1
|
Jalalvand AR. A novel quadruple templates molecularly imprinted polymer electrochemical sensor assisted by second-order calibration methods for detection of Sustanon abuse. SENSING AND BIO-SENSING RESEARCH 2023. [DOI: 10.1016/j.sbsr.2023.100557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
2
|
Jalalvand AR. Chemometrics-assisted electrochemical biosensing of cholesterol as the sole precursor of steroids by a novel electrochemical biosensor. Steroids 2023; 190:109159. [PMID: 36566822 DOI: 10.1016/j.steroids.2022.109159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
This project was performed with the aims of increasing the sensitivity of differential pulse voltammetry (DPV) which itself is a sensitive electroanalytical technique, and also to compare the area under peak (univariate calibration), height of peak (univariate calibration) and whole of vector (multivariate calibration) for calibration purposes. These topics were investigated by fabrication of a novel electrochemical biosensor for determination of cholesterol (CHO). The procedure used in this project was based on the synthesis of molecularly imprinted polymers (MIPs) to the preconcentration of CHO and its biosensing by a rotating glassy carbon electrode (GCE) modified by co-immobilization of cholesterol oxidase (CO), cholesterol esterase (CE) and horseradish peroxidase (HP) onto multiwalled carbon nanotubes-ionic liquid (COCEHP/MWCNTs-IL/GCE). The results showed that the hydrodynamic DPV (HYDPV) was much more sensitive than DPV and using the area under peak for univariate calibration purposes was more suitable than height of peak. Adsorption at the electrode surface is an important trouble which affects the height and position of voltammetric peaks, but the area under peak is not affected by adsorption therefore, it can be more suitable for univariate calibration purposes. The biosensor response was also calibrated by chronoamperometry and the results confirmed that the HYDPV was more sensitive than chronoamperometry. The next attempt was based on recording the biosensor responses based on second-order HYDPV data and modeling of them (whole of vectors) by three-way calibration methods which showed the best performance among the tested methods for determination of CHO. The biosensor response was long-term stable, repeatable and reproducible which was successfully applied to the analysis of serum sample towards determination of CHO whose results were comparable with a reference method.
Collapse
Affiliation(s)
- Ali R Jalalvand
- Research Center of Oils and Fats, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
3
|
Jalalvand AR, Rashidi Z, Khajenoori M. Sensitive and selective simultaneous biosensing of nandrolone and testosterone as two anabolic steroids by a novel biosensor assisted by second-order calibration. Steroids 2023; 189:109138. [PMID: 36379297 DOI: 10.1016/j.steroids.2022.109138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/16/2022] [Accepted: 11/07/2022] [Indexed: 11/15/2022]
Abstract
Recently, our research group have focused on an interesting project in which a novel dual template molecularly imprinted (DTMIP) biosensor was fabricated and assisted by second-order differential pulse voltammetric (DPV) data for simultaneous determination of nandrolone decanoate (ND) and testosterone decanoate (TS). An indium tin oxide (ITO) was modified with multiwalled carbon nanotubes-graphene-ionic liquid (MWCNT-Gr-IL) and then, the fullerene C60 was casted onto the surface of MWCNT-Gr-IL/ITO and electrochemically reduced. Finally, DTMIPs were electrosynthesized by electropolymerization of 4-aminobenzoic acid (ABA) as monomer with ND and TS as template molecules to obtain the final structure of the biosensor (DTMIP/C60/MWCNT-Gr-IL/ITO). Structure of the biosensor was electrochemically and microscopically characterized. The ND and TS generated two severely overlapped DPVs at the surface of the biosensor which forced us to assist the biosensor with three-way calibration by second-order DPV data to simultaneous determine them. Two second-order algorithms including multivariate curve resolution alternating least squares (MCR-ALS) and parallel factor analysis2 (PARAFAC2) were used to build second-order calibration models and evaluation of their performance in the analysis of synthetic samples showed more superiority of the MCR-ALS than PARAFC2 which motivated us to select PARAFC2 for the analysis of urine samples as real cases. Application of the biosensor assisted by PARAFC2 for the analysis of urine samples towards simultaneous determination of ND and TS was successful.
Collapse
Affiliation(s)
- Ali R Jalalvand
- Research Center of Oils and Fats, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Zeinab Rashidi
- Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan, Iran
| | - Maryam Khajenoori
- Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan, Iran
| |
Collapse
|
4
|
Jalalvand AR. Synthesis of a novel dual template molecularly imprinted polymer and its integration with fullerene C60 and multiwall carbon nanotubes for simultaneous electrochemical determination of ferritin and transferrin. SENSORS INTERNATIONAL 2022. [DOI: 10.1016/j.sintl.2022.100205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
5
|
Akbari V, Jamasbi E, Korani S, Mohammadi-Motlagh HR, Mohammadi G, Jalalvand AR. Introducing an interesting and novel strategy based on exploiting first-order advantage from spectrofluorimetric data for monitoring three toxic metals in living cells. Toxicol Rep 2022; 9:647-655. [PMID: 35399215 PMCID: PMC8990214 DOI: 10.1016/j.toxrep.2022.03.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/26/2022] Open
Abstract
In this work, we did our best to develop a novel and interesting analytical method based on coupling of spectrofluorimetry with first-order multivariate calibration techniques for simultaneous determination of lead (Pd), zinc (Zn) and cadmium (Cd) in HeLa cells. To achieve this goal, quenching of the emission of graphene (GR) was individually investigated in the presence of Pb, Zn and Cd and then, according to the linear ranges obtained from individual calibration graphs, a multivariate calibration model was developed based on modeling of the quenching of the emission of GR in the presence of the mixtures of Pb, Zn and Cd. First-order multivariate calibration models were constructed by partial least squares (PLS), principal component regression (PCR), orthogonal signal correction-PLS (OSC-PLS), continuum power regression (CPR), robust continuum regression (RCR) and partial robust M-regression (PRM) and their performances were evaluated and statistically compared. Finally, the OSC-PLS was chosen as the best model with the best practical performance for analytical purposes.
Collapse
Affiliation(s)
- Vali Akbari
- Research Center of Oils and Fats, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elaheh Jamasbi
- Research Center of Oils and Fats, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahla Korani
- Research Center of Oils and Fats, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hamid-Reza Mohammadi-Motlagh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghobad Mohammadi
- Research Center of Oils and Fats, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali R. Jalalvand
- Research Center of Oils and Fats, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
6
|
Jalalvand AR. Chemometrics assisted-electrochemical investigation of the binding and inhibition of calcineurin by tacrolimus: A combinatorial study. SENSING AND BIO-SENSING RESEARCH 2021. [DOI: 10.1016/j.sbsr.2021.100459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
7
|
Li Y, Geng C, Xu X, Lv X, Fang Y, Wang N, Yang Y, Cui B. Construction of polythiophene-derivative films as a novel electrochemical sensor for highly sensitive detection of nitrite. Anal Bioanal Chem 2021; 413:6639-6647. [PMID: 34595556 DOI: 10.1007/s00216-021-03630-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/08/2021] [Accepted: 08/19/2021] [Indexed: 11/30/2022]
Abstract
Herein, a novel, convenient, and highly selective electrochemical sensor for determination of nitrite based on a polythiophene-derivative film-modified glassy carbon electrode (GCE) was established. In this work, 2,5-di-thiophen-3-yl-thiazolo[5,4-d]thiazole (DTT), a novel thiophene derivative, was synthesized and used to form an original and excellent polymer film (PolyDTTF) on GCE through one-step electropolymerization for the first time. The modified electrodes were characterized by electron microscopy (SEM), Fourier transform infra-red spectroscopy (FT-IR), UV-visible spectra, Raman spectroscopy, and electrochemical technologies, in which the electrochemical sensor based on PolyDTTF was successfully constructed and demonstrated a significant electrocatalytic effect on nitrite. The influence of pH value, electrodeposition scanning times, scanning speed, and potential on the electrochemical behavior of nitrite were investigated in detail. Furthermore, the nitrite sensor exhibits excellent responses proportional to nitrite concentrations (R2 = 0.9972) over a concentration range of 5.5 × 10-9 ~ 3.5 × 10-5 M with a detection limit (LOD) of 2 nM, and has extremely good anti-interference ability for nitrite detection. This proposed sensor can be used to detect nitrite in actual samples, opening the possibility for applications in the food industry and environmental analysis.
Collapse
Affiliation(s)
- Yanping Li
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, China
| | - Chao Geng
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, China
| | - Xiaoyun Xu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, China
| | - Xiaoyi Lv
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, China
| | - Yishan Fang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, China.
| | - Na Wang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, China
| | - Yunjun Yang
- Academy of Advanced Interdisciplinary Studies, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, China.
| |
Collapse
|
8
|
Microbial Fuel Cell as a Bioelectrochemical Sensor of Nitrite Ions. Processes (Basel) 2021. [DOI: 10.3390/pr9081330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The deteriorating environmental quality requires a rapid in situ real-time monitoring of toxic compounds in environment including water and wastewater. One of the most toxic nitrogen-containing ions is nitrite ion, therefore, it is particularly important to ensure that nitrite ions are completely absent in surface and ground waters as well as in wastewater or, at least, their concentration does not exceed permissible levels. However, no selective ion electrode, which would enable continuous measurement of nitrite ion concentration in wastewater by bioelectrochemical sensor, is available. Microbial fuel cell (MFC)-based biosensor offers a sustainable low-cost alternative to the monitoring by periodic sampling for laboratory testing. It has been determined, that at low (0.01–0.1 mg·L−1) and moderate (1.0–10 mg·L−1) concentration of nitrite ions in anolyte-model wastewater, the voltage drop in MFC linearly depends on the logarithm of nitrite ion concentration of proving the potential of the application of MFC-based biosensor for the quantitative monitoring of nitrite ion concentration in wastewater and other surface water. Higher concentrations (100–1000 mg·L−1) of nitrite ions in anolyte-model wastewater could not be accurately quantified due to a significant drop in MFC voltage. In this case MFC can potentially serve as a bioelectrochemical early warning device for extremely high nitrite pollution.
Collapse
|
9
|
Fabrication of a novel amperometric sensing platform for determination of mangiferin. SENSING AND BIO-SENSING RESEARCH 2020. [DOI: 10.1016/j.sbsr.2020.100352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
10
|
Jalalvand AR. Chemometric modeling of different types of electrochemical data for investigation of the binding and inhibition of calcineurin by cyclosporine. SENSING AND BIO-SENSING RESEARCH 2020. [DOI: 10.1016/j.sbsr.2020.100361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
11
|
Jalalvand AR. Four-dimensional voltammetry: An efficient strategy for simultaneous determination of ascorbic acid and uric acid in the presence of dopamine as uncalibrated interference. SENSING AND BIO-SENSING RESEARCH 2020. [DOI: 10.1016/j.sbsr.2020.100330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
12
|
Jalalvand AR, Zangeneh MM, Jalili F, Soleimani S, Díaz-Cruz JM. An elegant technology for ultrasensitive impedimetric and voltammetric determination of cholestanol based on a novel molecularly imprinted electrochemical sensor. Chem Phys Lipids 2020; 229:104895. [PMID: 32165169 DOI: 10.1016/j.chemphyslip.2020.104895] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/25/2020] [Accepted: 03/06/2020] [Indexed: 12/26/2022]
Abstract
In this work, a novel molecularly imprinted electrochemical sensor (MIES) has been fabricated based on electropolymerization of a molecularly imprinted polymer (MIP) onto a glassy carbon electrode (GCE) modified with gold-palladium alloy nanoparticles (AuPd NPs)/polydopamine film (PDA)/multiwalled carbon nanotubes-chitosan-ionic liquid (MWCNTs-CS-IL) for voltammetric and impedimetric determination of cholestanol (CHO). Modifications applied to the bare GCE formed an excellent biocompatible composite film which was able to selectively detect CHO molecules. Modifications applied to the bare GCE were characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (SEM). Under optimal experimental conditions, the sensor was able to detect CHO in the range of 0.1-60 pM and 1-50 pM by EIS and DPV, respectively. Moreover, the sensor showed high sensitivity, selectivity, repeatability, reproducibility, low interference and good stability towards CHO determination. Our records confirmed that the sensor was successfully able to the analysis real samples for determination of CHO.
Collapse
Affiliation(s)
- Ali R Jalalvand
- Research Center of Oils and Fats, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Mohammad Mahdi Zangeneh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran; Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Faramarz Jalili
- Research Center of Oils and Fats, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shokoufeh Soleimani
- Research Center of Oils and Fats, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Jose Manuel Díaz-Cruz
- Departament d'Enginyeria Química i Química Analítica, Facultat de Química, Universitat de Barcelona, Martí i Franques 1-11, E-8028 Barcelona, Spain
| |
Collapse
|
13
|
Ghanbari K, Roshani M, Goicoechea HC, Jalalvand AR. Developing an elegant and integrated electrochemical-theoretical approach for detection of DNA damage induced by 4-nonylphenol. Heliyon 2019; 5:e02755. [PMID: 31720481 PMCID: PMC6839279 DOI: 10.1016/j.heliyon.2019.e02755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/03/2019] [Accepted: 10/28/2019] [Indexed: 12/18/2022] Open
Abstract
In this work, a novel biosensor was fabricated for detection of DNA damage induced by 4-nonylphenol (NP) and also determination of NP. To achieve this goal, a glassy carbon electrode (GCE) was modified with chitosan (Chit), gold nanoparticles (Au NPs) and DNA-multiwalled carbon nanotubes (DNA-MWCNTs). Then, the DNA-MWCNTs/Au NPs/Chit/GCE was incubated with methylene blue (MB) to obtain MB-DNA-MWCNTs/Au NPs/Chit/GCE in which MB was used as the redox indicator. The modifications applied to the GCE were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopic (EDS) and theoretical evidence. MB is a derivative of anthraquinone which can intercalate into double helix structure of DNA. By treating MB-DNA-MWCNTs/Au NPs/Chit/GCE with NP, a higher R ct was observed because the insertion of the NP may result in a more negative charge environment on the DNA surface which hinders accessibility of [Fe(CN)6]3-/4- anion to the electrode surface. Change in the EIS response of the biosensor in the presence of NP was used to develop a novel system for monitoring the DNA damage induced by NP. The EIS technique was also used to develop a sensitive electroanalytical method for determination of NP.
Collapse
Affiliation(s)
| | - Mahmoud Roshani
- Department of Chemistry, Ilam University, Ilam, Iran
- Corresponding author.
| | - Hector C. Goicoechea
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), C_atedra de Química Analítica I, Universidad Nacional del Litoral, Ciudad Universitaria, CC 242 (S3000ZAA), Santa Fe, Argentina
| | - Ali R. Jalalvand
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Corresponding author.
| |
Collapse
|
14
|
Chemometrical-electrochemical investigation for comparing inhibitory effects of quercetin and its sulfonamide derivative on human carbonic anhydrase II: Theoretical and experimental evidence. Int J Biol Macromol 2019; 136:377-385. [DOI: 10.1016/j.ijbiomac.2019.06.093] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 01/12/2023]
|
15
|
Jalalvand AR, Ghobadi S, Akbari V, Goicoechea HC, Faramarzi E, Mahmoudi M. Mathematical modeling of interactions of cabergoline with human serum albumin for biosensing of human serum albumin. SENSING AND BIO-SENSING RESEARCH 2019. [DOI: 10.1016/j.sbsr.2019.100297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
16
|
Jalalvand AR, Ghobadi S, Goicoechea HC, Faramarzi E, Mahmoudi M. Matrix augmentation as an efficient method for resolving interaction of bromocriptine with human serum albumin: trouble shooting and simultaneous resolution. Heliyon 2019; 5:e02153. [PMID: 31388584 PMCID: PMC6667702 DOI: 10.1016/j.heliyon.2019.e02153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/12/2019] [Accepted: 07/22/2019] [Indexed: 12/29/2022] Open
Abstract
This work reports the results of an interesting study related to the investigation of interactions of bromocriptine (BCP) with human serum albumin (HSA) by mathematicall modelling of voltammetric and spectroscopic data into an augmented data matrix and its resolution by multivariate curve resolution-alternating least squares (MCR-ALS). The quality of the results obtained by MCR-ALS was examined by MCR-BANDS and its outputs confirmed the absence of rotational ambiguities in the MCR-ALS results. BCP-HSA interactions were also modeled by molecular docking methods to verify the results obtained from experimental sections and fortunately, they were compatible. Hard modeling of the experimental data by EQUISPEC helped us to calculate the binding constant of the complex formed from BCP-HSA interactions which was in a good agreement with that of calculated from direct analysis of the experimental data. Finally, with the help of two different amperometric measurements based on BCP-HSA interactions a novel electroanalytical method was developed for biosensing of HSA in serum samples.
Collapse
Affiliation(s)
- Ali R Jalalvand
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sirous Ghobadi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Hector C Goicoechea
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Catedra de Química Analítica I, Universidad Nacional del Litoral, Ciudad Universitaria, CC242, S3000ZAA, Santa Fe, Argentina
| | - Elahe Faramarzi
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Majid Mahmoudi
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
17
|
Recent developments in carbon nanomaterial-enabled electrochemical sensors for nitrite detection. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.01.008] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
18
|
Abdel Hameed R, Medany SS. Construction of core-shell structured nickel@platinum nanoparticles on graphene sheets for electrochemical determination of nitrite in drinking water samples. Microchem J 2019. [DOI: 10.1016/j.microc.2018.10.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
19
|
Jalalvand AR, Roushani M, Goicoechea HC, Rutledge DN, Gu HW. MATLAB in electrochemistry: A review. Talanta 2019; 194:205-225. [DOI: 10.1016/j.talanta.2018.10.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/07/2018] [Accepted: 10/09/2018] [Indexed: 10/28/2022]
|
20
|
Jalalvand AR, Goicoechea HC, Gu HW. An interesting strategy devoted to fabrication of a novel and high-performance amperometric sodium dithionite sensor. Microchem J 2019. [DOI: 10.1016/j.microc.2018.08.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
21
|
Zangeneh MM, Norouzi H, Mahmoudi M, Goicoechea HC, Jalalvand AR. Fabrication of a novel impedimetric biosensor for label free detection of DNA damage induced by doxorubicin. Int J Biol Macromol 2018; 124:963-971. [PMID: 30508544 DOI: 10.1016/j.ijbiomac.2018.11.278] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/17/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022]
Abstract
In this work, a novel impedimetric biosensor has been fabricated for detection of DNA damage induced by doxorubicin (DX). Cytochrome P450 reductase (CPR) is required for electron transfer from nicotinamide adenine dinucleotide phosphate (NADPH) to cytochrome P450 (CP450) which causes DX to undergo a one-electron reduction of the p-quinone residue to form the semiquinone radical resulting in the generation of free hydroxyl radical which causes DNA damage. After modification of bare glassy carbon electrode (GCE) with multiwalled carbon nanotubes (MWCNTs) and chitosan (Ch), CPR and CP450 were co-immobilized onto the surface of Ch/MWCNTs/GCE by cross-linking CPR, CP450 and Ch through addition of glutaraldehyde. Then, the DNA was assembled onto the surface of CPRCP450/Ch/MWCNTs/GCE to fabricate the biosensor (DNA/CPRCP450/Ch/MWCNTs/GCE). Modifications applied to the bare GCE to fabricate the biosensor were characterized by CV, EIS and SEM. The DNA/CPRCP450/Ch/MWCNTs/GCE was treated in the damaging solution (DX + NADPH) which caused a significant DNA damage and the exposed DNA bases reduced the electrostatic repulsion of the negatively charged redox probe leading to Faradaic impedance changes. Performance of the biosensor for detection of DNA damage in the presence of Spinach extract was also examined and finally, an indirect impedimetric method was developed for determination of DX.
Collapse
Affiliation(s)
- Mohammad Mahdi Zangeneh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran; Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Hasan Norouzi
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Majid Mahmoudi
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hector C Goicoechea
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Universidad Nacional del Litoral, Ciudad Universitaria, CC 242, S3000ZAA Santa Fe, Argentina
| | - Ali R Jalalvand
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
22
|
Jalalvand AR. Fabrication of a novel and high-performance amperometric sensor for highly sensitive determination of ochratoxin A in juice samples. Talanta 2018; 188:225-231. [DOI: 10.1016/j.talanta.2018.05.093] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/26/2018] [Accepted: 05/28/2018] [Indexed: 11/24/2022]
|
23
|
Rashidi K, Mahmoudi M, Mohammadi G, Zangeneh MM, Korani S, Goicoechea HC, Gu HW, Jalalvand AR. Simultaneous co-immobilization of three enzymes onto a modified glassy carbon electrode to fabricate a high-performance amperometric biosensor for determination of total cholesterol. Int J Biol Macromol 2018; 120:587-595. [PMID: 30170050 DOI: 10.1016/j.ijbiomac.2018.08.163] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/11/2018] [Accepted: 08/27/2018] [Indexed: 12/25/2022]
Abstract
In this work, we have fabricated a novel amperometric cholesterol (CHO) biosensor because of the importance of determination of CHO levels in blood which is an important parameter for diagnosis and prevention of disease. To achieve this goal, cholesterol oxidase, cholesterol esterase and horseradish peroxidase were simultaneously co-immobilized onto a glassy carbon electrode (GCE) modified with gold nanoparticles/chitin-ionic liquid/poly(3,4-ethylenedioxypyrrole)/graphene-multiwalled carbon nanotubes-1,1'-ferrocenedicarboxylic acid-ionic liquid. Modifications applied to the bare GCE were characterized by cyclic voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy. The biosensor detected CHO in linear ranges of 0.1-25 μM and 25-950 μM with a detection limit of 0.07 μM. The sensitivity of the biosensor was estimated to be 6.6 μA μM-1 cm-2, its response time was <5 s and Michaelis-Menten constant was calculated to be 0.12 μM. Results obtained in this study revealed that the biosensor was selective, sensitive, stable, repeatable and reproducible. Finally, the biosensor was successfully applied to the determination of CHO levels in rats plasma.
Collapse
Affiliation(s)
- Khodabakhsh Rashidi
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Majid Mahmoudi
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghobad Mohammadi
- Department of Pharmaceutics, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Mahdi Zangeneh
- Department of Clinical Science, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran; Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahla Korani
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hector C Goicoechea
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Catedra de Química Analítica I, Universidad Nacional del Litoral, Ciudad Universitaria, CC 242, S3000ZAA Santa Fe, Argentina
| | - Hui-Wen Gu
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, China
| | - Ali R Jalalvand
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
24
|
Fabrication of a novel enzymatic electrochemical biosensor for determination of tyrosine in some food samples. Talanta 2018; 183:1-10. [PMID: 29567149 DOI: 10.1016/j.talanta.2018.02.053] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/10/2018] [Accepted: 02/12/2018] [Indexed: 11/23/2022]
Abstract
In this work, fabrication of a novel and ultrasensitive electrochemical biosensor based on immobilization of tyrosine hydroxylase onto palladium-platinum bimetallic alloy nanoparticles/chitosan-1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide/graphene-multiwalled carbon nanotubes-IL/glassy carbon electrode for determination of L-tyrosine in some high tyrosine foods including cheese, egg and yogurt was reported. Immobilization of tyrosine hydroxylase onto the surface of the biosensor was performed by cross-linking tyrosine hydroxylase and chitosan through the addition of glutaraldehyde. Enzymatic biosensors employ the affinity and selectivity of catalytically active proteins towards their target molecules and here, the tyrosine hydroxylase selectively catalyzes the conversion of tyrosine to levodopa which can be oxidized at lower potentials than tyrosine. The modifications were characterized by electrochemical impedance spectroscopy, cyclic voltammetry, energy dispersive X-ray spectroscopic and scanning electron microscopy. Under optimal conditions, the biosensor detected tyrosine in concentration ranges of 0.01 × 10-9 to 8.0 × 10-9 mol L-1 and 8.0 × 10-9 to 160.0 × 10-9 mol L-1 with a limit of detection of 0.009 × 10-9 mol L-1. The biosensor was able to selective determination of tyrosine even in the presence of common interferents therefore, the biosensor was highly selective. The biosensor also showed good operational stability, antifouling properties, sensitivity, repeatability and reproducibility.
Collapse
|
25
|
Shen Y, Zhang J, Sheng Q, Zheng J. A MnOOH-Polyaniline Nanocomposite Modified Gold Electrode for Electrochemical Sensing of Nitrite. CHINESE J CHEM 2017. [DOI: 10.1002/cjoc.201600892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yu Shen
- Institute of Analytical Science; Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Northwest University; Xi'an Shaanxi 710069 China
| | - Jian Zhang
- Institute of Analytical Science; Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Northwest University; Xi'an Shaanxi 710069 China
| | - Qinglin Sheng
- Institute of Analytical Science; Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Northwest University; Xi'an Shaanxi 710069 China
| | - Jianbin Zheng
- Institute of Analytical Science; Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Northwest University; Xi'an Shaanxi 710069 China
| |
Collapse
|
26
|
Wu W, Li Y, Jin J, Wu H, Wang S, Ding Y, Ou J. Sensing nitrite with a glassy carbon electrode modified with a three-dimensional network consisting of Ni7S6 and multi-walled carbon nanotubes. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1961-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Li Z, An Z, Guo Y, Zhang K, Chen X, Zhang D, Xue Z, Zhou X, Lu X. Au-Pt bimetallic nanoparticles supported on functionalized nitrogen-doped graphene for sensitive detection of nitrite. Talanta 2016; 161:713-720. [PMID: 27769471 DOI: 10.1016/j.talanta.2016.09.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/05/2016] [Accepted: 09/11/2016] [Indexed: 12/22/2022]
Abstract
In this work, we report a novel Au-Pt bimetallic nanoparticles (Au-PtNPs) decorated on the surface of nitrogen-doped graphene (NG) functionalized with 1, 3, 6, 8-pyrene tetra sulfonic acid sodium salt (PyTS) by direct electrodeposition method. The results of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and electrochemical impendence spectrum (EIS) reveal that the Au-PtNPs were successfully anchored on the surface of NG sheets with a diameter of 20-40nm. Further, the prepared Au-PtNPs/PyTS-NG nanocomposite exhibits superior catalytic activity for the oxidation of nitrite. Under optimal experimental conditions, an amperometric sensor with a linear range of 0.5-1621μM and a detection limit of 0.19μM (S/N=3) for the detection of nitrite was set up and applied to real samples.
Collapse
Affiliation(s)
- Zhuang Li
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Geography and Environment Science, Northwest Normal University, Lanzhou 730070, PR China
| | - Zhenzhen An
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Geography and Environment Science, Northwest Normal University, Lanzhou 730070, PR China
| | - Yongyang Guo
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Geography and Environment Science, Northwest Normal University, Lanzhou 730070, PR China
| | - Kangning Zhang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Geography and Environment Science, Northwest Normal University, Lanzhou 730070, PR China
| | - Xiaoling Chen
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Geography and Environment Science, Northwest Normal University, Lanzhou 730070, PR China
| | - Dongxia Zhang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Geography and Environment Science, Northwest Normal University, Lanzhou 730070, PR China
| | - Zhonghua Xue
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Xibin Zhou
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Geography and Environment Science, Northwest Normal University, Lanzhou 730070, PR China.
| | - Xiaoquan Lu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China.
| |
Collapse
|
28
|
Template-assisted preparation of Au nanowires and their application in nitrite ions sensing. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Electrochemical Co-Reduction Synthesis of AuPt Bimetallic Nanoparticles-Graphene Nanocomposites for Selective Detection of Dopamine in the Presence of Ascorbic Acid and Uric Acid. SENSORS 2015; 15:16614-31. [PMID: 26184200 PMCID: PMC4541896 DOI: 10.3390/s150716614] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/05/2015] [Accepted: 06/16/2015] [Indexed: 11/16/2022]
Abstract
In this paper, AuPt bimetallic nanoparticles-graphene nanocomposites were obtained by electrochemical co-reduction of graphene oxide (GO), HAuCl4 and H2PtCl6. The as-prepared AuPt bimetallic nanoparticles-graphene nanocomposites were characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and other electrochemical methods. The morphology and composition of the nanocomposite could be easily controlled by adjusting the HAuCl4/H2PtCl6 concentration ratio. The electrochemical experiments showed that when the concentration ratio of HAuCl4/H2PtCl6 was 1:1, the obtained AuPt bimetallic nanoparticles-graphene nanocomposite (denoted as Au1Pt1NPs-GR) possessed the highest electrocatalytic activity toward dopamine (DA). As such, Au1Pt1NPs-GR nanocomposites were used to detect DA in the presence of ascorbic acid (AA) and uric acid (UA) using the differential pulse voltammetry (DPV) technique and on the modified electrode, there were three separate DPV oxidation peaks with the peak potential separations of 177 mV, 130 mV and 307 mV for DA and AA, DA and UA, AA and UA, respectively. The linear range of the constructed DA sensor was from 1.6 μM to 39.7 μM with a detection limit of 0.1 μM (S/N = 3). The obtained DA sensor with good stability, high reproducibility and excellent selectivity made it possible to detect DA in human urine samples.
Collapse
|
30
|
Meng Z, Zheng J, Li Q. A nitrite electrochemical sensor based on electrodeposition of zirconium dioxide nanoparticles on carbon nanotubes modified electrode. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2014. [DOI: 10.1007/s13738-014-0565-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
31
|
Marlinda AR, Pandikumar A, Yusoff N, Huang NM, Lim HN. Electrochemical sensing of nitrite using a glassy carbon electrode modified with reduced functionalized graphene oxide decorated with flower-like zinc oxide. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1436-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|