1
|
Cold Spraying of Thick Biomimetic and Stoichiometric Apatite Coatings for Orthopaedic Implants. COATINGS 2022. [DOI: 10.3390/coatings12060722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Ceramic coatings have a long history in the orthopaedic field, with plasma sprayed coatings of hydroxyapatite as leading standard in the manufacturing process; however, these coatings can contain secondary phases resulting from the decomposition of hydroxyapatite at high temperatures, which limit the lifetime of implants and their osseointegration. This work aims to produce coatings that can maximize bone osseointegration of metallic implants. In order to preserve the raw characteristics of hydroxyapatite powders that are thermally unstable, coatings were deposited by cold spray onto Ti6Al4V alloy substrates. In contrast with other thermal spray technologies, this process presents the advantage of spraying particles through a supersonic gas jet at a low temperature. On top of hydroxyapatite, carbonated nanocrystalline apatite was synthesized and sprayed. This biomimetic apatite is similar to bone minerals due to the presence of carbonates and its poor crystallinity. FTIR and XRD analyses proved that the biomimetic characteristics and the non-stoichiometric of the apatite were preserved in the cold spray coatings. The cold spray process did not affect the chemistry of the raw material. The adhesion of the coatings as well as their thicknesses were evaluated, showing values comparable to conventional process. Cold spraying appears as a promising method to preserve the characteristics of calcium phosphate ceramics and to produce coatings that offer potentially improved osseointegration.
Collapse
|
2
|
Tang J, Li H, Guo M, Zhao Z, Liu H, Ren Y, Wang J, Cui X, Shen Y, Jin H, Zhao Y, Xiong T. Enhanced spreading, migration and osteodifferentiation of HBMSCs on macroporous CS-Ta - A biocompatible macroporous coating for hard tissue repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112411. [PMID: 34579920 DOI: 10.1016/j.msec.2021.112411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/17/2021] [Accepted: 08/30/2021] [Indexed: 02/06/2023]
Abstract
Macroporous tantalum (Ta) coating was produced on titanium alloy implant for bone repair by cold spray (CS) technology, which is a promising technology for oxygen sensitive materials. The surface characteristics as well as in vitro cytocompatibility were systematically evaluated. The results showed that a rough and macroporous CS-Ta coating was formed on the Ti6Al4V (TC4) alloy surfaces. The surface roughness showed a significant enhancement from 17.06 μm (CS-Ta-S), 27.48 μm (CS-Ta-M) to 39.21 μm (CS-Ta-L) with the increase of the average pore diameter of CS-Ta coatings from 138.25 μm, 198.25 μm to 355.56 μm. In vitro results showed that macroporous CS-Ta structure with tantalum pentoxide (Ta2O5) was more favorable to induce human bone marrow derived mesenchymal stem cells (HBMSCs) spreading, migration and osteodifferentiation than TC4. Compared with the micro-scaled structure outside the macropores, the surface micro-nano structure inside the macropores was more favorable to promote osteodifferentiation with enhanced alkaline phosphatase (ALP) activity and extracellular matrix (ECM) mineralization. In particular, CS-Ta-L with the largest pore size showed significantly enhanced integrin-α5 expression, cell migration, ALP activity, ECM mineralization as well as osteogenic-related genes including ALP, osteopontin (OPN) and osteocalcin (OCN) expression. Our results indicated that macroporous Ta coatings by CS, especially CS-Ta-L, may be promising for hard tissue repairs.
Collapse
Affiliation(s)
- Junrong Tang
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China; School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, PR China
| | - Hongyu Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Mingxiao Guo
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China; School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, PR China
| | - Zhipo Zhao
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China
| | - Hanhui Liu
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China; School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, PR China
| | - Yupeng Ren
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China; School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, PR China
| | - Jiqiang Wang
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China
| | - Xinyu Cui
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China
| | - Yanfang Shen
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China
| | - Huazi Jin
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China
| | - Ying Zhao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China.
| | - Tianying Xiong
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China.
| |
Collapse
|
3
|
Guillem-Marti J, Cinca N, Punset M, Cano IG, Gil FJ, Guilemany JM, Dosta S. Porous titanium-hydroxyapatite composite coating obtained on titanium by cold gas spray with high bond strength for biomedical applications. Colloids Surf B Biointerfaces 2019; 180:245-253. [DOI: 10.1016/j.colsurfb.2019.04.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 01/13/2023]
|