1
|
Ma W, Zhang S, Xie C, Wan X, Li X, Chen K, Zhao G. Preparation of High Mechanical Strength Chitosan Nanofiber/NanoSiO 2/PVA Composite Scaffolds for Bone Tissue Engineering Using Sol-Gel Method. Polymers (Basel) 2022; 14:polym14102083. [PMID: 35631965 PMCID: PMC9147700 DOI: 10.3390/polym14102083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/02/2022] [Accepted: 05/09/2022] [Indexed: 12/20/2022] Open
Abstract
The majority of chitosan-based bone tissue engineering (BTE) scaffolds have the problem of poor mechanical properties. However, modifying chitosan with conventional silane coupling agents to improve the mechanical properties of scaffolds will introduce additional complications, including cytotoxicity and poor biocompatibility. In this study, two types of organic−inorganic composite scaffolds (F-A-T0/T3/T5 and F-B-T5-P0/P0.5/P1.5/P2.5) were prepared using chitosan nanofibers (CSNF) prepared by the beating-homogenization method, combined with the sol−gel method, and further introduced polyvinyl alcohol (PVA). The F-A-T3 and F-B-T5-P1.5 exhibited interconnected pore and surface nanofibers structures, high porosity (>70%), outstanding swelling properties, and a controllable degradation rate. The Young’s modulus of TEOS: 5.0% (w/w), PVA: 1.5% (w/w) chitosan fiber scaffold is 8.53 ± 0.43 MPa in dry conditions, and 237.78 ± 8.86 kPa in wet conditions, which is four times that of F-A-T5 and twice that of F-B-T5-P0. Additionally, cell (MC3T3-E1) experiments confirmed that the two composite scaffolds had great cytocompatibility and were predicted to be used in the future in the field of BTE scaffolds.
Collapse
Affiliation(s)
- Wei Ma
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China; (W.M.); (S.Z.); (C.X.); (X.W.)
| | - Sihan Zhang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China; (W.M.); (S.Z.); (C.X.); (X.W.)
| | - Chong Xie
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China; (W.M.); (S.Z.); (C.X.); (X.W.)
| | - Xing Wan
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China; (W.M.); (S.Z.); (C.X.); (X.W.)
| | - Xiaofeng Li
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China; (W.M.); (S.Z.); (C.X.); (X.W.)
- Correspondence: (X.L.); (K.C.); (G.Z.); Tel.: +86-20-22236819 (X.L.); +86-20-87111770 (K.C.); +86-20-87111770 (G.Z.)
| | - Kebing Chen
- Department of Spine Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, 26 Erheng Road, Yuan Village, Guangzhou, 510655, China
- Correspondence: (X.L.); (K.C.); (G.Z.); Tel.: +86-20-22236819 (X.L.); +86-20-87111770 (K.C.); +86-20-87111770 (G.Z.)
| | - Guanglei Zhao
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China; (W.M.); (S.Z.); (C.X.); (X.W.)
- Correspondence: (X.L.); (K.C.); (G.Z.); Tel.: +86-20-22236819 (X.L.); +86-20-87111770 (K.C.); +86-20-87111770 (G.Z.)
| |
Collapse
|
2
|
Multifunctional polyethylene imine hybrids decorated by silica bioactive glass with enhanced mechanical properties, antibacterial, and osteogenesis for bone repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112534. [PMID: 34857311 DOI: 10.1016/j.msec.2021.112534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/17/2021] [Accepted: 11/01/2021] [Indexed: 11/22/2022]
Abstract
Inorganic/organic hybrids and bioactive glasses demonstrate promising potential as bone substitute biomaterials. A sol-gel hybrid consisting of silica bioactive glass and biodegradable polymer can combine the high bioactivity of a glass with the toughness of a polymer. In this study, multifunctional hybrids with a combination of organic-inorganic hybrid structure class II consisting of polyethyleneimine (PEI) generation 4 (G4) and bioactive glass with enhanced mechanical properties, mineralization, antibacterial, and osteogenesis activities were synthesized by the sol-gel method. Glycidoxypropyl) trimethoxysilane (GPTMS) with different concentrations was used as a covalent bonding agent between PEI polymer and bioactive glass. The effect of GPTMS content was assessed in the presence and absence of calcium in the hybrid structures in terms of morphology, wettability, mechanical properties, antibacterial activity, cell viability, and in vitro osteogenic differentiation properties. By increasing the amount of GPTMS, the compressive strength increased from 1.95 MPa to 2.34 MPa, which was comparable to human trabecular bone. All the hybrids presented antibacterial activity against Staphylococcus aureus, forming an inhibition zone of 13-16 mm. An increase in cell viability of 82.22% in PSCaG90 was obtained after 1 day of MG-63 cell culture. Alkaline phosphatase expression and mineralization of MG-63 cells increased in the PSCaG90 hybrid in the absence of an osteogenic medium compared to PSG60 and PSG90. The PSCaG90 hybrid indicated considerable in vitro osteogenic capacity in the absence of a differentiation medium, expressing high levels of bone-specific proteins including collagen I (COL1A1), Runt-related transcription factor 2 (RUNX2), osteopontin (OPN), and osteocalcin (OCN), compared to calcium-free hybrids. Overall, our results suggest that the presence of calcium in the PSCaG90 leads to a significant increase in osteogenic differentiation of MG-63 cells even in the absence of differentiation medium, which suggests these hybrid structures with multifunctional properties as promising candidates for bone repair.
Collapse
|
3
|
Demeyer S, Athipornchai A, Pabunrueang P, Trakulsujaritchok T. Development of mangiferin loaded chitosan-silica hybrid scaffolds: Physicochemical and bioactivity characterization. Carbohydr Polym 2021; 261:117905. [PMID: 33766383 DOI: 10.1016/j.carbpol.2021.117905] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/12/2021] [Accepted: 03/03/2021] [Indexed: 11/25/2022]
Abstract
Development of hybrid materials with molecular structure of organic-inorganic co-network is a promising method to enhance the stability and mechanical properties of biopolymers. Chitosan-silica hybrid nanocomposite scaffolds loaded with mangiferin, a plant-derived active compound possessing several bioactivities, were fabricated using the sol-gel synthesis and the freeze-drying processes. Investigation on the physicochemical and mechanical properties of the fabricated scaffolds showed that their properties can be improved and tailored by the formation of 3-dimensional crosslinked network and the addition of ZnO nanoparticles. The scaffolds possessed porosity, fluid uptake, morphology, thermal properties and mechanical strength suitable for bone tissue engineering application. Investigation on the biomineralization and cell viability indicated that the inclusion of bioactive mangiferin further promote potential use of the hybrid nanocomposite scaffolds in guided bone regeneration application.
Collapse
Affiliation(s)
- Salita Demeyer
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi, 20131, Thailand.
| | - Anan Athipornchai
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi, 20131, Thailand.
| | - Pariya Pabunrueang
- Department of Microbiology, Faculty of Science, Burapha University, Chonburi, 20131, Thailand.
| | - Thanida Trakulsujaritchok
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi, 20131, Thailand.
| |
Collapse
|
4
|
Aslankoohi N, Mondal D, Rizkalla AS, Mequanint K. Bone Repair and Regenerative Biomaterials: Towards Recapitulating the Microenvironment. Polymers (Basel) 2019; 11:E1437. [PMID: 31480693 PMCID: PMC6780693 DOI: 10.3390/polym11091437] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/24/2019] [Accepted: 08/25/2019] [Indexed: 02/07/2023] Open
Abstract
Biomaterials and tissue engineering scaffolds play a central role to repair bone defects. Although ceramic derivatives have been historically used to repair bone, hybrid materials have emerged as viable alternatives. The rationale for hybrid bone biomaterials is to recapitulate the native bone composition to which these materials are intended to replace. In addition to the mechanical and dimensional stability, bone repair scaffolds are needed to provide suitable microenvironments for cells. Therefore, scaffolds serve more than a mere structural template suggesting a need for better and interactive biomaterials. In this review article, we aim to provide a summary of the current materials used in bone tissue engineering. Due to the ever-increasing scientific publications on this topic, this review cannot be exhaustive; however, we attempted to provide readers with the latest advance without being redundant. Furthermore, every attempt is made to ensure that seminal works and significant research findings are included, with minimal bias. After a concise review of crystalline calcium phosphates and non-crystalline bioactive glasses, the remaining sections of the manuscript are focused on organic-inorganic hybrid materials.
Collapse
Affiliation(s)
- Neda Aslankoohi
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada.
| | - Dibakar Mondal
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada.
| | - Amin S Rizkalla
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada.
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada.
- Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5B9, Canada.
| | - Kibret Mequanint
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada.
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada.
| |
Collapse
|
5
|
Cao M, Zhou Y, Mao J, Wei P, Chen D, Wang R, Cai Q, Yang X. Promoting osteogenic differentiation of BMSCs via mineralization of polylactide/gelatin composite fibers in cell culture medium. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:862-873. [PMID: 30948124 DOI: 10.1016/j.msec.2019.02.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 07/16/2018] [Accepted: 02/20/2019] [Indexed: 12/31/2022]
Abstract
Mineralization capability is an important issue in developing bone repairing biomaterials, while it is not quite clear how this feature would act in the presence of cells and influence cell osteogenic differentiation without adding extra osteoinductive factors such as β‑sodium glycerophosphate and dexamethasone. Poly(l‑lactide) (PLLA) and gelatin composite fibers (PG, 1:1 in weight) were electrospun, treated with CaCl2 solution (PG-Ca), and used for mineralization studies by using cell culture media (αMEM, and αMEM + serum). Bone mesenchymal stromal cells (BMSCs) were then seeded and cultured on both PG and PG-Ca fibrous mats for 28 days by only using αMEM + serum. Interestingly, mineral depositions on both PG and PG-Ca fibers were detected in the environment of αMEM or αMEM + serum, in which, PG-Ca fibers demonstrated stronger ability in inducing hydroxyapatite formation than PG fibers, especially in the presence of fetal bovine serum. When BMSCs were cultured on the two kinds of fibrous mats, apatite depositions were still clearly detected, while the depositing amounts decreased in comparison with corresponding cell-free cases. It was ascribed to the consumption of ions by the continuously proliferating BMSCs, whose osteogenic differentiation was significantly promoted even without extra osteoinductive factors, especially on PG-Ca fibrous mats, in comparison with the control group. Therefore, it was confirmed the capability of scaffolding materials in enriching ions like calcium and phosphate around cells was an efficient way to promote bone regeneration.
Collapse
Affiliation(s)
- Man Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yan Zhou
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jianping Mao
- Department of Spine Surgery, Beijing Jishuitan Hospital, Beijing 100035, PR China
| | - Pengfei Wei
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, PR China
| | - Renxian Wang
- Laboratory of Bone Tissue Engineering, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, PR China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
6
|
Woźniak MJ, Chlanda A, Oberbek P, Heljak M, Czarnecka K, Janeta M, John Ł. Binary bioactive glass composite scaffolds for bone tissue engineering-Structure and mechanical properties in micro and nano scale. A preliminary study. Micron 2018; 119:64-71. [PMID: 30682529 DOI: 10.1016/j.micron.2018.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/26/2018] [Accepted: 12/13/2018] [Indexed: 12/11/2022]
Abstract
Composite scaffolds of bioactive glass (SiO2-CaO) and bioresorbable polyesters: poly-l-lactic acid (PLLA) and polycaprolactone (PCL) were produced by polymer coating of porous foams. Their structure and mechanical properties were investigated in micro and nanoscale, by the means of scanning electron microscopy, PeakForce Quantitative Nanomechanical Property Mapping (PF-QNM) atomic force microscopy, micro-computed tomography and contact angle measurements. This is one of the first studies in which the nanomechanical properties (elastic modulus, adhesion) were measured and mapped simultaneously with topography imaging (PF-QNM AFM) for bioactive glass and bioactive glass - polymer coated scaffolds. Our findings show that polymer coated scaffolds had higher average roughness and lower stiffness in comparison to pure bioactive glass scaffolds. Such coating-dependent scaffold properties may promote different cells-scaffold interaction.
Collapse
Affiliation(s)
- Michał J Woźniak
- University Research Center - Functional Materials, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland; Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland; MJW RnD, Nowy Swiat 33/13, 00-029 Warsaw, Poland.
| | - Adrian Chlanda
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland
| | - Przemysław Oberbek
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland; Central Institute for Labour Protection - National Research Institute, Czerniakowska, 16, 00-701 Warsaw, Poland
| | - Marcin Heljak
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland
| | - Katarzyna Czarnecka
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego, 5B, 02-106 Warsaw, Poland
| | - Mateusz Janeta
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Łukasz John
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| |
Collapse
|
7
|
Chlanda A, Oberbek P, Heljak M, Kijeńska-Gawrońska E, Bolek T, Gloc M, John Ł, Janeta M, Woźniak MJ. Fabrication, multi-scale characterization and in-vitro evaluation of porous hybrid bioactive glass polymer-coated scaffolds for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 94:516-523. [PMID: 30423736 DOI: 10.1016/j.msec.2018.09.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 09/07/2018] [Accepted: 09/30/2018] [Indexed: 02/06/2023]
Abstract
Bioactive glass-based scaffolds are commonly used in bone tissue engineering due to their biocompatibility, mechanical strength and adequate porous structure. However, their hydrophobicity and brittleness limits their practical application. In this study, to improve nanomechanical properties of such scaffolds, pure bioactive hybrid glass and two bioactive hybrid glass-polymer coated composites were fabricated. A complementary micro and nanoscale characterization techniques (SEM, AFM, μCT, FTIR, compressive test, goniometer) were implemented for detailed description of architecture and physicochemical properties of hybrid bioactive glass-based scaffolds with emphasis on nano-mechanics. The final step was in-vitro evaluation of three dimensional macroporous structures. Our findings show that after polymer addition, architecture, topography and surface properties of the scaffolds were changed and promoted favoured behaviour of the cells.
Collapse
Affiliation(s)
- Adrian Chlanda
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland.
| | - Przemysław Oberbek
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland; Central Institute for Labour Protection - National Research Institute, Czerniakowska 16, 00-701 Warsaw, Poland
| | - Marcin Heljak
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland
| | - Ewa Kijeńska-Gawrońska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland
| | - Tomasz Bolek
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland
| | - Michał Gloc
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland
| | - Łukasz John
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Mateusz Janeta
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Michał J Woźniak
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland; MJW RnD, Nowy Swiat 33/13, 00-029 Warsaw, Poland
| |
Collapse
|
8
|
John Ł. Selected developments and medical applications of organic-inorganic hybrid biomaterials based on functionalized spherosilicates. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 88:172-181. [PMID: 29636133 DOI: 10.1016/j.msec.2018.02.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/25/2018] [Accepted: 02/09/2018] [Indexed: 12/30/2022]
Abstract
Well-defined and tailor-made spherosilicates and POSS-based (POSS = Polyhedral Oligomeric Silsesquioxanes) (nano)composites with interesting chemical and mechanical properties have applications in the widely-regarded field of innovative biomaterials. They can serve as delivery systems, three-dimensional scaffolds for specific tissue engineering, biomaterials for orthopedic, cardiovascular, and reconstructive surgery, etc. Such organic-inorganic hybrids are much more effective biomaterials than pure polymers, bioglasses, metals, alloys, and ceramics currently used in medical applications and are considered as next-generation systems in innovative medical approaches. This range of applications creates a strong impetus for novel, cheap, and easy-to-scale-up methods for their synthesis. In this review (highlights since 2006), selected biomaterials consisting of various polymeric derivatives such as polymethacrylates, polylactides, polycaprolactones, polyurethanes, etc., which serve as organic side-arms of POSS and can create polymer platforms for precisely localized spherosilicates among organic matrices, are discussed as a new generation of silicon-based biosystems using spherosilicates, promising biomaterials with a particular use in soft- and hard-tissue engineering.
Collapse
Affiliation(s)
- Łukasz John
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| |
Collapse
|
9
|
John Ł, Janeta M, Szafert S. Synthesis of cubic spherosilicates for self-assembled organic–inorganic biohybrids based on functionalized methacrylates. NEW J CHEM 2018. [DOI: 10.1039/c7nj02533e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covalent hybrid networks created by fully substituted cubic spherosilicates containing functionalized methacrylates as side chains were synthesized.
Collapse
Affiliation(s)
- Łukasz John
- Faculty of Chemistry
- University of Wrocław
- 14 F. Joliot-Curie
- 50-383 Wrocław
- Poland
| | - Mateusz Janeta
- Faculty of Chemistry
- University of Wrocław
- 14 F. Joliot-Curie
- 50-383 Wrocław
- Poland
| | - Sławomir Szafert
- Faculty of Chemistry
- University of Wrocław
- 14 F. Joliot-Curie
- 50-383 Wrocław
- Poland
| |
Collapse
|
10
|
Pipattanawarothai A, Suksai C, Srisook K, Trakulsujaritchok T. Non-cytotoxic hybrid bioscaffolds of chitosan-silica: Sol-gel synthesis, characterization and proposed application. Carbohydr Polym 2017; 178:190-199. [PMID: 29050585 DOI: 10.1016/j.carbpol.2017.09.047] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 08/31/2017] [Accepted: 09/13/2017] [Indexed: 01/07/2023]
Abstract
Biohybrid chitosan-silica scaffolds were synthesized through the sol-gel and the freeze drying processes. Hydrolysis and condensation of chitosan with tetraethylorthosilicate (TEOS) in the presence of 3-isocyanatopropyl triethoxysilane (ICPTES) were successfully carried out. Results obtained from FTIR, swelling test and pyrolysis confirmed that the hybrid scaffolds containing covalent coupling between the organic and inorganic networks were formed with high crosslink density of SiOSi bridging and could be classified as the class II material. The hybridization also resulted in improvements on mechanical strength and stability comparing to the pure chitosan. In vitro investigations on the guided bone regeneration and the cytotoxicity were also performed. SEM-EDS was used to examine the proliferation of calcium phosphate mineral at the scaffold surface after an immersion in simulated body fluid. The results revealed that the hybrid scaffolds exhibited a rapid induction of calcium phosphate mineral without cytotoxicity effect, reflecting an excellent in vitro bone bioactivity which was superior to the pure chitosan scaffold.
Collapse
Affiliation(s)
- Athit Pipattanawarothai
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand.
| | - Chomchai Suksai
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand.
| | - Klaokwan Srisook
- Department of Biochemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand.
| | - Thanida Trakulsujaritchok
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand.
| |
Collapse
|
11
|
Akbari Dourbash F, Alizadeh P, Nazari S, Farasat A. A highly bioactive poly (amido amine)/70S30C bioactive glass hybrid with photoluminescent and antimicrobial properties for bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:1135-1146. [DOI: 10.1016/j.msec.2017.04.142] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/20/2017] [Accepted: 04/22/2017] [Indexed: 12/11/2022]
|
12
|
Designing of macroporous magnetic bioscaffold based on functionalized methacrylate network covered by hydroxyapatites and doped with nano-MgFe 2 O 4 for potential cancer hyperthermia therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:901-911. [DOI: 10.1016/j.msec.2017.04.133] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 11/20/2022]
|
13
|
John Ł, Malik M, Janeta M, Szafert S. First step towards a model system of the drug delivery network based on amide-POSS nanocarriers. RSC Adv 2017. [DOI: 10.1039/c6ra26330e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We present the synthetic and release aspects of a novel drug delivery system (DDS) based on amido-functionalized POSS. DDS after drug release hydrolyses at pH = 7.40 to non-toxic products such as carboxylic acid salts and aminopropyl-POSS.
Collapse
Affiliation(s)
- Łukasz John
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - Mariola Malik
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - Mateusz Janeta
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | | |
Collapse
|
14
|
John Ł, Podgórska M, Nedelec JM, Cwynar-Zając Ł, Dzięgiel P. Strontium-doped organic-inorganic hybrids towards three-dimensional scaffolds for osteogenic cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:117-127. [DOI: 10.1016/j.msec.2016.05.105] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 05/17/2016] [Accepted: 05/23/2016] [Indexed: 10/21/2022]
|
15
|
John Ł, Janeta M, Rajczakowska M, Ejfler J, Łydżba D, Szafert S. Synthesis and microstructural properties of the scaffold based on a 3-(trimethoxysilyl)propyl methacrylate–POSS hybrid towards potential tissue engineering applications. RSC Adv 2016. [DOI: 10.1039/c6ra10364b] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The biomimetic organic–inorganic scaffold with the chemical composition, structural dimensions, topography, and microstructural properties that fulfills the requirements for hard-tissue engineering was developed.
Collapse
Affiliation(s)
- Ł. John
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - M. Janeta
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - M. Rajczakowska
- Faculty of Civil Engineering
- Wrocław University of Science and Technology
- 50-370 Wrocław
- Poland
| | - J. Ejfler
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - D. Łydżba
- Faculty of Civil Engineering
- Wrocław University of Science and Technology
- 50-370 Wrocław
- Poland
| | - S. Szafert
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| |
Collapse
|
16
|
Growth of hydroxyapatite on the cellular membrane of the bacterium Bacillus thuringiensis for the preparation of hybrid biomaterials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 58:614-21. [DOI: 10.1016/j.msec.2015.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/09/2015] [Accepted: 09/01/2015] [Indexed: 01/26/2023]
|
17
|
Maçon ALB, Li S, Chung JJ, Nommeots-Nomm A, Solanki AK, Stevens MM, Jones JR. Ductile silica/methacrylate hybrids for bone regeneration. J Mater Chem B 2016; 4:6032-6042. [DOI: 10.1039/c6tb00968a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hybrids consisting of co-networks of high cross-linking density polymethacrylate and silica (class II hybrid) were synthesised as a potential new generation of scaffold materials.
Collapse
Affiliation(s)
| | - Siwei Li
- Department of Materials Imperial College London
- London
- UK
| | | | | | | | - Molly M. Stevens
- Department of Materials Imperial College London
- London
- UK
- Institute of Biomedical Engineering Imperial College London
- London
| | | |
Collapse
|
18
|
Differentiation potential of SHEDs using biomimetic periosteum containing dexamethasone. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 58:1036-45. [DOI: 10.1016/j.msec.2015.09.077] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 09/10/2015] [Accepted: 09/20/2015] [Indexed: 11/20/2022]
|
19
|
Zhao X, Wu Y, Du Y, Chen X, Lei B, Xue Y, Ma PX. A highly bioactive and biodegradable poly(glycerol sebacate)–silica glass hybrid elastomer with tailored mechanical properties for bone tissue regeneration. J Mater Chem B 2015; 3:3222-3233. [DOI: 10.1039/c4tb01693a] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A highly bioactive and biodegradable PGS–Silica bioactive glass hybrid elastomer with tailored mechanical properties was developed for bone tissue regeneration application.
Collapse
Affiliation(s)
- Xin Zhao
- Frontier Institute of Science and Technology
- Xi'an Jiaotong University
- Xi'an
- China
| | - Yaobin Wu
- Frontier Institute of Science and Technology
- Xi'an Jiaotong University
- Xi'an
- China
| | - Yuzhang Du
- Frontier Institute of Science and Technology
- Xi'an Jiaotong University
- Xi'an
- China
| | - Xiaofeng Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction
- Guangzhou
- China
| | - Bo Lei
- Frontier Institute of Science and Technology
- Xi'an Jiaotong University
- Xi'an
- China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| | - Yumeng Xue
- Frontier Institute of Science and Technology
- Xi'an Jiaotong University
- Xi'an
- China
| | - Peter X. Ma
- Frontier Institute of Science and Technology
- Xi'an Jiaotong University
- Xi'an
- China
- Department of Biologic and Materials Sciences
| |
Collapse
|