID: PMC11342723 DOI: 10.1177/0271678x241259551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 06/02/2024]
Abstract
Studying the relationship between cerebral oxygen utilization and cognitive impairment is essential to understanding neuronal functional changes in the disease progression of multiple sclerosis (MS). This study explores the potential of using venous susceptibility in internal cerebral veins (ICVs) as an imaging biomarker for cognitive impairment in relapsing-remitting MS (RRMS) patients. Quantitative susceptibility mapping derived from fully flow-compensated MRI phase data was employed to directly measure venous blood oxygen saturation levels (SvO2) in the ICVs. Results revealed a significant reduction in the susceptibility of ICVs (212.4 ± 30.8 ppb vs 239.4 ± 25.9 ppb) and a significant increase of SvO2 (74.5 ± 1.89% vs 72.4 ± 2.23%) in patients with RRMS compared with age- and sex-matched healthy controls. Both the susceptibility of ICVs (r = 0.508, p = 0.031) and the SvO2 (r = -0.498, p = 0.036) exhibited a moderate correlation with cognitive decline in these patients assessed by the Paced Auditory Serial Addition Test, while no significant correlation was observed with clinical disability measured by the Expanded Disability Status Scale. The findings suggest that venous susceptibility in ICVs has the potential to serve as a specific indicator of oxygen metabolism and cognitive function in RRMS. .
Collapse
Affiliation(s)
- Hasan Sawan
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Chenyang Li
- Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Sagar Buch
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Evanthia Bernitsas
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - E Mark Haacke
- Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yulin Ge
- Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Yongsheng Chen
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
2
|
Jellinger KA. Cognitive impairment in multiple sclerosis: from phenomenology to neurobiological mechanisms. J Neural Transm (Vienna) 2024; 131:871-899. [PMID: 38761183 DOI: 10.1007/s00702-024-02786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
Multiple sclerosis (MS) is an autoimmune-mediated disease of the central nervous system characterized by inflammation, demyelination and chronic progressive neurodegeneration. Among its broad and unpredictable range of clinical symptoms, cognitive impairment (CI) is a common and disabling feature greatly affecting the patients' quality of life. Its prevalence is 20% up to 88% with a wide variety depending on the phenotype of MS, with highest frequency and severity in primary progressive MS. Involving different cognitive domains, CI is often associated with depression and other neuropsychiatric symptoms, but usually not correlated with motor and other deficits, suggesting different pathophysiological mechanisms. While no specific neuropathological data for CI in MS are available, modern research has provided evidence that it arises from the disease-specific brain alterations. Multimodal neuroimaging, besides structural changes of cortical and deep subcortical gray and white matter, exhibited dysfunction of fronto-parietal, thalamo-hippocampal, default mode and cognition-related networks, disruption of inter-network connections and involvement of the γ-aminobutyric acid (GABA) system. This provided a conceptual framework to explain how aberrant pathophysiological processes, including oxidative stress, mitochondrial dysfunction, autoimmune reactions and disruption of essential signaling pathways predict/cause specific disorders of cognition. CI in MS is related to multi-regional patterns of cerebral disturbances, although its complex pathogenic mechanisms await further elucidation. This article, based on systematic analysis of PubMed, Google Scholar and Cochrane Library, reviews current epidemiological, clinical, neuroimaging and pathogenetic evidence that could aid early identification of CI in MS and inform about new therapeutic targets and strategies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, Vienna, A-1150, Austria.
| |
Collapse
|
3
|
Elkhooly M, Di Stadio A, Bernitsas E. Effect of Aerobic Exercise versus Non-Invasive Brain Stimulation on Cognitive Function in Multiple Sclerosis: A Systematic Review and Meta-Analysis. Brain Sci 2024; 14:771. [PMID: 39199465 PMCID: PMC11352410 DOI: 10.3390/brainsci14080771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
OBJECTIVE In this study, we investigated the effects of noninvasive brain stimulation (NIBS) and exercise on cognition in patients with multiple sclerosis (pwMS). METHODS A literature search was performed using the Cochrane Library, Scopus, PubMed and Web of Science. The time interval used for database construction was up to February 2024; the collected trials were subsequently screened, and the data were extracted. RESULTS We identified 12 studies with 208 pwMS treated with noninvasive brain stimulation. Seven of the twelve studies concluded that NIBS was effective in improving reaction time, attention and processing speed. Additionally, 26 articles investigated the effect of various types of exercise on cognition among 708 pwMS. Twelve studies used aerobic exercise only, three studies used resistance only, one used yoga, and ten studies used mixed forms of exercise, such as Pilates, resistance and Frenkel coordination. Aerobic exercise was effective in improving at least one cognitive domain in ten studies. Resistance exercise was found to improve cognition in three studies. Yoga failed to show any improvement in one study. CONCLUSIONS NIBS might be an effective intervention for cognition improvement among pwMS. Aerobic exercise and combined forms of exercise are the most frequently investigated and applied and found to be effective. Further studies are needed, especially for resistance, balance and stretching exercises.
Collapse
Affiliation(s)
- Mahmoud Elkhooly
- Department of Neurology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| | - Arianna Di Stadio
- Department of GF Ingrassia, University of Catania, 95121 Catania, Italy
- IRCSS Santa Lucia, 00179 Rome, Italy
| | | |
Collapse
|
4
|
Yan Z, Tan Z, Zhu Q, Shi Z, Feng J, Wei Y, Yin F, Wang X, Li Y. Cross-sectional and longitudinal evaluation of white matter microstructure damage and cognitive correlations by automated fibre quantification in relapsing-remitting multiple sclerosis patients. Brain Imaging Behav 2024:10.1007/s11682-024-00893-8. [PMID: 38814544 DOI: 10.1007/s11682-024-00893-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 05/31/2024]
Abstract
The purpose of this study was to characterize whole-brain white matter (WM) fibre tracts by automated fibre quantification (AFQ), capture subtle changes cross-sectionally and longitudinally in relapsing-remitting multiple sclerosis (RRMS) patients and explore correlations between these changes and cognitive performance A total of 114 RRMS patients and 71 healthy controls (HCs) were enrolled and follow-up investigations were conducted on 46 RRMS patients. Fractional anisotropy (FA), mean diffusion (MD), axial diffusivity (AD), and radial diffusivity (RD) at each node along the 20 WM fibre tracts identified by AFQ were investigated cross-sectionally and longitudinally in entire and pointwise manners. Partial correlation analyses were performed between the abnormal metrics and cognitive performance. At baseline, compared with HCs, patients with RRMS showed a widespread decrease in FA and increases in MD, AD, and RD among tracts. In the pointwise comparisons, more detailed abnormalities were localized to specific positions. At follow-up, although there was no significant difference in the entire WM fibre tract, there was a reduction in FA in the posterior portion of the right superior longitudinal fasciculus (R_SLF) and elevations in MD and AD in the anterior and posterior portions of the right arcuate fasciculus (R_AF) in the pointwise analysis. Furthermore, the altered metrics were widely correlated with cognitive performance in RRMS patients. RRMS patients exhibited widespread WM microstructure alterations at baseline and alterations in certain regions at follow-up, and the altered metrics were widely correlated with cognitive performance in RRMS patients, which will enhance our understanding of WM microstructure damage and its cognitive correlation in RRMS patients.
Collapse
Affiliation(s)
- Zichun Yan
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, China
| | - Zeyun Tan
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, China
| | - Qiyuan Zhu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, China
| | - Zhuowei Shi
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, China
| | - Jinzhou Feng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yiqiu Wei
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, China
| | - Feiyue Yin
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, China
| | - Xiaohua Wang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, China.
- College of Medical Informatics, Chongqing Medical University, Chongqing, China.
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, China.
| |
Collapse
|
5
|
Kenyon KH, Strik M, Noffs G, Morgan A, Kolbe S, Harding IH, Vogel AP, Boonstra FMC, van der Walt A. Volumetric and diffusion MRI abnormalities associated with dysarthria in multiple sclerosis. Brain Commun 2024; 6:fcae177. [PMID: 38846538 PMCID: PMC11154149 DOI: 10.1093/braincomms/fcae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/16/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
Up to half of all people with multiple sclerosis experience communication difficulties due to dysarthria, a disorder that impacts the motor aspects of speech production. Dysarthria in multiple sclerosis is linked to cerebellar dysfunction, disease severity and lesion load, but the neuroanatomical substrates of these symptoms remain unclear. In this study, 52 participants with multiple sclerosis and 14 age- and sex-matched healthy controls underwent structural and diffusion MRI, clinical assessment of disease severity and cerebellar dysfunction and a battery of motor speech tasks. Assessments of regional brain volume and white matter integrity, and their relationships with clinical and speech measures, were undertaken. White matter tracts of interest included the interhemispheric sensorimotor tract, cerebello-thalamo-cortical tract and arcuate fasciculus, based on their roles in motor and speech behaviours. Volumetric analyses were targeted to Broca's area, Wernicke's area, the corpus callosum, thalamus and cerebellum. Our results indicated that multiple sclerosis participants scored worse on all motor speech tasks. Fixel-based diffusion MRI analyses showed significant evidence of white matter tract atrophy in each tract of interest. Correlational analyses further indicated that higher speech naturalness-a perceptual measure of dysarthria-and lower reading rate were associated with axonal damage in the interhemispheric sensorimotor tract and left arcuate fasciculus in people with multiple sclerosis. Axonal damage in all tracts of interest also correlated with clinical scales sensitive to cerebellar dysfunction. Participants with multiple sclerosis had lower volumes of the thalamus and corpus callosum compared with controls, although no brain volumetrics correlated with measures of dysarthria. These findings indicate that axonal damage, particularly when measured using diffusion metrics, underpin dysarthria in multiple sclerosis.
Collapse
Affiliation(s)
- Katherine H Kenyon
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
- Centre for Neuroscience of Speech, University of Melbourne, Parkville, VIC 3052, Australia
| | - Myrte Strik
- Spinoza Centre for Neuroimaging, Netherlands Institute for Neuroscience, Royal Academy for Arts and Sciences, KNAW, Amsterdam 1105 BK, The Netherlands
- Melbourne Brain Centre Imaging Unit, Department of Radiology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Gustavo Noffs
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
- Centre for Neuroscience of Speech, University of Melbourne, Parkville, VIC 3052, Australia
- Department of Neurology, Royal Melbourne Hospital, Parkville, VIC 3052, Australia
- Redenlab Inc, Melbourne, VIC 3000, Australia
| | - Angela Morgan
- Murdoch Children’s Research Institute, Genomic Medicine, Speech and Language Group, Parkville 3052, Australia
- Department of Speech Pathology and Audiology, University of Melbourne, Parkville 3052, Australia
| | - Scott Kolbe
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Ian H Harding
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Adam P Vogel
- Centre for Neuroscience of Speech, University of Melbourne, Parkville, VIC 3052, Australia
- Melbourne Brain Centre Imaging Unit, Department of Radiology, University of Melbourne, Parkville, VIC 3052, Australia
- Redenlab Inc, Melbourne, VIC 3000, Australia
- Division of Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
- Center for Neurology, University Hospital Tübingen, Tübingen 72076, Germany
- The Bionics Institute, East Melbourne, VIC 3002, Australia
| | - Frederique M C Boonstra
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Anneke van der Walt
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
- Spinoza Centre for Neuroimaging, Netherlands Institute for Neuroscience, Royal Academy for Arts and Sciences, KNAW, Amsterdam 1105 BK, The Netherlands
- The Bionics Institute, East Melbourne, VIC 3002, Australia
| |
Collapse
|
6
|
Sawan H, Li C, Buch S, Bernitsas E, Haacke EM, Ge Y, Chen Y. Reduced Oxygen Extraction Fraction in Deep Cerebral Veins Associated with Cognitive Impairment in Multiple Sclerosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.10.24301049. [PMID: 38260542 PMCID: PMC10802653 DOI: 10.1101/2024.01.10.24301049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Studying the relationship between cerebral oxygen utilization and cognitive impairment is essential to understanding neuronal functional changes in the disease progression of multiple sclerosis (MS). This study explores the potential of using venous susceptibility in internal cerebral veins (ICVs) as an imaging biomarker for cognitive impairment in relapsing-remitting MS (RRMS) patients. Quantitative susceptibility mapping derived from fully flow-compensated MRI phase data was employed to directly measure venous blood oxygen saturation levels (SvO2) in the ICVs. Results revealed a significant reduction in the susceptibility of ICVs (212.4 ± 30.8 ppb vs 239.4 ± 25.9 ppb) and a significant increase of SvO2 (74.5 ± 1.89 % vs 72.4 ± 2.23 %) in patients with RRMS compared with age- and sex-matched healthy controls. Both the susceptibility of ICVs (r = 0.646, p = 0.004) and the SvO2 (r = -0.603, p = 0.008) exhibited a strong correlation with cognitive decline in these patients assessed by the Paced Auditory Serial Addition Test, while no significant correlation was observed with clinical disability measured by the Expanded Disability Status Scale. The findings suggest that venous susceptibility in ICVs has the potential to serve as a specific indicator of oxygen metabolism and cognitive function in RRMS.
Collapse
Affiliation(s)
- Hasan Sawan
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Chenyang Li
- Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Sagar Buch
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Evanthia Bernitsas
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - E. Mark Haacke
- Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yulin Ge
- Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Yongsheng Chen
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|