1
|
Quezada C, Samhitha SS, Salas A, Ges A, Barraza LF, Blanco-López MC, Solís-Pomar F, Pérez-Tijerina E, Medina C, Meléndrez M. Sensors Based on Molecularly Imprinted Polymers in the Field of Cancer Biomarker Detection: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1361. [PMID: 39195399 DOI: 10.3390/nano14161361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 08/29/2024]
Abstract
Biomarkers play a pivotal role in the screening, diagnosis, prevention, and post-treatment follow-up of various malignant tumors. In certain instances, identifying these markers necessitates prior treatment due to the complex nature of the tumor microenvironment. Consequently, advancing techniques that exhibit selectivity, specificity, and enable streamlined analysis hold significant importance. Molecularly imprinted polymers (MIPs) are considered synthetic antibodies because they possess the property of molecular recognition with high selectivity and sensitivity. In recent years, there has been a notable surge in the investigation of these materials, primarily driven by their remarkable adaptability in terms of tailoring them for specific target molecules and integrating them into diverse analytical technologies. This review presents a comprehensive analysis of molecular imprinting techniques, highlighting their application in developing sensors and analytical methods for cancer detection, diagnosis, and monitoring. Therefore, MIPs offer great potential in oncology and show promise for improving the accuracy of cancer screening and diagnosis procedures.
Collapse
Affiliation(s)
- Camila Quezada
- Department of Materials Engineering (DIMAT), Faculty of Engineering, Universidad de Concepción, Edmundo Larenas 315, Box 160-C, Concepción 4070409, Chile
| | - S Shiva Samhitha
- Department of Materials Engineering (DIMAT), Faculty of Engineering, Universidad de Concepción, Edmundo Larenas 315, Box 160-C, Concepción 4070409, Chile
| | - Alexis Salas
- Department of Mechanical Engineering (DIM), Faculty of Engineering, University of Concepción, 219 Edmundo Larenas, Concepción 4070409, Chile
| | - Adrián Ges
- Department of Materials Engineering (DIMAT), Faculty of Engineering, Universidad de Concepción, Edmundo Larenas 315, Box 160-C, Concepción 4070409, Chile
| | - Luis F Barraza
- Department of Biological and Chemical Sciences, Faculty of Medicine and Science, Universidad San Sebastián, General Lagos 1163, Valdivia 5090000, Chile
| | - María Carmen Blanco-López
- Department of Physical and Analytical Chemistry, Asturias Biotechnology Institute, University of Oviedo, 33006 Oviedo, Spain
| | - Francisco Solís-Pomar
- Centro de Investigación en Ciencias Físico Matemáticas, Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo León, Av. Universidad s/n, San Nicolás de Los Garza 66455, Mexico
| | - Eduardo Pérez-Tijerina
- Centro de Investigación en Ciencias Físico Matemáticas, Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo León, Av. Universidad s/n, San Nicolás de Los Garza 66455, Mexico
| | - Carlos Medina
- Department of Mechanical Engineering (DIM), Faculty of Engineering, University of Concepción, 219 Edmundo Larenas, Concepción 4070409, Chile
| | - Manuel Meléndrez
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Campus Las Tres Pascualas, Lientur 1457, Concepción 4060000, Chile
| |
Collapse
|
2
|
Wang Y, Lorandi F, Fantin M, Matyjaszewski K. Atom transfer radical polymerization in dispersed media with low-ppm catalyst loading. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
3
|
Awad M, Dhib R, Duever T. Atom transfer radical polymerization initiated by activator generated by electron transfer in emulsion media: a review of recent advances and challenges from an engineering perspective. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.2021089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mohammed Awad
- Department of Chemical Engineering, Ryerson University, Toronto, Canada
| | - Ramdhane Dhib
- Department of Chemical Engineering, Ryerson University, Toronto, Canada
| | - Thomas Duever
- Department of Chemical Engineering, Ryerson University, Toronto, Canada
| |
Collapse
|
4
|
Awad M, Dhib R, Duever T. Influence of HMTA ligand in MMA AGET ATRP emulsion polymerization. J Appl Polym Sci 2020. [DOI: 10.1002/app.49128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mohammed Awad
- Department of Chemical EngineeringRyerson University Toronto Ontario Canada
| | - Ramdhane Dhib
- Department of Chemical EngineeringRyerson University Toronto Ontario Canada
| | - Thomas Duever
- Department of Chemical EngineeringRyerson University Toronto Ontario Canada
| |
Collapse
|
7
|
Islam MN, Haldorai Y, Nguyen VH, Shim JJ. Synthesis of poly(vinyl pivalate) by atom transfer radical polymerization in supercritical carbon dioxide. Eur Polym J 2014. [DOI: 10.1016/j.eurpolymj.2014.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|