1
|
Liang J, Lu X, Zheng X, Li YR, Geng X, Sun K, Cai H, Jia Q, Jiang HB, Liu K. Modification of titanium orthopedic implants with bioactive glass: a systematic review of in vivo and in vitro studies. Front Bioeng Biotechnol 2023; 11:1269223. [PMID: 38033819 PMCID: PMC10686101 DOI: 10.3389/fbioe.2023.1269223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/18/2023] [Indexed: 12/02/2023] Open
Abstract
Bioactive glasses (BGs) are ideal biomaterials in the field of bio-restoration due to their excellent biocompatibility. Titanium alloys are widely used as a bone graft substitute material because of their excellent corrosion resistance and mechanical properties; however, their biological inertness makes them prone to clinical failure. Surface modification of titanium alloys with bioactive glass can effectively combine the superior mechanical properties of the substrate with the biological properties of the coating material. In this review, the relevant articles published from 2013 to the present were searched in four databases, namely, Web of Science, PubMed, Embase, and Scopus, and after screening, 49 studies were included. We systematically reviewed the basic information and the study types of the included studies, which comprise in vitro experiments, animal tests, and clinical trials. In addition, we summarized the applied coating technologies, which include pulsed laser deposition (PLD), electrophoretic deposition, dip coating, and magnetron sputtering deposition. The superior biocompatibility of the materials in terms of cytotoxicity, cell activity, hemocompatibility, anti-inflammatory properties, bioactivity, and their good bioactivity in terms of osseointegration, osteogenesis, angiogenesis, and soft tissue adhesion are discussed. We also analyzed the advantages of the existing materials and the prospects for further research. Even though the current research status is not extensive enough, it is still believed that BG-coated Ti implants have great clinical application prospects.
Collapse
Affiliation(s)
- Jin Liang
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong First Medical University, Jinan, Shandong, China
| | - XinYue Lu
- The CONVERSATIONALIST Club and Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan, Shandong, China
| | - XinRu Zheng
- The CONVERSATIONALIST Club and Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan, Shandong, China
| | - Yu Ru Li
- The CONVERSATIONALIST Club and Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan, Shandong, China
| | - XiaoYu Geng
- The CONVERSATIONALIST Club and Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan, Shandong, China
| | - KeXin Sun
- The CONVERSATIONALIST Club and Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan, Shandong, China
| | - HongXin Cai
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Qi Jia
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Heng Bo Jiang
- The CONVERSATIONALIST Club and Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan, Shandong, China
| | - Kai Liu
- School of Basic Medicine, Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
2
|
Alavi SE, Alavi SZ, Gholami M, Sharma A, Sharma LA, Ebrahimi Shahmabadi H. Biocomposite-based strategies for dental bone regeneration. Oral Surg Oral Med Oral Pathol Oral Radiol 2023; 136:554-568. [PMID: 37612166 DOI: 10.1016/j.oooo.2023.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/15/2023] [Accepted: 04/26/2023] [Indexed: 08/25/2023]
Abstract
OBJECTIVE Because of the anatomical complexity of the oral and maxillofacial sites, repairing bone defects in these regions is very difficult. This review article aims to consider the application of biocomposites-based strategies for dental bone regeneration. STUDY DESIGN Research papers related to the topic, published over the last 20 years, were selected using the Web of Science, Pubmed, Scopus, and Google Scholar databases. RESULTS The strategies of monophasic, biphasic/multiphasic scaffolds, and biopolymer-based nanocomposite scaffolds containing nanomaterials compared with traditional methods used for bone regeneration, such as autografts, allografts, xenografts, and alloplasts are found to be superior because of their ability to overcome the issues (e.g., limited bone sources, pain, immune responses, high cost) related to the applications of the traditional methods. CONCLUSIONS In addition, additive manufacturing technologies were found to be highly advantageous for improving the efficacy of biocomposite scaffolds for treating dental bone defects.
Collapse
Affiliation(s)
- Seyed Ebrahim Alavi
- School of Medicine and Dentistry, Griffith University, Gold Coast, Australia
| | - Seyed Zeinab Alavi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Max Gholami
- School of Medicine and Dentistry, Griffith University, Gold Coast, Australia
| | - Ajay Sharma
- School of Medicine and Dentistry, Griffith University, Gold Coast, Australia
| | - Lavanya A Sharma
- School of Medicine and Dentistry, Griffith University, Gold Coast, Australia.
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
3
|
Jian Y, Zhang J, Yang C, Qi L, Wang X, Deng H, Shi X. Biological MWCNT/chitosan composite coating with outstanding anti-corrosion property for implants. Colloids Surf B Biointerfaces 2023; 225:113227. [PMID: 36907133 DOI: 10.1016/j.colsurfb.2023.113227] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/06/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
Biocompatible coatings that can protect metal implants have great potential in tissue engineering. In this work, MWCNT/chitosan composite coatings with hydrophobic-hydrophilic asymmetric wettability were facilely prepared by one-step in situ electrodeposition. The resultant composite coating exhibits excellent thermal stability and mechanical strength (0.76 MPa), benefiting from the compact internal structure. The thickness of the coating can be controlled precisely by the amounts of transferred charges. The MWCNT/chitosan composite coating demonstrates a lower corrosion rate due to its hydrophobicity and compact internal structure. Compared with exposed 316 L stainless steel, its corrosion rate is reduced by two orders of magnitude from 3.004 × 10-1 mm/yr to 5.361 × 10-3 mm/yr. The content of iron released from 316 L stainless steel into the simulated body fluid drops to 0.1 mg/L under the protection of the composite coating. In addition, the composite coating enables efficient calcium enrichment from simulated body fluids and promotes the formation of bioapatite layers on the coating surface. This study contributes to furthering the practical application of chitosan-based coatings in implant anticorrosion.
Collapse
Affiliation(s)
- Yinghao Jian
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Jingxian Zhang
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Chen Yang
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Luhe Qi
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Xiaohui Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hongbing Deng
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Xiaowen Shi
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
4
|
Cell Viability Assay and Surface Morphology Analysis of Carbonated Hydroxyapatite/Honeycomb/Titanium Alloy Coatings for Bone Implant Applications. Bioengineering (Basel) 2022; 9:bioengineering9070325. [PMID: 35877377 PMCID: PMC9311555 DOI: 10.3390/bioengineering9070325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
In this work, carbonated hydroxyapatite/titanium alloy (CHA/Ti) and carbonated hydroxyapatite/honeycomb/titanium alloy (CHA/HCB/Ti) plates were coated using the electrophoretic deposition dip coating (EP2D) method. Analysis of cell viability and surface morphology of CHA/Ti and CHA/HCB/Ti coatings were carried out using the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and scanning electron microscopy (SEM), respectively. In a previous study, the thickness and average compressive strength values for the CHA/Ti and CHA/HCB/Ti plates were about 63−89 μm and 54−75 MPa, respectively. The result for thickness and compressive strength in this research followed the thickness and compressive strength parameters for coating in bone implants. In this work, the cell viability for incubation times during 24 h and 48 h of CHA/Ti plates is demonstrably superior to that of CHA/HCB/Ti plates, respectively, where the cell viability for CHA/Ti plates increased to ((67 ± 2)%) after incubation for 48 h. According to the one-way analysis of variance (ANOVA), the p-value was <0.05, indicating a significant difference in the average cell viability value across the three groups. Furthermore, the surface of CHA/Ti is not changed after the coating process. These results will yield many positive biomedical applications, especially in bone implants. Overall, CHA/Ti and CHA/HCB/Ti plates can be considered candidates for biomedical applications based on an analysis of surface morphology and cell viability.
Collapse
|
5
|
Abstract
Diseases or complications that are caused by bone tissue damage affect millions of patients every year. Orthopedic and dental implants have become important treatment options for replacing and repairing missing or damaged parts of bones and teeth. In order to use a material in the manufacture of implants, the material must meet several requirements, such as mechanical stability, elasticity, biocompatibility, hydrophilicity, corrosion resistance, and non-toxicity. In the 1970s, a biocompatible glassy material called bioactive glass was discovered. At a later time, several glass materials with similar properties were developed. This material has a big potential to be used in formulating medical devices, but its fragility is an important disadvantage. The use of bioactive glasses in the form of coatings on metal substrates allows the combination of the mechanical hardness of the metal and the biocompatibility of the bioactive glass. In this review, an extensive study of the literature was conducted regarding the preparation methods of bioactive glass and the different techniques of coating on various substrates, such as stainless steel, titanium, and their alloys. Furthermore, the main doping agents that can be used to impart special properties to the bioactive glass coatings are described.
Collapse
|
6
|
Carbonated Hydroxyapatite-Based Honeycomb Scaffold Coatings on a Titanium Alloy for Bone Implant Application—Physicochemical and Mechanical Properties Analysis. COATINGS 2021. [DOI: 10.3390/coatings11080941] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In this work, carbonated hydroxyapatite (CHA) based on abalone mussel shells (Haliotis asinina) is synthesized using the co-precipitation method. The synthesized CHA was mixed with honeycomb (HCB) 40 wt.% for the scaffold fabrication process. CHA and scaffold CHA/HCB 40 wt.% were used for coating a Titanium (Ti) alloy using the electrophoretic deposition dip coating (EP2D) method with immersion times of 10, 20, and 30 min. The synthesized B-type CHA with a stirring time of 45 min could have lower transmittance values and smaller crystallite size. Energy dispersive X-ray spectroscopy (EDS) showed that the Ca/P molar ratio was 1.79. The scaffold CHA/HCB 40 wt.% had macropore size, micropore size, and porosity of 102.02 ± 9.88 μm, 1.08 ± 0.086 μm, and 66.36%, respectively, and therefore it can also be applied in the coating process for bone implant applications due to the potential scaffold for bone growth. Thus, it has the potential for coating on Ti alloy applications. In this study, the compressive strength for all immersion time variations was about 54–83 MPa. The average compression strengths of human cancellous bone were about 0.2–80 MPa. The thickness obtained was in accordance with the thickness parameters required for a coating of 50–200 μm.
Collapse
|
7
|
Majhi R, Majhi RK, Garhnayak L, Patro TK, Dhal A, Kumar S, Guha P, Goswami L, Goswami C. Comparative evaluation of surface-modified zirconia for the growth of bone cells and early osseointegration. J Prosthet Dent 2021; 126:92.e1-92.e8. [PMID: 34049698 DOI: 10.1016/j.prosdent.2021.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 11/19/2022]
Abstract
STATEMENT OF PROBLEM Rapid osseointegration between implant and bone tissue for early loading of a prosthesis with sufficient primary stability depends on the surface characteristics of the implant. The development and characterization of suitable surface coatings on dental implants is a major challenge. PURPOSE The purpose of this in vitro study was to evaluate and compare the osteogenic potential and cytotoxicity of unmodified zirconia, acid-etched zirconia, bioactive glass-coated zirconia, and tamarind kernel polysaccharide with hydrophilic acrylic acid (TKP-AA) hydrogel-coated zirconia. MATERIAL AND METHODS Thirty-six disks each of unmodified zirconia, acid-etched, 45S5 bioactive glass-coated, and TKP-AA hydrogel-coated zirconia were evaluated for osteogenic potential and cytotoxic effect by using human osteoblast Saos-2 cells. The surface topography of the disks and the morphology of the cells grown on these surfaces were examined by scanning electron microscopy (n=3). The cell attachment was evaluated by confocal imaging (n=3). The cytotoxic effect was evaluated by cell viability assay (n=9). Osteoblast maturation was assessed by alkaline phosphatase assay (n=9) and cell mineralization by alizarin red staining (n=9). ANOVA and Bonferroni multiple comparison post hoc tests were used to evaluate the statistical significance of the intergroup differences in these characteristics (α=.05). RESULTS The surface modifications resulted in distinct changes in the surface morphology of zirconia disks and the growth of Saos-2 cells. Zirconia disks coated with TKP-AA promoted higher proliferation of osteoblasts compared with unmodified disks (P<.001). Similarly, the surface modifications significantly increased the differentiation of mesenchymal stem cells to osteoblasts as compared with uncoated zirconia (P<.001). However, the rate of differentiation to osteoblasts was similar among the surface modifications. Acid-etched and TKP-AA-coated disks promoted mineralization of osteoblasts to the same extent, except bioactive glass coating, which significantly increased the rate of mineralization (P<.001). CONCLUSIONS Surface modification of zirconia by acid etching and coating with Bioglass or TKP-AA hydrogel resulted in the improved growth and differentiation of osteoblasts. TKP-AA hydrogel coating promoted the proliferation of osteoblasts, whereas Bioglass coating showed better mineralization. TKP-AA hydrogel coating is a promising candidate for improving the osseointegration of dental implants that warrants further investigation.
Collapse
Affiliation(s)
- Rashmita Majhi
- Master in Dental Surgery, Department of Prosthodontics, SCB Dental College and Hospital, Cuttack, Odisha, India
| | - Rakesh Kumar Majhi
- Postdoctoral Researcher, School of Biological Sciences, National Institute of Science Education and Research, Jatni, Bhubaneswar, Odisha, India
| | - Lokanath Garhnayak
- Associate Professor, Department of Prosthodontics, SCB Dental College and Hospital, Cuttack, Odisha, India
| | - Tapan Kumar Patro
- Professor and Head of Department, Department of Prosthodontics, SCB Dental College and Hospital, Cuttack, Odisha, India
| | - Angurbala Dhal
- Associate Professor, Department of Prosthodontics, SCB Dental College and Hospital, Cuttack, Odisha, India
| | - Satish Kumar
- Research Fellow, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, India
| | - Puspendu Guha
- Postdoctoral Researcher, Institute of Physics, Sachivalaya Marg, Bhubaneswar, India
| | - Luna Goswami
- Associate Professor, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, India; Associate Professor, School of Chemical Technology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, India
| | - Chandan Goswami
- Associate Professor, School of Biological Sciences, National Institute of Science Education and Research, Jatni, Bhubaneswar, Odisha, India; Associate Professor, Homi Bhabha National Institute, Training School Complex, Mumbai, India.
| |
Collapse
|
8
|
PMMA-silica nanocomposite coating: Effective corrosion protection and biocompatibility for a Ti6Al4V alloy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110713. [DOI: 10.1016/j.msec.2020.110713] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/30/2019] [Accepted: 01/30/2020] [Indexed: 12/31/2022]
|
9
|
Ding Z, Wang Y, Zhou Q, Ding Z, Wu Y, Zhu Y, Shi W, He Q. The Preparation and Properties of Multilayer Cu-MTa 2O 5 Composite Coatings on Ti6Al4V for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1498. [PMID: 31640135 PMCID: PMC6835318 DOI: 10.3390/nano9101498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/13/2019] [Accepted: 10/18/2019] [Indexed: 02/07/2023]
Abstract
For the enhancement of the anticorrosion and antibacterial performance of the biomedical alloy Ti6Al4V, a novel Cu incorporated multilayer Ta2O5ceramic composite coating Cu-Ta2O5/Ta2O5/Ta2O5-TiO2/TiO2/Ti (coating codeCu-MTa2O5) was developed by radio frequency (RF) and direct current (DC) reactive magnetron sputtering. Meanwhile, to better display the multilayer Ta2O5 coating mentioned above, a monolayer Ta2O5 ceramic coating was deposited onto the surface of Ti6Al4V alloy as a reference. The surface morphology, microstructure, phase constituents, and elemental states of the coating were evaluated by atomic force microscopy, scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy, respectively. The adhesion strength, wettability, anticorrosion and antibacterial properties of the coating were examined by a scratch tester, contact angle measurement, electrochemical workstations, and plate counting method, respectively. The results showed that the deposited coatings were amorphous and hydrophobic. Cu doped into the Ta2O5 coating existed as CuO and Cu2O. A Ta2O5-TiO2/TiO2/Ti multi-interlayer massively enhanced the adhesion strength of the coating, which was 2.9 times stronger than that of the monolayer Ta2O5coating. The multilayer Cu-MTa2O5 coating revealed a higher corrosion potential and smaller corrosion current density as compared to the uncoated Ti6Al4V, indicating the better anticorrosion performance of Ti6Al4V. Moreover, a 99.8% antibacterial effect of Cu-MTa2O5 coated against Staphylococcus aureuswas obtained.
Collapse
Affiliation(s)
- Zeliang Ding
- School of Mechanical Engineering, Hunan University of Technology, Zhuzhou 412007, China.
| | - Yi Wang
- School of Mechanical Engineering, Hunan University of Technology, Zhuzhou 412007, China.
| | - Quan Zhou
- School of Mechanical Engineering, Hunan University of Technology, Zhuzhou 412007, China.
| | - Ziyu Ding
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China.
| | - Yiyong Wu
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China.
| | - Yuefang Zhu
- Zhuzhou Institute of Food and Drug Control, Zhuzhou 412008, China.
| | - Wensong Shi
- Zhuzhou Institute of Food and Drug Control, Zhuzhou 412008, China.
| | - Quanguo He
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China.
| |
Collapse
|
10
|
Sethu SN, Namashivayam S, Devendran S, Nagarajan S, Tsai WB, Narashiman S, Ramachandran M, Ambigapathi M. Nanoceramics on osteoblast proliferation and differentiation in bone tissue engineering. Int J Biol Macromol 2017; 98:67-74. [DOI: 10.1016/j.ijbiomac.2017.01.089] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/11/2017] [Accepted: 01/18/2017] [Indexed: 01/24/2023]
|
11
|
Popa AC, Stan GE, Husanu MA, Mercioniu I, Santos LF, Fernandes HR, Ferreira JMF. Bioglass implant-coating interactions in synthetic physiological fluids with varying degrees of biomimicry. Int J Nanomedicine 2017; 12:683-707. [PMID: 28176941 PMCID: PMC5268334 DOI: 10.2147/ijn.s123236] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Synthetic physiological fluids are currently used as a first in vitro bioactivity assessment for bone grafts. Our understanding about the interactions taking place at the fluid-implant interface has evolved remarkably during the last decade, and does not comply with the traditional International Organization for Standardization/final draft International Standard 23317 protocol in purely inorganic simulated body fluid. The advances in our knowledge point to the need of a true paradigm shift toward testing physiological fluids with enhanced biomimicry and a better understanding of the materials' structure-dissolution behavior. This will contribute to "upgrade" our vision of entire cascades of events taking place at the implant surfaces upon immersion in the testing media or after implantation. Starting from an osteoinductive bioglass composition with the ability to alleviate the oxidative stress, thin bioglass films with different degrees of polymerization were deposited onto titanium substrates. Their biomineralization activity in simulated body fluid and in a series of new inorganic-organic media with increasing biomimicry that more closely simulated the human intercellular environment was compared. A comprehensive range of advanced characterization tools (scanning electron microscopy; grazing-incidence X-ray diffraction; Fourier-transform infrared, micro-Raman, energy-dispersive, X-ray photoelectron, and surface-enhanced laser desorption/ionization time-of-flight mass spectroscopies; and cytocompatibility assays using mesenchymal stem cells) were used. The information gathered is very useful to biologists, biophysicists, clinicians, and material scientists with special interest in teaching and research. By combining all the analyses, we propose herein a step forward toward establishing an improved unified protocol for testing the bioactivity of implant materials.
Collapse
Affiliation(s)
- AC Popa
- National Institute of Materials Physics, Măgurele
- Army Centre for Medical Research, Bucharest, Romania
| | - GE Stan
- National Institute of Materials Physics, Măgurele
| | - MA Husanu
- National Institute of Materials Physics, Măgurele
| | - I Mercioniu
- National Institute of Materials Physics, Măgurele
| | - LF Santos
- Centro de Química Estrutural, Instituto Superior Técnico (CQE-IST), University of Lisbon, Lisbon
| | - HR Fernandes
- Department of Materials and Ceramics Engineering, Centre for Research in Ceramics and Composite Materials (CICECO), University of Aveiro, Aveiro, Portugal
| | - JMF Ferreira
- Department of Materials and Ceramics Engineering, Centre for Research in Ceramics and Composite Materials (CICECO), University of Aveiro, Aveiro, Portugal
| |
Collapse
|
12
|
A novel silica nanotube reinforced ionic incorporated hydroxyapatite composite coating on polypyrrole coated 316L SS for implant application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 59:1110-1124. [DOI: 10.1016/j.msec.2015.10.045] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 09/02/2015] [Accepted: 10/15/2015] [Indexed: 01/10/2023]
|
13
|
Bioactivity and cell proliferation in radiopaque gel-derived CaO–P 2 O 5 –SiO 2 –ZrO 2 glass and glass–ceramic powders. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 55:436-47. [DOI: 10.1016/j.msec.2015.05.065] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 05/16/2015] [Accepted: 05/25/2015] [Indexed: 01/31/2023]
|
14
|
Stadlinger B, Belibasakis G, Bierbaum S. Implantatoberflächen und ihr Einfluss auf das periimplantäre Hartgewebe. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s12285-013-0388-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
15
|
Chen Q, Cabanas-Polo S, Goudouri OM, Boccaccini AR. Electrophoretic co-deposition of polyvinyl alcohol (PVA) reinforced alginate–Bioglass® composite coating on stainless steel: Mechanical properties and in-vitro bioactivity assessment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 40:55-64. [DOI: 10.1016/j.msec.2014.03.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 02/16/2014] [Accepted: 03/07/2014] [Indexed: 01/18/2023]
|
16
|
|
17
|
Liu YT, Kung KC, Yang CY, Lee TM, Lui TS. Engineering three-dimensional structures using bio-inspired dopamine and strontium on titanium for biomedical application. J Mater Chem B 2014; 2:7927-7935. [DOI: 10.1039/c4tb00822g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(dopamine) films facilitate the initial attachment and proliferation of cells. Cell differentiation is enhanced by the release of strontium from the coatings.
Collapse
Affiliation(s)
- Yen-Ting Liu
- Department of Materials Science and Engineering
- National Cheng Kung University
- Tainan, Taiwan
| | - Kuan-Chen Kung
- Institute of Oral Medicine
- National Cheng Kung University
- Tainan, Taiwan
| | - Chyun-Yu Yang
- Department of Orthopedics
- National Cheng Kung University
- Tainan, Taiwan
| | - Tzer-Min Lee
- Institute of Oral Medicine
- National Cheng Kung University
- Tainan, Taiwan
| | - Truan-Sheng Lui
- Department of Materials Science and Engineering
- National Cheng Kung University
- Tainan, Taiwan
| |
Collapse
|