1
|
Atta NF, Galal A, El-Gohary AR. Electrochemical sensing of dobutamine, paracetamol, amlodipine, and daclatasvir in serum based on thiourea SAMs over nano-gold particles-CNTs composite. NEW J CHEM 2022. [DOI: 10.1039/d2nj01822e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report in this work a one-step approach for the formation of self-assembled monolayers (SAMs) from thiourea (TU) over gold nanoparticles dispersed in carbon nanotubes (CNTs-Aunano). The fabrication of the...
Collapse
|
2
|
Kaya SI, Cetinkaya A, Ozkan SA. Carbon Nanomaterial-Based Drug Sensing Platforms Using State-of-the-
Art Electroanalytical Techniques. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411016999200802024629] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Currently, nanotechnology and nanomaterials are considered as the most popular and outstanding
research subjects in scientific fields ranging from environmental studies to drug analysis. Carbon nanomaterials such as
carbon nanotubes, graphene, carbon nanofibers etc. and non-carbon nanomaterials such as quantum dots, metal
nanoparticles, nanorods etc. are widely used in electrochemical drug analysis for sensor development. Main aim of drug
analysis with sensors is developing fast, easy to use and sensitive methods. Electroanalytical techniques such as
voltammetry, potentiometry, amperometry etc. which measure electrical parameters such as current or potential in an
electrochemical cell are considered economical, highly sensitive and versatile techniques.
Methods:
Most recent researches and studies about electrochemical analysis of drugs with carbon-based nanomaterials were
analyzed. Books and review articles about this topic were reviewed.
Results:
The most significant carbon-based nanomaterials and electroanalytical techniques were explained in detail. In
addition to this; recent applications of electrochemical techniques with carbon nanomaterials in drug analysis was expressed
comprehensively. Recent researches about electrochemical applications of carbon-based nanomaterials in drug sensing were
given in a table.
Conclusion:
Nanotechnology provides opportunities to create functional materials, devices and systems using
nanomaterials with advantageous features such as high surface area, improved electrode kinetics and higher catalytic
activity. Electrochemistry is widely used in drug analysis for pharmaceutical and medical purposes. Carbon nanomaterials
based electrochemical sensors are one of the most preferred methods for drug analysis with high sensitivity, low cost and
rapid detection.
Collapse
Affiliation(s)
- S. Irem Kaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara,Turkey
| | - Ahmet Cetinkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara,Turkey
| | - Sibel A. Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara,Turkey
| |
Collapse
|
3
|
Importance of structures and interactions in ionic liquid-nanomaterial composite systems as a novel approach for their utilization in safe lithium metal batteries: A review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
4
|
Rama R, Meenakshi S, Pandian K, Gopinath SCB. Room Temperature Ionic Liquids-Based Electrochemical Sensors: An Overview on Paracetamol Detection. Crit Rev Anal Chem 2021; 52:1422-1431. [PMID: 33622098 DOI: 10.1080/10408347.2021.1882834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Paracetamol (PAR) is an effective antipyretic and analgesic drug utilized worldwide, safer at therapeutic levels but over-dosing and the chronic usage of PAR results in accumulation of toxic metabolites, which leads to kidney and liver damages. Hence, a simple, rapid, cost-effective, and sensitive analytical technique is needed for the accurate determination of PAR in pharmaceutical and biological samples. Though numerous techniques have been reported for PAR detection, electrochemical methods are being receiving more interest due to their advantages. Moreover, in the past few decades, room temperature ionic liquids (RTILs) have been utilized in electrochemical sensors due to their attractive properties. In this present review, authors gathered research findings available for the determination of PAR using RTIL-based electrochemical sensors and discussed. The advantages and limitations in these systems as well as the future research directions are summarized.
Collapse
Affiliation(s)
- R Rama
- Department of Chemistry, School of Basic Sciences, VELS Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, Tamil Nadu, India
| | - S Meenakshi
- Department of Chemistry, School of Basic Sciences, VELS Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, Tamil Nadu, India
| | - K Pandian
- Department of Inorganic Chemistry, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India
| | - S C B Gopinath
- Institute of Nanoelectronic Engineering, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia.,Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| |
Collapse
|
5
|
Mohammad Bagher Gholivand, Elahe Ahmadi. Square Wave Anodic Stripping Voltammetric Determination of Paracetamol at Poly Luminol/Functionalized Multi-Walled Carbon Nanotubes Modified Glassy Carbon Electrode. RUSS J ELECTROCHEM+ 2020. [DOI: 10.1134/s102319351912005x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Gomes RN, Sousa CP, Casciano PN, Ribeiro FWP, Morais S, de Lima-Neto P, Correia AN. Dispersion of multi-walled carbon nanotubes in [BMIM]PF 6 for electrochemical sensing of acetaminophen. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 88:148-156. [DOI: 10.1016/j.msec.2018.03.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 03/07/2018] [Accepted: 03/19/2018] [Indexed: 01/15/2023]
|
7
|
Ionic Liquid Crystals Modifier for Selective Determination of Terazosin Antihypertensive Drug in Presence of Common Interference Compounds. CRYSTALS 2017. [DOI: 10.3390/cryst7010027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
A novel electrochemical sensor based on magneto Au nanoparticles/carbon paste electrode for voltammetric determination of acetaminophen in real samples. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 57:205-14. [DOI: 10.1016/j.msec.2015.07.054] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 07/14/2015] [Accepted: 07/27/2015] [Indexed: 02/07/2023]
|
9
|
Silvester DS, Aldous L. Electrochemical Detection Using Ionic Liquids. ELECTROCHEMICAL STRATEGIES IN DETECTION SCIENCE 2015. [DOI: 10.1039/9781782622529-00341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Ionic liquids are relatively new additions to the field of electrochemical sensing. Despite that, they have had a significant impact, and several major areas are covered herein. This includes the application of ionic liquids in the quantification of heavy metals, explosives, and chemical warfare agents, and in biosensors and bioanalysis. Also highlighted are the significant advantages ionic liquids inherently have with regards to gas sensors and carbon paste electrodes, by virtue of their non-volatility, inherent conductivity, and diversity of structure and function. Finally, their incorporation with carbon nanomaterials to form various gels, pastes, films, and printed electrodes is also highlighted.
Collapse
Affiliation(s)
- Debbie S. Silvester
- Nanochemistry Research Institute, Department of Chemistry, Curtin University Perth, WA Australia
| | - Leigh Aldous
- School of Chemistry, UNSW Australia Sydney, NSW Australia
| |
Collapse
|
10
|
X-Ray Photoelectron Spectroscopic Characterization of Chemically Modified Electrodes Used as Chemical Sensors and Biosensors: A Review. CHEMOSENSORS 2015. [DOI: 10.3390/chemosensors3020070] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Shekaari H, Moattar MTZ, Ghaffari F. Solvation properties of acetaminophen in aqueous ionic liquid, 1-hexyl-3-methylimidazolium bromide, solutions at different temperatures. J Mol Liq 2015. [DOI: 10.1016/j.molliq.2014.12.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Afraz A, Rafati AA, Najafi M. Optimization of modified carbon paste electrode with multiwalled carbon nanotube/ionic liquid/cauliflower-like gold nanostructures for simultaneous determination of ascorbic acid, dopamine and uric acid. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 44:58-68. [PMID: 25280680 DOI: 10.1016/j.msec.2014.07.065] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 07/17/2014] [Accepted: 07/28/2014] [Indexed: 11/18/2022]
Abstract
We describe the modification of a carbon paste electrode (CPE) with multiwalled carbon nanotubes (MWCNTs) and an ionic liquid (IL). Electrochemical studies by using a D-optimal mixture design in Design-Expert software revealed an optimized composition of 60% graphite, 14.2% paraffin, 10.8% MWCNT and 15% IL. The optimal modified CPE shows good electrochemical properties that are well matched with model prediction parameters. In the next step, the optimized CPE was modified with gold nanostructures by applying a double-pulse electrochemical technique. The resulting electrode was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, and electrochemical impedance spectroscopy. It gives three sharp and well-separated oxidation peaks for ascorbic acid (AA), dopamine (DA), and uric acid (UA). The sensor enables simultaneous determination of AA, DA and UA with linear responses from 0.3 to 285, 0.08 to 200, and 0.1 to 450 μM, respectively, and with 120, 30 and 30 nM detection limits (at an S/N of 3). The method was successfully applied to the determination of AA, DA, and UA in spiked samples of human serum and urine.
Collapse
Affiliation(s)
- Ahmadreza Afraz
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 65174, Hamedan, Iran
| | - Amir Abbas Rafati
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 65174, Hamedan, Iran.
| | - Mojgan Najafi
- Department of Materials Engineering, Hamedan University of Technology (HUT), 65169 Hamedan, Iran
| |
Collapse
|
13
|
|
14
|
Zhou W, Liu Y, Zhang Y, Yang G, Deng S, Shen F, Peng H, Wang L. Novel multi-layer cross-linked TiO2/C nanosheets and their photocatalytic properties. NEW J CHEM 2014. [DOI: 10.1039/c3nj01342a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Voltammetric sensing of bisphenol A based on a single-walled carbon nanotubes/poly{3-butyl-1-[3-(N-pyrrolyl)propyl] imidazolium ionic liquid} composite film modified electrode. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.07.211] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|