1
|
Corrosion Behavior of As-Cast Ti–10Mo–6Zr–4Sn–3Nb and Ti–6Al–4V in Hank’s Solution: A Comparison Investigation. METALS 2020. [DOI: 10.3390/met11010011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Newly developed Ti–10Mo–6Zr–4Sn–3Nb has fascinating mechanical properties to be used as a biomedical material. However, there is still a lack of investigation focusing on the corrosion behavior of Ti–10Mo–6Zr–4Sn–3Nb. In this work, the microstructure and corrosion behavior of as-cast Ti–10Mo–6Zr–4Sn–3Nb was investigated by optical microscopy, X-ray diffraction, and electrochemical measurements. Hank’s solution was used as the electrolyte. A classical as-cast Ti–6Al–4V was used as reference. The results showed that Ti–10Mo–6Zr–4Sn–3Nb has a higher corrosion potential and a lower corrosion current density compared with Ti–6Al–4V, indicating better corrosion resistance. However, after applying anodic potentials, Ti–10Mo–6Zr–4Sn–3Nb shows larger passivation current density in both potentiodynamic polarization and potentiostatic polarization tests. This is because more alloying elements contained in Ti–10Mo–6Zr–4Sn–3Nb trigger the production of a larger number of oxygen vacancies, resulting in a higher flux of oxygen vacancy. This finding illustrates that the passive film on Ti–10Mo–6Zr–4Sn–3Nb is less protective compared with that on Ti–6Al–4V when applying an anodic potential in their passivation range.
Collapse
|
2
|
Abstract
β-type titanium (Ti) alloys have attracted a lot of attention as novel biomedical materials in the past decades due to their low elastic moduli and good biocompatibility. This article provides a broad and extensive review of β-type Ti alloys in terms of alloy design, preparation methods, mechanical properties, corrosion behavior, and biocompatibility. After briefly introducing the development of Ti and Ti alloys for biomedical applications, this article reviews the design of β-type Ti alloys from the perspective of the molybdenum equivalency (Moeq) method and DV-Xα molecular orbital method. Based on these methods, a considerable number of β-type Ti alloys are developed. Although β-type Ti alloys have lower elastic moduli compared with other types of Ti alloys, they still possess higher elastic moduli than human bones. Therefore, porous β-type Ti alloys with declined elastic modulus have been developed by some preparation methods, such as powder metallurgy, additive manufacture and so on. As reviewed, β-type Ti alloys have comparable or even better mechanical properties, corrosion behavior, and biocompatibility compared with other types of Ti alloys. Hence, β-type Ti alloys are the more suitable materials used as implant materials. However, there are still some problems with β-type Ti alloys, such as biological inertness. As such, summarizing the findings from the current literature, suggestions forβ-type Ti alloys with bioactive coatings are proposed for the future development.
Collapse
|
3
|
Microstructure evolution, mechanical properties, and enhanced bioactivity of Ti-13Nb-13Zr based calcium pyrophosphate composites for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:279-287. [DOI: 10.1016/j.msec.2018.12.137] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/26/2018] [Accepted: 12/29/2018] [Indexed: 12/31/2022]
|
4
|
do Prado RF, Esteves GC, Santos ELDS, Bueno DAG, Cairo CAA, Vasconcellos LGOD, Sagnori RS, Tessarin FBP, Oliveira FE, Oliveira LDD, Villaça-Carvalho MFL, Henriques VAR, Carvalho YR, De Vasconcellos LMR. In vitro and in vivo biological performance of porous Ti alloys prepared by powder metallurgy. PLoS One 2018; 13:e0196169. [PMID: 29771925 PMCID: PMC5957353 DOI: 10.1371/journal.pone.0196169] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/06/2018] [Indexed: 11/18/2022] Open
Abstract
Titanium (Ti) and Ti-6 Aluminium-4 Vanadium alloys are the most common materials in implants composition but β type alloys are promising biomaterials because they present better mechanical properties. Besides the composition of biomaterial, many factors influence the performance of the biomaterial. For example, porous surface may modify the functional cellular response and accelerate osseointegration. This paper presents in vitro and in vivo evaluations of powder metallurgy-processed porous samples composed by different titanium alloys and pure Ti, aiming to show their potential for biomedical applications. The porous surfaces samples were produced with different designs to in vitro and in vivo tests. Samples were characterized with scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and elastic modulus analyses. Osteogenic cells from newborn rat calvaria were plated on discs of different materials: G1—commercially pure Ti group (CpTi); G2—Ti-6Al-4V alloy; G3—Ti-13 Niobium-13 Zirconium alloy; G4—Ti-35 Niobium alloy; G5—Ti-35 Niobium-7 Zirconium-5 Tantalum alloy. Cell adhesion and viability, total protein content, alkaline phosphatase activity, mineralization nodules and gene expression (alkaline phosphatase, Runx-2, osteocalcin and osteopontin) were assessed. After 2 and 4 weeks of implantation in rabbit tibia, bone ingrowth was analyzed using micro-computed tomography (μCT). EDS analysis confirmed the material production of each group. Metallographic and SEM analysis revealed interconnected pores, with mean pore size of 99,5μm and mean porosity of 42%, without significant difference among the groups (p>0.05). The elastic modulus values did not exhibit difference among the groups (p>0.05). Experimental alloys demonstrated better results than CpTi and Ti-6Al-4V, in gene expression and cytokines analysis, especially in early experimental periods. In conclusion, our data suggests that the experimental alloys can be used for biomedical application since they contributed to excellent cellular behavior and osseointegration besides presenting lower elastic modulus.
Collapse
Affiliation(s)
- Renata Falchete do Prado
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, São Paulo, Brazil
- * E-mail: ,
| | - Gabriela Campos Esteves
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, São Paulo, Brazil
| | - Evelyn Luzia De Souza Santos
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, São Paulo, Brazil
| | - Daiane Acácia Griti Bueno
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, São Paulo, Brazil
| | - Carlos Alberto Alves Cairo
- Division of Materials, Air and Space Institute, Praça Mal. do Ar Eduardo Gomes, São José dos Campos, São Paulo, Brazil
| | - Luis Gustavo Oliveira De Vasconcellos
- Department of Prosthodontic and Dental Material, Institute of Science and Technology São Paulo State University (Unesp), São José dos Campos, São Paulo, Brazil
| | - Renata Silveira Sagnori
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (Unicamp), Piracicaba, São Paulo, Brazil
| | - Fernanda Bastos Pereira Tessarin
- Department of Restorative Dentistry, Institute of Science and Technology São Paulo State University (Unesp), São José dos Campos, São Paulo, Brazil
| | - Felipe Eduardo Oliveira
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, São Paulo, Brazil
| | - Luciane Dias De Oliveira
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, São Paulo, Brazil
| | - Maria Fernanda Lima Villaça-Carvalho
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, São Paulo, Brazil
| | | | - Yasmin Rodarte Carvalho
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, São Paulo, Brazil
| | - Luana Marotta Reis De Vasconcellos
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, São Paulo, Brazil
| |
Collapse
|
5
|
Zhu J, Tian X, Xiao Y, Tian L, Gao B, Chen J. Biocompatibility Evaluation of Titanium Produced by Laser Rapid Forming. J HARD TISSUE BIOL 2016. [DOI: 10.2485/jhtb.25.413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Juanfang Zhu
- Stomatology Center, the First Affiliated Hospital of Zhengzhou University
| | - Xueli Tian
- Stomatology Center, the First Affiliated Hospital of Zhengzhou University
| | - Yan Xiao
- Stomatology Center, the First Affiliated Hospital of Zhengzhou University
| | - Liping Tian
- Stomatology Center, the First Affiliated Hospital of Zhengzhou University
| | - Bo Gao
- Department of Prosthodontics, College of Stomatology, the Fourth Military Medical University
| | - Jing Chen
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University
| |
Collapse
|
6
|
Duarte LT, Biaggio SR, Rocha-Filho RC, Bocchi N. Influence of hydroxyapatite on the corrosion resistance of the Ti-13Nb-13Zr alloy. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2009; 20:1009-1015. [PMID: 19083081 DOI: 10.1007/s10856-008-3662-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 12/02/2008] [Indexed: 05/27/2023]
Abstract
Electrochemical analyses on the biocompatible alloy Ti-13Nb-13Zr wt% in an electrolyte simulating physiological medium (PBS solution) are reported. Hydroxyapatite (HA) films were obtained on the alloy by electrodeposition at constant cathodic current. Samples of the alloy covered with an anodic-oxide film or an anodic-oxide/HA film were analyzed by open circuit potential and electrochemical impedance spectroscopy measurements during 180 days in the PBS electrolyte. Analyses of the open-circuit potential (E (oc)) values indicated that the oxide/HA film presents better protection characteristics than the oxide only. This behavior was corroborated by the higher film resistances obtained from impedance data, indicating that, besides improving the alloy osteointegration, the hydroxyapatite film may also increase the corrosion protection of the biomaterial.
Collapse
Affiliation(s)
- Laís T Duarte
- Departamento de Química, Universidade Federal de São Carlos, Sao Carlos, SP, Brazil
| | | | | | | |
Collapse
|