1
|
Piatti E, Miola M, Liverani L, Verné E, Boccaccini AR. Poly(ε-caprolactone)/bioactive glass composite electrospun fibers for tissue engineering applications. J Biomed Mater Res A 2023; 111:1692-1709. [PMID: 37300320 DOI: 10.1002/jbm.a.37578] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023]
Abstract
In this work, composite electrospun fibers containing innovative bioactive glass nanoparticles were produced and characterized. Poly(ε-caprolactone), benign solvents, and sol-gel B- and Cu-doped bioactive glass powders were used to fabricate fibrous scaffolds. The retention of bioactive glass nanoparticles in the polymer matrix, the electrospinnability of this novel solution and the obtained electrospun composites were extensively characterized. As a result, composite electrospun fibers characterized by biocompatibility, bioactivity, and exhibiting overall properties adequate for both hard and soft tissue engineering applications, have been produced. The addition of these bioactive glass nanoparticles was, indeed, able to impart bioactive properties to the fibers. Cell culture studies show promising results, demonstrating proliferation and growth of cells on the composite fibers. Wettability, degradation rate, and mechanical performance were also tested and are in line with previous results.
Collapse
Affiliation(s)
- Elisa Piatti
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Turin, Italy
| | - Marta Miola
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Turin, Italy
| | - Liliana Liverani
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nürnberg, Erlangen, Germany
- DGS S.p.A., Rome, Italy
| | - Enrica Verné
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Turin, Italy
| | - Aldo R Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
2
|
Morphology of Biomaterials Affect O-Glycosylation of HUVECs. J Funct Biomater 2022; 13:jfb13040235. [PMID: 36412876 PMCID: PMC9680501 DOI: 10.3390/jfb13040235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Biomaterials have been widely used as substitutes for diseased tissue in surgery and have gained great success and attention. At present, the biocompatibility of biomaterials such as PET woven fabrics is often evaluated both in vitro and in vivo. However, the current experimental methods cannot reveal the relationship between material surfaces and cell adhesion, and few research works have focused on the mechanisms of how the surface morphology of biomaterials affects cell adhesion and proliferation. Thus, it is meaningful to find out how the altered surfaces could affect cell adhesion and growth. In this study, we employed Ar low-temperature plasma treatment technology to create nano-grooves on the warp yarn of PET woven fabrics and seeded human umbellar vein endothelial cells (HUVEC) on these fabrics. We then assessed the O-glycan and N-glycan profiles of the cells grown on different structures of the polyester woven fabrics. The result showed that the surface morphology of polyester woven fabrics could affect the O-glycan profile but not the N-glycan profile of cultured HUVEC. Taken together, the study describes the effects of the surface morphology of biomaterial on the biosynthesis of cellular glycans and may provide new insights into the design and manufacture of biomaterials used as blood vessels based on the expression profiles of O-glycans on cultured cells.
Collapse
|
3
|
Yue C, Ding C, Yang N, Luo Y, Su J, Cao L, Cheng B. Strong and tough collagen/cellulose nanofibril composite films via the synergistic effect of hydrogen and metal–ligand bonds. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
4
|
Zhang K, Xiao X, Wang X, Fan Y, Li X. Topographical patterning: characteristics of current processing techniques, controllable effects on material properties and co-cultured cell fate, updated applications in tissue engineering, and improvement strategies. J Mater Chem B 2019; 7:7090-7109. [PMID: 31702754 DOI: 10.1039/c9tb01682a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
Topographical patterning has recently attracted lots of attention in regulating cell fate, understanding the mechanism of cell-microenvironment interactions, and solving the great issues of regenerative medicine. The introduced patterns offer topographical cues that can affect the reconstruction of the cytoskeleton or stimulate cell membrane receptors. Numerous studies have focused on these effects on cell behavior including attachment, migration, proliferation, and differentiation. In this review, five aspects of topographical patterning are discussed: (1) the process of typical micro-/nanotechniques and their advantages and limitations; (2) the effects of patterning on the mechanical properties and surface properties of substrates; (3) the influences of micro-/nanopatterns on the behavior of mesenchymal stem cells, as well as the underlying mechanisms; (4) the application of patterns to solve the issues of targeted organs (e.g., skin, nerves, blood vessels, bones, and heart). In the end, future perspectives that would help promote the efficiency of topographical patterning are proposed.
Collapse
Affiliation(s)
- Ke Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Xiongfu Xiao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China and Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
5
|
Lerman MJ, Lembong J, Muramoto S, Gillen G, Fisher JP. The Evolution of Polystyrene as a Cell Culture Material. TISSUE ENGINEERING. PART B, REVIEWS 2018; 24:359-372. [PMID: 29631491 PMCID: PMC6199621 DOI: 10.1089/ten.teb.2018.0056] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/21/2018] [Indexed: 01/19/2023]
Abstract
Polystyrene (PS) has brought in vitro cell culture from its humble beginnings to the modern era, propelling dozens of research fields along the way. This review discusses the development of the material, fabrication, and treatment approaches to create the culture material. However, native PS surfaces poorly facilitate cell adhesion and growth in vitro. To overcome this, liquid surface deposition, energetic plasma activation, and emerging functionalization methods transform the surface chemistry. This review seeks to highlight the many potential applications of the first widely accepted polymer growth surface. Although the majority of in vitro research occurs on two-dimensional surfaces, the importance of three-dimensional (3D) culture models cannot be overlooked. The methods to transition PS to specialized 3D culture surfaces are also reviewed. Specifically, casting, electrospinning, 3D printing, and microcarrier approaches to shift PS to a 3D culture surface are highlighted. The breadth of applications of the material makes it impossible to highlight every use, but the aim remains to demonstrate the versatility and potential as both a general and custom cell culture surface. The review concludes with emerging scaffolding approaches and, based on the findings, presents our insights on the future steps for PS as a tissue culture platform.
Collapse
Affiliation(s)
- Max J. Lerman
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland
- Surface and Trace Chemical Analysis Group, Materials Measurement Lab, National Institute of Standards and Technology, Gaithersburg, Maryland
- NIH/NIBIB Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
| | - Josephine Lembong
- NIH/NIBIB Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Shin Muramoto
- Surface and Trace Chemical Analysis Group, Materials Measurement Lab, National Institute of Standards and Technology, Gaithersburg, Maryland
| | - Greg Gillen
- Surface and Trace Chemical Analysis Group, Materials Measurement Lab, National Institute of Standards and Technology, Gaithersburg, Maryland
| | - John P. Fisher
- NIH/NIBIB Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| |
Collapse
|
6
|
Ozkan O, Turkoglu Sasmazel H. Effects of nozzle type atmospheric dry air plasma on L929 fibroblast cells hybrid poly (ε-caprolactone)/chitosan/poly (ε-caprolactone) scaffolds interactions. J Biosci Bioeng 2016; 122:232-9. [DOI: 10.1016/j.jbiosc.2016.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/14/2015] [Accepted: 01/06/2016] [Indexed: 11/27/2022]
|
7
|
Hu X, Hu T, Shen G, Lian M, Guan G, Wang F, Wang L. PCL films of varying porosity influence ICAM-1 expression of HUVECs. J Biomed Mater Res A 2016; 104:2775-84. [PMID: 27345288 DOI: 10.1002/jbm.a.35818] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 05/12/2016] [Accepted: 06/22/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Xingyou Hu
- Department of textile engineering, Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles; Donghua University; Shanghai 201620 China
| | - Tao Hu
- Department of Immunology; Binzhou Medical College; Yantai 264003 China
| | - Gaotian Shen
- Department of textile engineering, Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles; Donghua University; Shanghai 201620 China
| | - Mingqiang Lian
- Department of textile engineering, Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles; Donghua University; Shanghai 201620 China
| | - Guoping Guan
- Department of textile engineering, Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles; Donghua University; Shanghai 201620 China
| | - Fujun Wang
- Department of textile engineering, Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles; Donghua University; Shanghai 201620 China
| | - Lu Wang
- Department of textile engineering, Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles; Donghua University; Shanghai 201620 China
| |
Collapse
|
8
|
Zhao K, Chen T, Lin B, Cui W, Kan B, Yang N, Zhou X, Zhang X, Wei J. Adsorption and recognition of protein molecular imprinted calcium alginate/polyacrylamide hydrogel film with good regeneration performance and high toughness. REACT FUNCT POLYM 2015. [DOI: 10.1016/j.reactfunctpolym.2014.12.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Tong W, Fox K, Ganesan K, Turnley AM, Shimoni O, Tran PA, Lohrmann A, McFarlane T, Ahnood A, Garrett DJ, Meffin H, O'Brien-Simpson NM, Reynolds EC, Prawer S. Fabrication of planarised conductively patterned diamond for bio-applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 43:135-44. [DOI: 10.1016/j.msec.2014.07.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/15/2014] [Accepted: 07/03/2014] [Indexed: 11/28/2022]
|