1
|
Quek J, Vizetto-Duarte C, Teoh SH, Choo Y. Towards Stem Cell Therapy for Critical-Sized Segmental Bone Defects: Current Trends and Challenges on the Path to Clinical Translation. J Funct Biomater 2024; 15:145. [PMID: 38921519 PMCID: PMC11205181 DOI: 10.3390/jfb15060145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
The management and reconstruction of critical-sized segmental bone defects remain a major clinical challenge for orthopaedic clinicians and surgeons. In particular, regenerative medicine approaches that involve incorporating stem cells within tissue engineering scaffolds have great promise for fracture management. This narrative review focuses on the primary components of bone tissue engineering-stem cells, scaffolds, the microenvironment, and vascularisation-addressing current advances and translational and regulatory challenges in the current landscape of stem cell therapy for critical-sized bone defects. To comprehensively explore this research area and offer insights for future treatment options in orthopaedic surgery, we have examined the latest developments and advancements in bone tissue engineering, focusing on those of clinical relevance in recent years. Finally, we present a forward-looking perspective on using stem cells in bone tissue engineering for critical-sized segmental bone defects.
Collapse
Affiliation(s)
- Jolene Quek
- Developmental Biology and Regenerative Medicine Programme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (C.V.-D.)
| | - Catarina Vizetto-Duarte
- Developmental Biology and Regenerative Medicine Programme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (C.V.-D.)
| | - Swee Hin Teoh
- Centre for Advanced Medical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410012, China
| | - Yen Choo
- Developmental Biology and Regenerative Medicine Programme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (C.V.-D.)
| |
Collapse
|
2
|
A Novel Window into Angiogenesis-Intravital Microscopy in the AV-Loop-Model. Cells 2023; 12:cells12020261. [PMID: 36672196 PMCID: PMC9857023 DOI: 10.3390/cells12020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Due to the limitations of current in vivo experimental designs, our comprehensive knowledge of vascular development and its implications for the development of large-scale engineered tissue constructs is very limited. Therefore, the purpose of this study was to develop unique in vivo imaging chambers that allow the live visualization of cellular processes in the arteriovenous (AV) loop model in rats. We have developed two different types of chambers. Chamber A is installed in the skin using the purse sting fixing method, while chamber B is installed subcutaneously under the skin. Both chambers are filled with modified gelatin hydrogel as a matrix. Intravital microscopy (IVM) was performed after the injection of fluorescein isothiocyanate (FITC)-labeled dextran and rhodamine 6G dye. The AV loop was functional for two weeks in chamber A and allowed visualization of the leukocyte trafficking. In chamber B, microvascular development in the AV loop could be examined for 21 days. Quantification of the microvascular outgrowth was performed using Fiji-ImageJ. Overall, by combining these two IVM chambers, we can comprehensively understand vascular development in the AV loop tissue engineering model¯.
Collapse
|
3
|
Weng Y, Wang Z, Sun J, Han L, Li X, Wu B, Dong Q, Liu Y. Engineering of axially vascularized bone tissue using natural coral scaffold and osteogenic bone marrow mesenchymal stem cell sheets. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2021; 122:397-404. [PMID: 33529842 DOI: 10.1016/j.jormas.2021.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/19/2021] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Blood supply remains one of the obstacles to large bone tissue engineering. This study aimed to generate vascularized bone tissue by inducing axial vascularization into a construct combining natural coral scaffold and a bone marrow mesenchymal stem cells (BMSCs) sheet. MATERIAL AND METHODS Isolated BMSCs were cultured to form an osteogenic cell sheet using a continuous culture method. Natural coral scaffolds were prepared into customized shape with a cylinder of 20 mm length, 8 mm in outer diameter and 5 mm in inner diameter. Then, the freed superficial inferior epigastric vessel of rabbits was first wrapped with a cell sheet, and then inserted into the central passage of the scaffold, after being wrapped with another cell sheet, the complexes were implanted subcutaneously into a rabbit groin area. In contrast, the sheet-scaffold construct that implanted into groin subcutaneous area of the other side of the same rabbit with the distal end of the blood vessel was ligated, which was considered as control. New bone and vascularization formation were evaluated at 12 weeks postoperatively. RESULTS The volume of new bone formation and amount of capillary infiltration in the vascular circulation group were significantly greater than that in the vascular ligation group, which suggested that insertion of axial vessels could significantly promote angiogenesis and osteogenesis of the tissue-engineered bone. CONCLUSIONS These findings indicate that inserting an arteriovenous bundle into the constructs of mesenchymal stem cell sheet and coral has great potential for clinical applications to repair large bone defects.
Collapse
Affiliation(s)
- Yanming Weng
- Department of Stomatology, General Hospital of Central Theater of PLA, Wuhan 430070, China
| | - Zhifa Wang
- School of Stomatology, Southern Medical University, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Stomatology, General Hospital of Southern Theater of PLA, Guangzhou 510010, China
| | - Jianwei Sun
- School of Stomatology, Guangzhou Special Service Recuperation Center of PLA Rocket Force, Guangzhou 510010, China
| | - Leng Han
- Department of Pathology, General Hospital of Southern Theater of PLA, Guangzhou 510010, China
| | - Xiao Li
- Department of Stomatology, General Hospital of Southern Theater of PLA, Guangzhou 510010, China
| | - Buling Wu
- School of Stomatology, Southern Medical University, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qingshan Dong
- Department of Stomatology, General Hospital of Central Theater of PLA, Wuhan 430070, China
| | - Yanpu Liu
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
4
|
Später T, Ampofo E, Menger MD, Laschke MW. Combining Vascularization Strategies in Tissue Engineering: The Faster Road to Success? Front Bioeng Biotechnol 2020; 8:592095. [PMID: 33364230 PMCID: PMC7752995 DOI: 10.3389/fbioe.2020.592095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/20/2020] [Indexed: 01/08/2023] Open
Affiliation(s)
- Thomas Später
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| |
Collapse
|
5
|
Zhou M, Yang X, Li S, Kapat K, Guo K, Perera FH, Qian L, Miranda P, Che Y. Bioinspired channeled, rhBMP-2-coated β-TCP scaffolds with embedded autologous vascular bundles for increased vascularization and osteogenesis of prefabricated tissue-engineered bone. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111389. [PMID: 33254995 DOI: 10.1016/j.msec.2020.111389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 08/05/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022]
Abstract
To date, the recovery of large bone defects is a major clinical challenge despite the availability of numerous therapeutic procedures including tissue engineering. Although there is a pressing need for large tissue-engineered constructs, inadequate vascularization remains an insurmountable barrier for successful clinical translation. Considering that vascularization is a prerequisite for osteogenesis, we proposed an advanced design of large customized porous β-tricalcium phosphate (TCP) scaffolds with biomimetic vascular hierarchy which upon embedding of femoral axial vascular bundles significantly improved overall vascularity of the scaffolds. Such scaffolds also promoted osteogenesis when they were coated with recombinant bone morphogenetic protein-2 (rhBMP-2). Compared to the conventional TCP scaffolds (S), the newly designed multi-channeled β-TCP (CS) scaffolds led to adequate blood vessels and bone-like tissue formation throughout their porous hierarchy within 4 weeks of implantation. Especially, the scaffolds coated with rhBMP-2 and embedded with flow-through vascular bundle (FVB) were able to form more uniform vascularized bone within 2 weeks post-implantation. Based on the clinical, radiographic, angiographic and histological assessments, the newly designed multi-channeled scaffolds were found to be promising for successful recovery of large bone defects.
Collapse
Affiliation(s)
- Miao Zhou
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China.
| | - Xiaobin Yang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Shuyi Li
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Kausik Kapat
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Kai Guo
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Fidel Hugo Perera
- Departamento de Ingeniería Mecánica, Energética y de los Materiales, Universidad de Extremadura, Escuela de Ingenierías Industriales, Avda. de Elvas s/n, 06006 Badajoz, Spain
| | - Li Qian
- Hangzhou Jiu Yuan Gene Engineering Co., Ltd., Hangzhou 3100018, China
| | - Pedro Miranda
- Departamento de Ingeniería Mecánica, Energética y de los Materiales, Universidad de Extremadura, Escuela de Ingenierías Industriales, Avda. de Elvas s/n, 06006 Badajoz, Spain.
| | - Yuejuan Che
- Department of Anaesthesia, Sun Yet-sen Memorial Hospital, Sun Yet-sen University, Yanjiang Road 120, Guangzhou 510120, China.
| |
Collapse
|
6
|
Sparks DS, Savi FM, Saifzadeh S, Schuetz MA, Wagels M, Hutmacher DW. Convergence of Scaffold-Guided Bone Reconstruction and Surgical Vascularization Strategies-A Quest for Regenerative Matching Axial Vascularization. Front Bioeng Biotechnol 2020; 7:448. [PMID: 31998712 PMCID: PMC6967032 DOI: 10.3389/fbioe.2019.00448] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
The prevalent challenge facing tissue engineering today is the lack of adequate vascularization to support the growth, function, and viability of tissue engineered constructs (TECs) that require blood vessel supply. The research and clinical community rely on the increasing knowledge of angiogenic and vasculogenic processes to stimulate a clinically-relevant vascular network formation within TECs. The regenerative matching axial vascularization approach presented in this manuscript incorporates the advantages of flap-based techniques for neo-vascularization yet also harnesses the in vivo bioreactor principle in a more directed "like for like" approach to further assist regeneration of the specific tissue type that is lost, such as a corticoperiosteal flap in critical sized bone defect reconstruction.
Collapse
Affiliation(s)
- David S Sparks
- Centre for Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Department of Plastic & Reconstructive Surgery, Princess Alexandra Hospital, Woolloongabba, QLD, Australia.,Southside Clinical Division, School of Medicine, University of Queensland, Woolloongabba, QLD, Australia
| | - Flavia Medeiros Savi
- Centre for Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Siamak Saifzadeh
- Centre for Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Medical Engineering Research Facility, Queensland University of Technology, Chermside, QLD, Australia
| | - Michael A Schuetz
- Department of Orthopaedic Surgery, Royal Brisbane Hospital, Herston, QLD, Australia.,Jamieson Trauma Institute, Royal Brisbane Hospital, Herston, QLD, Australia
| | - Michael Wagels
- Department of Plastic & Reconstructive Surgery, Princess Alexandra Hospital, Woolloongabba, QLD, Australia.,Southside Clinical Division, School of Medicine, University of Queensland, Woolloongabba, QLD, Australia.,Australian Centre for Complex Integrated Surgical Solutions, Woolloongabba, QLD, Australia
| | - Dietmar W Hutmacher
- Centre for Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,ARC Centre for Additive Bio-Manufacturing, Queensland University of Technology, Kelvin Grove, QLD, Australia
| |
Collapse
|
7
|
Wong R, Donno R, Leon-Valdivieso CY, Roostalu U, Derby B, Tirelli N, Wong JK. Angiogenesis and tissue formation driven by an arteriovenous loop in the mouse. Sci Rep 2019; 9:10478. [PMID: 31324837 PMCID: PMC6642172 DOI: 10.1038/s41598-019-46571-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/19/2019] [Indexed: 01/09/2023] Open
Abstract
The rapid vascularisation of biomaterials and artificial tissues is a key determinant for their in vivo viability and ultimately for their integration in a host; therefore promoting angiogenesis and maintaining the newly formed vascular beds has become a major goal of tissue engineering. The arteriovenous loop (AVL) has been an extensively studied platform which integrates microsurgery with cells scaffolds and growth factors to form neotissues. Most AVL studies to date are limited to larger animal models, which are surgically easier to perform, but have inherent limits for the understanding and interrogation of the underlying in vivo mechanisms due the paucity of transgenic models. Here, we demonstrate for the first time in a mouse model the utility of the AVL in the de novo production of vascularized tissue. We also present the combined use of the model with 3D printed chambers, which allow us to dictate size and shape of the tissues formed. This novel platform will allow for an understanding of the fundamental mechanisms involved in tissue generation de novo.
Collapse
Affiliation(s)
- Richard Wong
- Division of Cell Matrix and Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK
| | - Roberto Donno
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy.
| | - Christopher Y Leon-Valdivieso
- School of Materials, University of Manchester, Manchester, M13 9PL, UK.,Roberval Laboratory for Mechanics, Sorbonne Universités, Université de Technologie de Compiègne, Rue du Dr. Schweitzer, 60200, Compiègne, France
| | - Urmas Roostalu
- Division of Cell Matrix and Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK.,Gubra, Horsholm, Denmark
| | - Brian Derby
- School of Materials, University of Manchester, Manchester, M13 9PL, UK.,Roberval Laboratory for Mechanics, Sorbonne Universités, Université de Technologie de Compiègne, Rue du Dr. Schweitzer, 60200, Compiègne, France
| | - Nicola Tirelli
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy.,Division of Pharmacy & Optometry, School of Health Science, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Jason K Wong
- Division of Cell Matrix and Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK. .,Department of Burns and Plastic Surgery, Manchester University Foundation Trust, Manchester Academic Health Science Centre, Wythenshawe Hospital, Southmoor Road, Manchester, M23 9LT, UK.
| |
Collapse
|
8
|
Kuss MA, Wu S, Wang Y, Untrauer JB, Li W, Lim JY, Duan B. Prevascularization of 3D printed bone scaffolds by bioactive hydrogels and cell co-culture. J Biomed Mater Res B Appl Biomater 2017; 106:1788-1798. [PMID: 28901689 DOI: 10.1002/jbm.b.33994] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/25/2017] [Accepted: 08/28/2017] [Indexed: 01/11/2023]
Abstract
Vascularization is a fundamental prerequisite for large bone construct development and remains one of the main challenges of bone tissue engineering. Our current study presents the combination of 3D printing technique with a hydrogel-based prevascularization strategy to generate prevascularized bone constructs. Human adipose derived mesenchymal stem cells (ADMSC) and human umbilical vein endothelial cells (HUVEC) were encapsulated within our bioactive hydrogels, and the effects of culture conditions on in vitro vascularization were determined. We further generated composite constructs by forming 3D printed polycaprolactone/hydroxyapatite scaffolds coated with cell-laden hydrogels and determined how the co-culture affected vascularization and osteogenesis. It was demonstrated that 3D co-cultured ADMSC-HUVEC generated capillary-like networks within the porous 3D printed scaffold. The co-culture systems promoted in vitro vascularization, but had no significant effects on osteogenesis. The prevascularized constructs were subcutaneously implanted into nude mice to evaluate the in vivo vascularization capacity and the functionality of engineered vessels. The hydrogel systems facilitated microvessel and lumen formation and promoted anastomosis of vascular networks of human origin with host murine vasculature. These findings demonstrate the potential of prevascularized 3D printed scaffolds with anatomical shape for the healing of larger bone defects. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1788-1798, 2018.
Collapse
Affiliation(s)
- Mitchell A Kuss
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska.,Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Shaohua Wu
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska.,Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Ying Wang
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska.,Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jason B Untrauer
- Division of Oral and Maxillofacial Surgery, Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Wenlong Li
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Jung Yul Lim
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Bin Duan
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska.,Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
9
|
Kuss MA, Harms R, Wu S, Wang Y, Untrauer JB, Carlson MA, Duan B. Short-term hypoxic preconditioning promotes prevascularization in 3D bioprinted bone constructs with stromal vascular fraction derived cells. RSC Adv 2017; 7:29312-29320. [PMID: 28670447 PMCID: PMC5472052 DOI: 10.1039/c7ra04372d] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/26/2017] [Indexed: 12/13/2022] Open
Abstract
Reconstruction of complex, craniofacial bone defects often requires autogenous vascularized bone grafts, and still remains a challenge today. In order to address this issue, we isolated the stromal vascular fraction (SVF) from adipose tissues and maintained the phenotypes and the growth of endothelial lineage cells within SVF derived cells (SVFC) by incorporating an endothelial cell medium. We 3D bioprinted SVFC within our hydrogel bioinks and conditioned the constructs in either normoxia or hypoxia. We found that short-term hypoxic conditioning promoted vascularization-related gene expression, whereas long-term hypoxia impaired cell viability and vascularization. 3D bioprinted bone constructs composed of polycaprolactone/hydroxyapatite (PCL/HAp) and SVFC-laden hydrogel bioinks were then implanted into athymic mice, after conditioning in normoxic or short-term hypoxic environments, in order to determine the in vitro and in vivo vascularization and osteogenic differentiation of the constructs. Short-term hypoxic conditioning promoted microvessel formation in vitro and in vivo and promoted integration with existing host vasculature, but did not affect osteogenic differentiation of SVFC. These findings demonstrate the benefit of short-term hypoxia and the potential for utilization of SVFC and 3D bioprinting for generating prevascularized 3D bioprinted bone constructs. Furthermore, the ability to custom design complex anatomical shapes has promising applications for the regeneration of both large and small craniofacial bone defects.
Collapse
Affiliation(s)
- Mitchell A Kuss
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA. ; Tel: +1 402 559 9637
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Robert Harms
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA. ; Tel: +1 402 559 9637
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shaohua Wu
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA. ; Tel: +1 402 559 9637
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ying Wang
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA. ; Tel: +1 402 559 9637
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jason B Untrauer
- Division of Oral & Maxillofacial Surgery, Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mark A Carlson
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA. ; Tel: +1 402 559 9637
- Department of Surgery, University of Nebraska Medical Center and the VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA. ; Tel: +1 402 559 9637
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
10
|
Contrast-Enhanced Microtomographic Characterisation of Vessels in Native Bone and Engineered Vascularised Grafts Using Ink-Gelatin Perfusion and Phosphotungstic Acid. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:4035160. [PMID: 29097920 PMCID: PMC5612680 DOI: 10.1155/2017/4035160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 03/18/2017] [Accepted: 04/02/2017] [Indexed: 11/17/2022]
Abstract
Objectives Bone ischemia and necrosis are challenging to treat, requiring investigation of native and engineered bone revascularisation processes through advanced imaging techniques. This study demonstrates an experimental two-step method for precise bone and vessel analysis in native bones or vascularised bone grafts using X-ray microtomography (μCT), without interfering with further histological processing. Methods Distally ligated epigastric arteries or veins of 6 nude rats were inserted in central channels of porous hydroxyapatite cylinders and these pedicled grafts were implanted subcutaneously. One week later, the rats were perfused with ink-gelatin and euthanised and the femurs, tibias, and grafts were explanted. Samples were scanned using μCT, decalcified, incubated with phosphotungstic acid (PTA) for contrast enhancement, rescanned, and processed histologically. Results Contrast-enhanced μCT displayed the course and branching of native bone vessels. Histologically, both central (-17%) and epiphyseal vessels (-58%) appeared smaller than in μCT scans. Hydroxyapatite cylinders were thoroughly vascularised but did not display bone formation. Grafts with a central artery had more (+58%) and smaller (-52%) vessel branches compared to grafts with a vein. Conclusions We present a relatively inexpensive and easy-to-perform two-step method to analyse bone and vessels by μCT, suitable to assess a variety of bone-regenerative strategies.
Collapse
|
11
|
Chen Z, Song Y, Zhang J, Liu W, Cui J, Li H, Chen F. Laminated electrospun nHA/PHB-composite scaffolds mimicking bone extracellular matrix for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 72:341-351. [PMID: 28024596 DOI: 10.1016/j.msec.2016.11.070] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/08/2016] [Accepted: 11/21/2016] [Indexed: 01/20/2023]
Abstract
Electrospinning is an effective means to generate nano- to micro-scale polymer fibers resembling native extracellular matrix for tissue engineering. However, a major problem of electrospun materials is that limited pore size and porosity may prevent adequate cellular infiltration and tissue ingrowth. In this study, we first prepared thin layers of hydroxyapatite nanoparticle (nHA)/poly-hydroxybutyrate (PHB) via electrospinning. We then laminated the nHA/PHB thin layers to obtain a scaffold for cell seeding and bone tissue engineering. The results demonstrated that the laminated scaffold possessed optimized cell-loading capacity. Bone marrow mesenchymal stem cells (MSCs) exhibited better adherence, proliferation and osteogenic phenotypes on nHA/PHB scaffolds than on PHB scaffolds. Thereafter, we seeded MSCs onto nHA/PHB scaffolds to fabricate bone grafts. Histological observation showed osteoid tissue formation throughout the scaffold, with most of the scaffold absorbed in the specimens 2months after implantation, and blood vessels ingrowth into the graft could be observed in the graft. We concluded that electrospun and laminated nanoscaled biocomposite scaffolds hold great therapeutic potential for bone regeneration.
Collapse
Affiliation(s)
- Zhuoyue Chen
- Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province 710069, PR China; Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province 710069, PR China
| | - Yue Song
- Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province 710069, PR China
| | - Jing Zhang
- Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province 710069, PR China; Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, PR China
| | - Wei Liu
- Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province 710069, PR China
| | - Jihong Cui
- Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province 710069, PR China; Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, PR China.
| | - Hongmin Li
- Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province 710069, PR China; Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, PR China
| | - Fulin Chen
- Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province 710069, PR China; Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, PR China
| |
Collapse
|
12
|
Weigand A, Beier JP, Arkudas A, Al-Abboodi M, Polykandriotis E, Horch RE, Boos AM. The Arteriovenous (AV) Loop in a Small Animal Model to Study Angiogenesis and Vascularized Tissue Engineering. J Vis Exp 2016. [PMID: 27842348 DOI: 10.3791/54676] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A functional blood vessel network is a prerequisite for the survival and growth of almost all tissues and organs in the human body. Moreover, in pathological situations such as cancer, vascularization plays a leading role in disease progression. Consequently, there is a strong need for a standardized and well-characterized in vivo model in order to elucidate the mechanisms of neovascularization and develop different vascularization approaches for tissue engineering and regenerative medicine. We describe a microsurgical approach for a small animal model for induction of a vascular axis consisting of a vein and artery that are anastomosed to an arteriovenous (AV) loop. The AV loop is transferred to an enclosed implantation chamber to create an isolated microenvironment in vivo, which is connected to the living organism only by means of the vascular axis. Using 3D imaging (MRI, micro-CT) and immunohistology, the growing vasculature can be visualized over time. By implanting different cells, growth factors and matrices, their function in blood vessel network formation can be analyzed without any disturbing influences from the surroundings in a well controllable environment. In addition to angiogenesis and antiangiogenesis studies, the AV loop model is also perfectly suited for engineering vascularized tissues. After a certain prevascularization time, the generated tissues can be transplanted into the defect site and microsurgically connected to the local vessels, thereby ensuring immediate blood supply and integration of the engineered tissue. By varying the matrices, cells, growth factors and chamber architecture, it is possible to generate various tissues, which can then be tailored to the individual patient's needs.
Collapse
Affiliation(s)
- Annika Weigand
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU);
| | - Justus P Beier
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU)
| | - Andreas Arkudas
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU)
| | - Majida Al-Abboodi
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU); Genetic Engineering and Biotechnology Institute for Postgraduate Studies, Baghdad University
| | | | - Raymund E Horch
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU)
| | - Anja M Boos
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU)
| |
Collapse
|
13
|
Huang RL, Kobayashi E, Liu K, Li Q. Bone Graft Prefabrication Following the In Vivo Bioreactor Principle. EBioMedicine 2016; 12:43-54. [PMID: 27693103 PMCID: PMC5078640 DOI: 10.1016/j.ebiom.2016.09.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 08/11/2016] [Accepted: 09/16/2016] [Indexed: 01/31/2023] Open
Abstract
Large bone defect treatment represents a great challenge due to the difficulty of functional and esthetic reconstruction. Tissue-engineered bone grafts created by in vitro manipulation of bioscaffolds, seed cells, and growth factors have been considered potential treatments for bone defect reconstruction. However, a significant gap remains between experimental successes and clinical translation. An emerging strategy for bridging this gap is using the in vivo bioreactor principle and flap prefabrication techniques. This principle focuses on using the body as a bioreactor to cultivate the traditional triad (bioscaffolds, seed cells, and growth factors) and leveraging the body's self-regenerative capacity to regenerate new tissue. Additionally, flap prefabrication techniques allow the regenerated bone grafts to be transferred as prefabricated bone flaps for bone defect reconstruction. Such a strategy has been used successfully for reconstructing critical-sized bone defects in animal models and humans. Here, we highlight this concept and provide some perspective on how to translate current knowledge into clinical practice. The in vivo bioreactor principle and flap prefabrication technique is a promising strategy for bone defect reconstruction. The in vivo bioreactor principle focuses on using the body’s self-regenerative capacity to regenerate new tissue. This strategy has been successfully used to reconstruct critical-sized bone defects in humans.
Collapse
Affiliation(s)
- Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Eiji Kobayashi
- Department of Organ Fabrication, Keio University School of Medicine, Tokyo, Japan
| | - Kai Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China.
| |
Collapse
|
14
|
Chen Z, Wei J, Zhu J, Liu W, Cui J, Li H, Chen F. Chm-1 gene-modified bone marrow mesenchymal stem cells maintain the chondrogenic phenotype of tissue-engineered cartilage. Stem Cell Res Ther 2016; 7:70. [PMID: 27150539 PMCID: PMC4858869 DOI: 10.1186/s13287-016-0328-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/01/2016] [Accepted: 04/18/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Marrow mesenchymal stem cells (MSCs) can differentiate into specific phenotypes, including chondrocytes, and have been widely used for cartilage tissue engineering. However, cartilage grafts from MSCs exhibit phenotypic alternations after implantation, including matrix calcification and vascular ingrowth. METHODS We compared chondromodulin-1 (Chm-1) expression between chondrocytes and MSCs. We found that chondrocytes expressed a high level of Chm-1. We then adenovirally transduced MSCs with Chm-1 and applied modified cells to engineer cartilage in vivo. RESULTS A gross inspection and histological observation indicated that the chondrogenic phenotype of the tissue-engineered cartilage graft was well maintained, and the stable expression of Chm-1 was detected by immunohistological staining in the cartilage graft derived from the Chm-1 gene-modified MSCs. CONCLUSIONS Our findings defined an essential role for Chm-1 in maintaining chondrogenic phenotype and demonstrated that Chm-1 gene-modified MSCs may be used in cartilage tissue engineering.
Collapse
Affiliation(s)
- Zhuoyue Chen
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China.,Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China
| | - Jing Wei
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China
| | - Jun Zhu
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China
| | - Wei Liu
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China
| | - Jihong Cui
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China.,Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China
| | - Hongmin Li
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China.,Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China
| | - Fulin Chen
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China. .,Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China.
| |
Collapse
|