1
|
Wang M, Wang L, Hua X, Yang R. Production of high-purity lactulose via an integrated one-pot boronate affinity adsorbent based adsorption-assisted isomerization and simultaneous purification. Food Chem 2023; 429:136935. [PMID: 37499512 DOI: 10.1016/j.foodchem.2023.136935] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/02/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
High-purity lactulose is mandatory for its medical uses and food applications. This work developed an efficient lab-scale strategy for the synthesis of high-purity lactulose by combining lactose-to-lactulose isomerization with simultaneous recovery of lactulose, which was conducted concurrently and semi-continuously in a boronate affinity adsorbent-packed column. The first step covers the boronate affinity adsorbent-based adsorption-assisted lactose-to-lactulose isomerization. Under optimized conditions, in situ selectively binding of the newly formed lactulose onto the boronate affinity adsorbent enables a much-enhanced lactulose yield up to 80.20% with the lowest byproducts yield of 6.30%. Afterward, over 90% of the adsorbed lactulose can be recovered through sequential desorption with purity >98%. The net outcome of the applied strategy was the yield of high-purity lactulose up to 72.31%, the highest value ever reported. Moreover, the packed column displayed excellent operational stability. The encouraging results validate the high potential of this approach in the sustainable production of high-purity lactulose.
Collapse
Affiliation(s)
- Mingming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shangdong Province 266003, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Lu Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Xiao Hua
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Ruijin Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China.
| |
Collapse
|
2
|
Separation of Microalgae by a Dynamic Bed of Magnetite-Containing Gel in the Application of a Magnetic Field. SEPARATIONS 2022. [DOI: 10.3390/separations9050120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Microalgae are now known as potential microorganisms in the production of chemicals, fuel, and food. Since microalgae live in the sea and the river, they need to be harvested and separated and cultured for further usage. In this study, to separate microalgae, a bed of magnetite-containing gel (Mag gel, 190 µm) was packed in the column by the application of a magnetic field for the separative elution of injected microalgae (including mainly four species), cultured at Saga University in Japan. The applied magnetic field was set at a constant and dynamic-convex manner. At a constant magnetic field of 0.4–1.1 T, the elution percentage of the microalgae at less than 5 µm was 30–50%. At 1.1 T, the larger-sized microalgae were eluted at a percentage of 20%, resulting in the structural change of the bed by the applied magnetic field. In a convex-like change of the magnetic field at 1.1 T ⇄ 0.4 T, the smaller-sized microalgae were selectively eluted, whereas at 1.1 T ⇄ 0.8 T, the larger-sized microalgae were eluted. Dynamic convex-like changes by the magnetic field selectively eluted the microalgae, leading to the separation and the extraction of potential microalgae.
Collapse
|
3
|
Wang Y, Zhang C, Xu N, Lan J, Jiang B, Meng L. Synthesis and properties of organoboron functionalized nanocellulose for crosslinking low polymer fracturing fluid system. RSC Adv 2021; 11:13466-13474. [PMID: 35423881 PMCID: PMC8697569 DOI: 10.1039/d0ra10105b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/05/2021] [Indexed: 11/21/2022] Open
Abstract
The traditional organoboron crosslinker used in the guar gum fracturing fluid has the disadvantages of a larger amount of guar gum and crosslinker and higher susceptibility to pH. Nanoparticles have special properties such as large specific surface area and many active groups, so the organic boron crosslinker and nanoparticles are combined to obtain nano crosslinkers. In this paper, rod-shaped nano-cellulose particles were prepared by acid hydrolysis, and a nanocellulose crosslinker was synthesized by combining with organic boron and KH550. Nanocellulose cross-linker has good temperature and salt resistance. It can meet the requirements of cross-linking guar gum fracturing fluid with a mass fraction of 0.3 wt% under neutral conditions. The residual viscosity is higher than 50 mPa s under shear at 170 s-1 and 110 °C for 60 minutes when the pH increases from 7 to 13, and NBC crosslinking can withstand a temperature of 160 °C under pH = 10. The crosslinking mechanism of the widely accepted nano-crosslinker is that the organoboron on the surface of the nanoparticle combines with the homeopathic ortho hydroxyl of the guar gum molecule to form a hydrogen bond and thereby form a complex network structure. This research shows that the hydrogen bonding between the nano-cellulose crosslinker and HPG molecules, and the resulting gel has a more complex network structure because of the formation of inter-chain cross-links.
Collapse
Affiliation(s)
- Yanling Wang
- College of Petroleum Engineering, China University of Petroleum (East China) Qingdao 266580 China
| | - Chuanbao Zhang
- College of Petroleum Engineering, China University of Petroleum (East China) Qingdao 266580 China
| | - Ning Xu
- College of Petroleum Engineering, China University of Petroleum (East China) Qingdao 266580 China
| | - Jincheng Lan
- College of Petroleum Engineering, China University of Petroleum (East China) Qingdao 266580 China
| | - Baoyang Jiang
- College of Petroleum Engineering, China University of Petroleum (East China) Qingdao 266580 China
| | - Lingtao Meng
- College of Petroleum Engineering, China University of Petroleum (East China) Qingdao 266580 China
| |
Collapse
|
4
|
Wang G, Fu Q, Guo R, Wei Z. Selective adsorption and separation of stevioside and rebaudioside A by a metal-organic framework with boronic acid. CAN J CHEM 2020. [DOI: 10.1139/cjc-2020-0175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The boronic acid functionalization metal-organic frameworks (MOFs), as unique boronate affinity adsorbents, have desired specific molecular affinity for the separation and enrichment of cis-diol-compounds. Herein, the boronic acid functionalized Zn-based MOF adsorbent (MOF-BA) was synthesized through a simple one-step microwave method and used for the recognition and isolation of steviol glycosides (SGs). This MOF-BA exhibits the same spherical structure and isostructure with the parent framework composed only of the primitive ligand as verified by SEM and XRD characterization. It was confirmed that changing the ratio of ligands could achieve the adjustability of the boron content in the framework. At the same time, the MOF-BA-1.0 showed a suitable pore size (4.69 nm), and the presence of boric acid functional groups showed favorable selectivity for stevioside (STV). The static adsorption results showed that adsorption performances of rebaudioside A (RA) and STV from crude sugar solution (5.0 mg mL−1, pH 8) on MOF-BA-1.0 were investigated at 303 K for 15 h. The adsorption capacities for STV and RA were 42.93 mg g−1 and 22.96 mg g−1, respectively, and the adsorption selectivity (αSTV/RA) reached 4.35. The adsorption isotherm and kinetic data of MOF-BA-1.0 for RA and STV obeyed the Langmuir isotherm model and pseudo second order kinetic model, respectively. The study demonstrated that MOF-BA-1.0 adsorbent could be used as a potential adsorbent to purify the active ingredients of stevia and obtain a high concentration of RA products.
Collapse
Affiliation(s)
- Guanyu Wang
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Xinjiang, China
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Xinjiang, China
| | - Qiaoge Fu
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Xinjiang, China
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Xinjiang, China
| | - Ruili Guo
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Xinjiang, China
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Xinjiang, China
| | - Zhong Wei
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Xinjiang, China
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Xinjiang, China
| |
Collapse
|
5
|
Sarıarslan H, Karaca E, Şahin M, Pekmez NÖ. Electrochemical synthesis and corrosion protection of poly(3-aminophenylboronic acid- co-pyrrole) on mild steel. RSC Adv 2020; 10:38548-38560. [PMID: 35517519 PMCID: PMC9057268 DOI: 10.1039/d0ra07311c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/13/2020] [Indexed: 11/21/2022] Open
Abstract
Synthesis of poly(3-aminophenylboronic acid-co-pyrrole) (p(APBA-co-Py)) is carried out potentiodynamically on a pre-passivated mild steel (MS) surface in an oxalic acid solution containing 3-aminophenylboronic acid (APBA) and pyrrole (Py) monomers. The monomer feed ratio was determined using electrochemical impedance spectroscopy (EIS) and adhesion tests. The p(APBA-co-Py) coating is characterized by electrochemically and spectroscopically comparing with poly(3-aminophenylboronic acid) (p(APBA) and polypyrrole (p(Py) homopolymers. SERS, FTIR, XPS, scanning electron microscopy-wavelength dispersive X-ray and- energy dispersive X-ray spectroscopy results indicate the presence of both APBA and Py segments in the p(APBA-co-Py) backbone. The protective properties of the coating are investigated by Tafel and EIS measurements in a 0.50 M HCl solution. The corrosion resistance of p(APBA-co-Py)-coated MS (66.8 Ω cm2) is higher than that of p(APBA)- and p(Py)-coated, passivated, and uncoated MS. The p(APBA-co-Py) coating embodies the advantageous features of both homopolymers. Py units in p(APBA-co-Py) chains improve the protective property while APBA units carrying the –B(OH)2 group develop the adhesive property of the layer. EIS results show that the p(APBA-co-Py) coating, due to its homogeneous and compact distribution and the formation of a stable interface, enhanced corrosion resistance of MS by 87.4% for 10 hours in HCl corrosive medium. Synthesis of poly(3-aminophenylboronic acid-co-pyrrole) (p(APBA-co-Py)) is carried out potentiodynamically on a pre-passivated mild steel (MS) surface in an oxalic acid solution containing 3-aminophenylboronic acid (APBA) and pyrrole (Py) monomers.![]()
Collapse
Affiliation(s)
- Hakan Sarıarslan
- Department of Chemistry, Hacettepe University 06800 Ankara Turkey
| | - Erhan Karaca
- Department of Chemistry, Hacettepe University 06800 Ankara Turkey
| | - Mutlu Şahin
- Department of Mathematics and Science Education, Yıldız Technical University Istanbul Turkey
| | | |
Collapse
|
6
|
Xia L, Tan J, Wu P, He Q, Song S, Li Y. Biopolymers extracted from Klebsiella sp. and Bacillus sp. in wastewater sludge as superb adsorbents for aqueous Hg(II) removal from water. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Pankajakshan A, Mandal S. Water Stable Boronic Acid Grafted Barium Metal–Organic Framework for the Selective Adsorption of cis-Diols. Inorg Chem 2020; 59:5958-5965. [DOI: 10.1021/acs.inorgchem.9b03732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Asha Pankajakshan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| | - Sukhendu Mandal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
8
|
Wang M, Ye F, Wang H, Admassu H, Feng Y, Hua X, Yang R. Phenylboronic Acid Functionalized Adsorbents for Selective and Reversible Adsorption of Lactulose from Syrup Mixtures. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9269-9281. [PMID: 30110537 DOI: 10.1021/acs.jafc.8b02152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Boronate affinity materials have been widely used for enrichment of cis-diol molecules. In this work, phenylboronic acid functionalized adsorbents were prepared via a simple and efficient procedure grafting phenylboronic acid groups onto amino macroporous resins. Elemental analysis has confirmed the successful functionalization of AR-1M and AR-2M with approximately 2.17% and 0.73% weight percentage of boron. Comparatively, AR-1M possessed higher lactulose adsorption capacity ( qe-Lu, 84.78 ± 0.95 mg/g dry resin) under neutral conditions (pH = 7), while the introduced glutaraldehyde spacer arms on AR-2M resulted in excellent adsorption selectivity (α ≈ 23), high adsorption efficiency (π ≈ 22%), and fast adsorption/desorption rate. The purity of lactulose (PuDLu) through pH-driven adsorption (pH 7-8) and desorption (pH 1.5) can be effectively improved depending on the ratio of lactulose to lactose. When lactulose/lactose ≥ 1:1, PuDLu ≈ 95% was achieved. No significant drop in qe-Lu (>90%) was observed after ten-consecutive repeats. Results demonstrated that the newly developed method may achieve satisfactory performance in lactulose purification.
Collapse
Affiliation(s)
- Mingming Wang
- State Key Laboratory of Food Science and Technology , Jiangnan University , 214122 Wuxi , China
- School of Food Science and Technology , Jiangnan University , 214122 Wuxi , China
| | - Fayin Ye
- College of Food Science , Southwest University , 400715 Chongqing , China
| | - He Wang
- Jiyang College , Zhejiang Agriculture and Forestry University , Zhuji , Zhejiang 311800 , China
| | - Habtamu Admassu
- State Key Laboratory of Food Science and Technology , Jiangnan University , 214122 Wuxi , China
- School of Food Science and Technology , Jiangnan University , 214122 Wuxi , China
| | - Yinghui Feng
- State Key Laboratory of Food Science and Technology , Jiangnan University , 214122 Wuxi , China
- School of Food Science and Technology , Jiangnan University , 214122 Wuxi , China
| | - Xiao Hua
- State Key Laboratory of Food Science and Technology , Jiangnan University , 214122 Wuxi , China
- School of Food Science and Technology , Jiangnan University , 214122 Wuxi , China
| | - Ruijin Yang
- State Key Laboratory of Food Science and Technology , Jiangnan University , 214122 Wuxi , China
- School of Food Science and Technology , Jiangnan University , 214122 Wuxi , China
| |
Collapse
|
9
|
Bioaffinity immobilization and characterization of α-galactosidase on aminophenylboronicacid derivatized chitosan and Sepabeads EC-EA. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.12.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
A boronate affinity restricted-access material with external hydrophilic bottlebrush polymers for pretreatment of cis -diols in biological matrices. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.08.056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Boronate affinity solid-phase extraction of cis-diol compounds by a one-step electrochemically synthesized selective polymer sorbent. Anal Bioanal Chem 2017; 410:501-508. [DOI: 10.1007/s00216-017-0740-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/27/2017] [Accepted: 11/02/2017] [Indexed: 02/07/2023]
|
12
|
Zhou S, Schlipf DM, Guilfoil EC, Rankin SE, Knutson BL. Lipid Pore-Filled Silica Thin-Film Membranes for Biomimetic Recovery of Dilute Carbohydrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:14156-14166. [PMID: 29131638 DOI: 10.1021/acs.langmuir.7b03844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Selectively permeable biological membranes containing lipophilic barriers inspire the design of biomimetic carrier-mediated membranes for aqueous solute separation. The recovery of glucose, which can reversibly bind to boronic acid (BA) carriers, is examined in lipid pore-filled silica thin-film composite membranes with accessible mesopores. The successful incorporation of lipids (1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPC) and BA carriers (4-((N-Boc-amino)methyl)phenylboronic acid, BAMP-BA) in the pores of mesoporous silica (∼10 nm pore diameter) through evaporation deposition is verified by confocal microscopy and differential scanning calorimetry. In the absence of BA carriers, lipids confined inside the pores of silica thin films (∼200 nm thick) provide a factor of 14 increase in diffusive transport resistance to glucose, relative to traditional supported lipid bilayers formed by vesicle fusion on the porous surface. The addition of lipid-immobilized BAMP-BA (59 mol % in DPPC) facilitates the transport of glucose through the membrane; glucose flux increases from 45 × 10-8 to 225 × 10-8 mol/m2/s in the presence of BAMP-BA. Furthermore, the transport can be improved by environmental factors including pH gradient (to control the binding and release of glucose) and temperature (to adjust lipid bilayer fluidity). The successful development of biomimetic nanocomposite membranes demonstrated here is an important step toward the efficient dilute aqueous solute upgrading or separations, such as the processing of carbohydrates from lignocellulose hydrolysates, using engineered carrier/catalyst/support systems.
Collapse
Affiliation(s)
- Shanshan Zhou
- Department of Chemical and Materials Engineering, University of Kentucky , Lexington, Kentucky 40506, United States
| | - Daniel M Schlipf
- Department of Chemical and Materials Engineering, University of Kentucky , Lexington, Kentucky 40506, United States
| | - Emma C Guilfoil
- Department of Chemical and Materials Engineering, University of Kentucky , Lexington, Kentucky 40506, United States
| | - Stephen E Rankin
- Department of Chemical and Materials Engineering, University of Kentucky , Lexington, Kentucky 40506, United States
| | - Barbara L Knutson
- Department of Chemical and Materials Engineering, University of Kentucky , Lexington, Kentucky 40506, United States
| |
Collapse
|
13
|
Li H, Zhang X, Zhang L, Cheng W, Kong F, Fan D, Li L, Wang W. Silica stationary phase functionalized by 4-carboxy-benzoboroxole with enhanced boronate affinity nature for selective capture and separation of cis-diol compounds. Anal Chim Acta 2017; 985:91-100. [DOI: 10.1016/j.aca.2017.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/28/2017] [Accepted: 07/01/2017] [Indexed: 12/16/2022]
|
14
|
Gu L, Wang Y, Han J, Wang L, Tang X, Li C, Ni L. Phenylboronic acid-functionalized core–shell magnetic composite nanoparticles as a novel protocol for selective enrichment of fructose from a fructose–glucose aqueous solution. NEW J CHEM 2017. [DOI: 10.1039/c7nj02106b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We developed an efficient and mild method for the preparation of boronic acid-functionalized magnetic nanoparticles (MNPs), and the selective separation of fructose from a sample solution was demonstrated for the first time.
Collapse
Affiliation(s)
- Lei Gu
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Yun Wang
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Juan Han
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Lei Wang
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Xu Tang
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Cheng Li
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Liang Ni
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- P. R. China
| |
Collapse
|
15
|
Li H, Zhang X, Zhang L, Wang X, Kong F, Fan D, Li L, Wang W. Preparation of a boronate affinity silica stationary phase with enhanced binding properties towards cis -diol compounds. J Chromatogr A 2016; 1473:90-98. [DOI: 10.1016/j.chroma.2016.10.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/29/2016] [Accepted: 10/19/2016] [Indexed: 01/11/2023]
|
16
|
Boonyasit Y, Laiwattanapaisal W, Chailapakul O, Emnéus J, Heiskanen AR. Boronate-Modified Interdigitated Electrode Array for Selective Impedance-Based Sensing of Glycated Hemoglobin. Anal Chem 2016; 88:9582-9589. [DOI: 10.1021/acs.analchem.6b02234] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Yuwadee Boonyasit
- Graduate
Program in Clinical Biochemistry and Molecular Medicine, Faculty of
Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Department
of Micro- and Nanotechnology, Technical University of Denmark, Kongens
Lyngby, 2800, Denmark
| | - Wanida Laiwattanapaisal
- Department
of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Orawon Chailapakul
- Electrochemistry
and Optical Spectroscopy Research Unit (EOSRU), Department of Chemistry,
Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jenny Emnéus
- Department
of Micro- and Nanotechnology, Technical University of Denmark, Kongens
Lyngby, 2800, Denmark
| | - Arto R. Heiskanen
- Department
of Micro- and Nanotechnology, Technical University of Denmark, Kongens
Lyngby, 2800, Denmark
- Department
of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
17
|
Wang C, Xu H, Wei Y. The preparation of high-capacity boronate affinity adsorbents by surface initiated reversible addition fragmentation chain transfer polymerization for the enrichment of ribonucleosides in serum. Anal Chim Acta 2016; 902:115-122. [DOI: 10.1016/j.aca.2015.11.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/06/2015] [Accepted: 11/06/2015] [Indexed: 11/30/2022]
|
18
|
Kara A, Demirbel E, Tekin N, Osman B, Beşirli N. Magnetic vinylphenyl boronic acid microparticles for Cr(VI) adsorption: kinetic, isotherm and thermodynamic studies. JOURNAL OF HAZARDOUS MATERIALS 2015; 286:612-623. [PMID: 25666882 DOI: 10.1016/j.jhazmat.2014.12.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 11/19/2014] [Accepted: 12/08/2014] [Indexed: 06/04/2023]
Abstract
Magnetic vinylphenyl boronic acid microparticles, poly(ethylene glycol dimethacrylate(EG)-vinylphenyl boronic acid(VPBA)) [m-poly(EG-VPBA)], produced by suspension polymerization and characterized, was found to be an efficient solid polymer for Cr(VI) adsorption. The m-poly(EG-VPBA) microparticles were prepared by copolymerizing of ethylene glycol dimethylacrylate (EG) with 4-vinyl phenyl boronic acid (VPBA). The m-poly(EG-VPBA) microparticles were characterized by N2 adsorption/desorption isotherms, electron spin resonance (ESR), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), elemental analysis, scanning electron microscope (SEM) and swelling studies. The m-poly(EG-VPBA) microparticles were used at adsorbent/Cr(VI) ion ratios. The influence of pH, Cr(VI) initial concentration, temperature of the removal process was investigated. The maximum removal of Cr(VI) was observed at pH 2. Langmuir isotherm and Dubinin-Radushkvich isotherm were found to better fit the experiment data rather than Fruendlich isotherm. The kinetics of the adsorption process of Cr(VI) on the m-poly(EG-VPBA) microparticles were investigated using the pseudo first-order, pseudo-second-order, Ritch-second-order and intraparticle diffusion models, results showed that the pseudo-second order equation model provided the best correlation with the experimental results. The thermodynamic parameters (free energy change, ΔG(0) enthalpy change, ΔH(0); and entropy change, ΔS(0)) for the adsorption have been evaluated.
Collapse
Affiliation(s)
- Ali Kara
- Uludag University, Faculty of Arts and Science, Department of Chemistry, 16059 Bursa, Turkey.
| | - Emel Demirbel
- Uludag University, Faculty of Arts and Science, Department of Chemistry, 16059 Bursa, Turkey
| | - Nalan Tekin
- Kocaeli University, Faculty of Arts and Science, Department of Chemistry, 41380 Kocaeli, Turkey
| | - Bilgen Osman
- Uludag University, Faculty of Arts and Science, Department of Chemistry, 16059 Bursa, Turkey
| | - Necati Beşirli
- Uludag University, Faculty of Arts and Science, Department of Chemistry, 16059 Bursa, Turkey
| |
Collapse
|
19
|
Jiang L, Chen Y, Luo Y, Tan Y, Ma M, Chen B, Xie Q, Luo X. Determination of catecholamines in urine using aminophenylboronic acid functionalized magnetic nanoparticles extraction followed by high-performance liquid chromatography and electrochemical detection. J Sep Sci 2015; 38:460-7. [DOI: 10.1002/jssc.201400920] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/08/2014] [Accepted: 11/18/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Liwei Jiang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China); Key Laboratory of Phytochemical R&D of Hunan Province; Hunan Normal University; Changsha PR China
| | - Yibang Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China); Key Laboratory of Phytochemical R&D of Hunan Province; Hunan Normal University; Changsha PR China
| | - Yanmei Luo
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China); Key Laboratory of Phytochemical R&D of Hunan Province; Hunan Normal University; Changsha PR China
| | - Yueming Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China); Key Laboratory of Phytochemical R&D of Hunan Province; Hunan Normal University; Changsha PR China
| | - Ming Ma
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China); Key Laboratory of Phytochemical R&D of Hunan Province; Hunan Normal University; Changsha PR China
| | - Bo Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China); Key Laboratory of Phytochemical R&D of Hunan Province; Hunan Normal University; Changsha PR China
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China); Key Laboratory of Phytochemical R&D of Hunan Province; Hunan Normal University; Changsha PR China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University; Nanchang PR China
| |
Collapse
|
20
|
Tural S, Tural B, Ece MŞ, Yetkin E, Özkan N. Kinetic approach for the purification of nucleotides with magnetic separation. J Sep Sci 2014; 37:3370-6. [PMID: 25199632 DOI: 10.1002/jssc.201400648] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/18/2014] [Accepted: 08/13/2014] [Indexed: 11/10/2022]
Abstract
The isolation of β-nicotinamide adenine dinucleotide is of great importance since it is widely used in different scientific and technologic fields such as biofuel cells, sensor technology, and hydrogen production. In order to isolate β-nicotinamide adenine dinucleotide, first 3-aminophenyboronic acid functionalized magnetic nanoparticles were prepared to serve as a magnetic solid support and subsequently they were used for reversible adsorption/desorption of β-nicotinamide adenine dinucleotide in a batch fashion. The loading capacity of the 3-aminophenyboronic acid functionalized nanoparticles for β-nicotinamide adenine dinucleotide adsorption was 13.0 μmol/g. Adsorption kinetic and isotherm studies showed that the adsorption process followed a pseudo-second-order kinetic model and the experimental data can be represented using Langmuir isotherm model. The 3-aminophenyboronic acid functionalized magnetic nanoparticles were proposed as an alternative support for the β-nicotinamide adenine dinucleotide purification. The results elucidated the significance of magnetic separation as a fast, relatively simple, and low-cost technique. Furthermore, the magnetic supports can be reused at least five times for purification processes.
Collapse
Affiliation(s)
- Servet Tural
- Department of Chemistry, Faculty of Education, Dicle University, Diyarbakir, Turkey
| | | | | | | | | |
Collapse
|
21
|
Facile preparation of boronic acid-functionalized magnetic nanoparticles with a high capacity and their use in the enrichment ofcis-diol-containing compounds from plasma. Biomed Chromatogr 2014; 29:312-20. [DOI: 10.1002/bmc.3277] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 05/11/2014] [Accepted: 05/24/2014] [Indexed: 01/30/2023]
|
22
|
|
23
|
Caramelo-Nunes C, Almeida P, Marcos J, Tomaz C. Aromatic ligands for plasmid deoxyribonucleic acid chromatographic analysis and purification: An overview. J Chromatogr A 2014; 1327:1-13. [DOI: 10.1016/j.chroma.2013.12.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 12/25/2022]
|
24
|
Khairy M, El-Safty SA. Selective encapsulation of hemoproteins from mammalian cells using mesoporous metal oxide nanoparticles. Colloids Surf B Biointerfaces 2013; 111:460-8. [DOI: 10.1016/j.colsurfb.2013.06.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 06/03/2013] [Accepted: 06/18/2013] [Indexed: 11/26/2022]
|
25
|
Ye F, Yang R, Hua X, Zhao W, Zhang W, Jin Z. Adsorption characteristics of stevioside and rebaudioside A from aqueous solutions on 3-aminophenylboronic acid-modified poly(divinylbenzene-co-acrylic acid). Sep Purif Technol 2013. [DOI: 10.1016/j.seppur.2013.07.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Agarwala A, Subramani T, Goldbourt A, Danovich D, Yerushalmi R. Facile Monolayer Formation on SiO2Surfaces via Organoboron Functionalities. Angew Chem Int Ed Engl 2013; 52:7415-8. [DOI: 10.1002/anie.201302655] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Indexed: 11/09/2022]
|
27
|
Agarwala A, Subramani T, Goldbourt A, Danovich D, Yerushalmi R. Facile Monolayer Formation on SiO2Surfaces via Organoboron Functionalities. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302655] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL. Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 2013; 113:1904-2074. [PMID: 23432378 DOI: 10.1021/cr300143v] [Citation(s) in RCA: 824] [Impact Index Per Article: 74.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kim E Sapsford
- Division of Biology, Department of Chemistry and Materials Science, Office of Science and Engineering Laboratories, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Bussamara R, Eberhardt D, Feil AF, Migowski P, Wender H, de Moraes DP, Machado G, Papaléo RM, Teixeira SR, Dupont J. Sputtering deposition of magnetic Ni nanoparticles directly onto an enzyme surface: a novel method to obtain a magnetic biocatalyst. Chem Commun (Camb) 2013; 49:1273-5. [DOI: 10.1039/c2cc38737a] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Siegel D. Applications of reversible covalent chemistry in analytical sample preparation. Analyst 2012; 137:5457-82. [PMID: 23013801 DOI: 10.1039/c2an35697j] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Reversible covalent chemistry (RCC) adds another dimension to commonly used sample preparation techniques like solid-phase extraction (SPE), solid-phase microextraction (SPME), molecular imprinted polymers (MIPs) or immuno-affinity cleanup (IAC): chemical selectivity. By selecting analytes according to their covalent reactivity, sample complexity can be reduced significantly, resulting in enhanced analytical performance for low-abundance target analytes. This review gives a comprehensive overview of the applications of RCC in analytical sample preparation. The major reactions covered include reversible boronic ester formation, thiol-disulfide exchange and reversible hydrazone formation, targeting analyte groups like diols (sugars, glycoproteins and glycopeptides, catechols), thiols (cysteinyl-proteins and cysteinyl-peptides) and carbonyls (carbonylated proteins, mycotoxins). Their applications range from low abundance proteomics to reversible protein/peptide labelling to antibody chromatography to quantitative and qualitative food analysis. In discussing the potential of RCC, a special focus is on the conditions and restrictions of the utilized reaction chemistry.
Collapse
Affiliation(s)
- David Siegel
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str 11, 12489 Berlin, Germany.
| |
Collapse
|
31
|
Khairy M, El-Safty SA, Ismael M. Mesoporous nanomagnet supercaptors for selective heme-proteins from human cells. Chem Commun (Camb) 2012; 48:10832-4. [DOI: 10.1039/c2cc35638d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Zhao YH, Shantz DF. Phenylboronic acid functionalized SBA-15 for sugar capture. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:14554-14562. [PMID: 22023050 DOI: 10.1021/la203121u] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The synthesis and characterization of organic-inorganic hybrid materials that selectively capture sugars from model biomass hydrolysis mixtures are reported. 3-Aminophenylboronic acid (PBA) groups that can reversibly form cyclic esters with 1,2-diols, and 1,3-diols including sugars are attached to mesoporous SBA-15 via different synthetic protocols. In the first route, a coupling agent is used to link PBA and SBA-15, while in the second route poly(acrylic acid) brushes are first grafted from the surface of SBA-15 by surface-initiated atom transfer radical polymerization and PBA is then immobilized. The changes in pore structure, porosity, and pore size due to the loading of organic content are measured by powder X-ray diffraction and nitrogen porosimetry. The increase in organic content after each synthesis step is monitored by thermal gravimetric analysis. Fourier transform infrared spectroscopy and elemental analysis are used to characterize the chemical compositions of the hybrid materials synthesized. D-(+)-Glucose and D-(+)-xylose, being the most commonly present sugars in biomass, are chosen to evaluate the sugar adsorption capacity of the hybrid materials. It is found that the sugar adsorption capacity is determined by the loading of boronic acid groups on the hybrid materials, and the hybrid material synthesized via route two is much better than that through route one for sugar adsorption. Mathematical modeling of the adsorption data indicates that the Langmuir model best describes the sugar adsorption behavior of the hybrid material synthesized through route one, while the Freundlich model fits the data most satisfactorily for the hybrid material prepared via route two. The adsorption kinetics, reusability, and selectivity toward some typical chemicals in cellulose acidic hydrolysis mixtures are also investigated.
Collapse
Affiliation(s)
- Yong-Hong Zhao
- Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, Texas 77843-3122, USA
| | | |
Collapse
|
33
|
Gan Q, Lu X, Yuan Y, Qian J, Zhou H, Lu X, Shi J, Liu C. A magnetic, reversible pH-responsive nanogated ensemble based on Fe3O4 nanoparticles-capped mesoporous silica. Biomaterials 2011; 32:1932-42. [DOI: 10.1016/j.biomaterials.2010.11.020] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 11/02/2010] [Indexed: 10/18/2022]
|
34
|
Pham TA, Kumar NA, Jeong YT. Facile preparation of boronic acid functionalized Fe-core/Au-shell magnetic nanoparticles for covalent immobilization of adenosine. Colloids Surf A Physicochem Eng Asp 2010. [DOI: 10.1016/j.colsurfa.2010.08.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|