1
|
Martins Leal Schrekker C, Sokolovicz YCA, Raucci MG, Leal CAM, Ambrosio L, Lettieri Teixeira M, Meneghello Fuentefria A, Schrekker HS. Imidazolium Salts for Candida spp. Antibiofilm High-Density Polyethylene-Based Biomaterials. Polymers (Basel) 2023; 15:polym15051259. [PMID: 36904500 PMCID: PMC10007465 DOI: 10.3390/polym15051259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
The species of Candida present good capability to form fungal biofilms on polymeric surfaces and are related to several human diseases since many of the employed medical devices are designed using polymers, especially high-density polyethylene (HDPE). Herein, HDPE films containing 0; 0.125; 0.250 or 0.500 wt% of 1-hexadecyl-3-methylimidazolium chloride (C16MImCl) or its analog 1-hexadecyl-3-methylimidazolium methanesulfonate (C16MImMeS) were obtained by melt blending and posteriorly mechanically pressurized into films. This approach resulted in more flexible and less brittle films, which impeded the Candida albicans, C. parapsilosis, and C. tropicalis biofilm formation on their surfaces. The employed imidazolium salt (IS) concentrations did not present any significant cytotoxic effect, and the good cell adhesion/proliferation of human mesenchymal stem cells on the HDPE-IS films indicated good biocompatibility. These outcomes combined with the absence of microscopic lesions in pig skin after contact with HDPE-IS films demonstrated their potential as biomaterials for the development of effective medical device tools that reduce the risk of fungal infections.
Collapse
Affiliation(s)
- Clarissa Martins Leal Schrekker
- Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite 500, Porto Alegre 90050-170, RS, Brazil
| | - Yuri Clemente Andrade Sokolovicz
- Laboratory of Technological Processes and Catalysis, Institute of Chemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Gonçalves 9500, Porto Alegre 91501-970, RS, Brazil
| | - Maria Grazia Raucci
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d’Oltremare Padiglione 20, 80125 Naples, Italy
| | - Claudio Alberto Martins Leal
- Laboratory of Technological Processes and Catalysis, Institute of Chemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Gonçalves 9500, Porto Alegre 91501-970, RS, Brazil
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d’Oltremare Padiglione 20, 80125 Naples, Italy
| | - Mário Lettieri Teixeira
- Laboratory of Biochemistry and Toxicology, Instituto Federal Catarinense (IFC), Rodovia SC 283—km 17, Concórdia 89703-720, SC, Brazil
| | - Alexandre Meneghello Fuentefria
- Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite 500, Porto Alegre 90050-170, RS, Brazil
- Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Ipiranga 2752, Porto Alegre 90610-000, RS, Brazil
- Correspondence: (A.M.F.); (H.S.S.)
| | - Henri Stephan Schrekker
- Laboratory of Technological Processes and Catalysis, Institute of Chemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Gonçalves 9500, Porto Alegre 91501-970, RS, Brazil
- Correspondence: (A.M.F.); (H.S.S.)
| |
Collapse
|
2
|
Pillai RR, Thomas V. Plasma Surface Engineering of Natural and Sustainable Polymeric Derivatives and Their Potential Applications. Polymers (Basel) 2023; 15:400. [PMID: 36679280 PMCID: PMC9863272 DOI: 10.3390/polym15020400] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/14/2023] Open
Abstract
Recently, natural as well as synthetic polymers have been receiving significant attention as candidates to replace non-renewable materials. With the exponential developments in the world each day, the collateral damage to the environment is incessant. Increased demands for reducing pollution and energy consumption are the driving force behind the research related to surface-modified natural fibers (NFs), polymers, and various derivatives of them such as natural-fiber-reinforced polymer composites. Natural fibers have received special attention for industrial applications due to their favorable characteristics, such as low cost, abundance, light weight, and biodegradable nature. Even though NFs offer many potential applications, they still face some challenges in terms of durability, strength, and processing. Many of these have been addressed by various surface modification methodologies and compositing with polymers. Among different surface treatment strategies, low-temperature plasma (LTP) surface treatment has recently received special attention for tailoring surface properties of different materials, including NFs and synthetic polymers, without affecting any of the bulk properties of these materials. Hence, it is very important to get an overview of the latest developments in this field. The present article attempts to give an overview of different materials such as NFs, synthetic polymers, and composites. Special attention was placed on the low-temperature plasma-based surface engineering of these materials for diverse applications, which include but are not limited to environmental remediation, packaging, biomedical devices, and sensor development.
Collapse
Affiliation(s)
| | - Vinoy Thomas
- Department of Material Science and Engineering, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
3
|
Zhai W, Yu H, Chen H, Li L, Li D, Zhang Y, He T. Stable fouling resistance of polyethylene (PE) separator membrane via oxygen plasma plus zwitterion grafting. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
4
|
Gholivand K, Alavinasab Ardebili SA, Mohammadpour M, Eshaghi Malekshah R, Hasannia S, Onagh B. Preparation and examination of a scaffold based on hydroxylated polyphosphazene for tissue engineering: In vitro and in vivo studies. J Appl Polym Sci 2022. [DOI: 10.1002/app.52179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Khodayar Gholivand
- Department of Chemistry, Faculty of Sciences Tarbiat Modares University Tehran Iran
| | | | - Mahnaz Mohammadpour
- Department of Chemistry, Faculty of Sciences Tarbiat Modares University Tehran Iran
| | | | - Sadegh Hasannia
- Department of Biochemistry, Biological Science Tarbiat Modares University Tehran Iran
| | - Bahman Onagh
- Department of Biochemistry, Biological Science Tarbiat Modares University Tehran Iran
| |
Collapse
|
5
|
Taneda H, Yamada NL, Nemoto F, Minagawa Y, Matsuno H, Tanaka K. Modification of a Polymer Surface by Partial Swelling Using Nonsolvents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14941-14949. [PMID: 34904431 DOI: 10.1021/acs.langmuir.1c02852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surface modification without changing the physical properties in the bulk is of pivotal importance for the development of polymers as devices. We recently proposed a simple surface functionalization method for polymer films by partial swelling using a nonsolvent and demonstrated the incorporation of poly(2-methoxyethyl acrylate) (PMEA), which has an excellent antibiofouling ability, only into the outermost region of a poly(methyl methacrylate) (PMMA) film. We here extend this technology to another versatile polymer, polystyrene (PS). In this case, PS and PMEA have different solubility parameters making it difficult to select a suitable solvent, which is a nonsolvent for PS and a good solvent for PMEA, unlike the combination of PMMA with PMEA. Thus, such a solvent was first sought by examining the swelling behavior of PS films in contact with various alcohols. Once a mixed solvent of methanol/1-butanol (50/50 (v/v)) was chosen, PMEA chains could be successfully incorporated at the outermost region of the PS film. Atomic force microscopy in conjunction with neutron reflectivity revealed that chains of PMEA incorporated in the PS surface region were well swollen in water. This leads to an excellent ability to suppress the adhesion of platelets on the PS film.
Collapse
Affiliation(s)
- Hidenobu Taneda
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Norifumi L Yamada
- Neutron Science Laboratory, High Energy Accelerator Research Organization, 203-1 Shirakata, Tokai, Naka-gun, Ibaraki 319-1106, Japan
| | - Fumiya Nemoto
- Neutron Science Laboratory, High Energy Accelerator Research Organization, 203-1 Shirakata, Tokai, Naka-gun, Ibaraki 319-1106, Japan
| | - Yasuhisa Minagawa
- Sumitomo Rubber Industries, Ltd., 2-1-1 Tsutsui-cho, Chuo-ku, Kobe 651-0071, Japan
| | - Hisao Matsuno
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Keiji Tanaka
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
6
|
Turkoglu Sasmazel H, Alazzawi M, Kadim Abid Alsahib N. Atmospheric Pressure Plasma Surface Treatment of Polymers and Influence on Cell Cultivation. Molecules 2021; 26:molecules26061665. [PMID: 33802663 PMCID: PMC8002466 DOI: 10.3390/molecules26061665] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 12/31/2022] Open
Abstract
Atmospheric plasma treatment is an effective and economical surface treatment technique. The main advantage of this technique is that the bulk properties of the material remain unchanged while the surface properties and biocompatibility are enhanced. Polymers are used in many biomedical applications; such as implants, because of their variable bulk properties. On the other hand, their surface properties are inadequate which demands certain surface treatments including atmospheric pressure plasma treatment. In biomedical applications, surface treatment is important to promote good cell adhesion, proliferation, and growth. This article aim is to give an overview of different atmospheric pressure plasma treatments of polymer surface, and their influence on cell-material interaction with different cell lines.
Collapse
Affiliation(s)
- Hilal Turkoglu Sasmazel
- Department of Metallurgical and Materials Engineering, Atilim University, Incek, Golbasi, 06830 Ankara, Turkey
- Correspondence: ; Tel.: +90-(312)-586-8844
| | - Marwa Alazzawi
- Department of Biomedical Engineering, Al Nahrain University, Al Jadriya Bridge, Baghdad 64074, Iraq; (M.A.); (N.K.A.A.)
| | - Nabeel Kadim Abid Alsahib
- Department of Biomedical Engineering, Al Nahrain University, Al Jadriya Bridge, Baghdad 64074, Iraq; (M.A.); (N.K.A.A.)
| |
Collapse
|
7
|
Kanioura A, Constantoudis V, Petrou P, Kletsas D, Tserepi A, Gogolides E, Chatzichristidi M, Kakabakos S. Oxygen plasma micro-nanostructured PMMA plates and microfluidics for increased adhesion and proliferation of cancer versus normal cells: The role of surface roughness and disorder. MICRO AND NANO ENGINEERING 2020. [DOI: 10.1016/j.mne.2020.100060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Kanioura A, Petrou P, Kletsas D, Tserepi A, Chatzichristidi M, Gogolides E, Kakabakos S. Three-dimensional (3D) hierarchical oxygen plasma micro/nanostructured polymeric substrates for selective enrichment of cancer cells from mixtures with normal ones. Colloids Surf B Biointerfaces 2019; 187:110675. [PMID: 31810566 DOI: 10.1016/j.colsurfb.2019.110675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/16/2019] [Accepted: 11/25/2019] [Indexed: 12/30/2022]
Abstract
The enrichment of cancer cell population when in mixtures with normal ones is of great importance for cancer diagnosis. In this work, poly(methyl methacrylate) films have been processed applying different oxygen plasma conditions to fabricate surfaces with structure height ranging from 22 to more than 2000 nm. The surfaces were then evaluated with respect to adhesion and proliferation of both normal and cancer human cells. In particular, normal skin and lung fibroblasts, and four different cancer cell lines, A431 (skin cancer), HT1080 (fibrosarcoma), A549 (lung cancer), and PC3 (prostate cancer), have been employed. It was found that adhesion and proliferation of cancer cells was favored when cultured onto the hierarchical micro/nanostructured surfaces as compared to untreated ones with the maximum values obtained for substrates treated at -100 V for 3 min. On the other hand, although the adhesion of normal fibroblasts was not influenced by the micro/nanostructured surfaces, their morphology and proliferation was significantly impaired, especially after 3-day culture on these surfaces. The reduced proliferation rate of adherent fibroblasts was linked to reduced focal points formation, as it was verified through vinculin staining, and not to apoptosis. The micro/nanostructured surfaces prepared with plasma treatment at -100 V for 3 min (hierarchical topography with mean height of ∼800 nm) were selected as substrates for normal and cancer cell co-culture experiments. It was found that 25-80 times enrichment of cancer over the normal cells was achieved on the nanostructured surfaces after 3-day culture, while it was 5-8 times lower on the untreated ones. It should be noticed that this is the first time such high enrichment ratios are achieved without implementing surfaces modified with binding molecules specific for cancer cells. Thus, the nanostructured surfaces hold a strong promise as culture substrates for separation and enrichment of cancer cells from mixtures with normal ones that should find application in cancer diagnostics.
Collapse
Affiliation(s)
- Anastasia Kanioura
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR "Demokritos", Aghia Paraskevi, 15341, Greece
| | - Panagiota Petrou
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR "Demokritos", Aghia Paraskevi, 15341, Greece
| | - Dimitris Kletsas
- Institute of Biosciences and Applications, NCSR "Demokritos", Aghia Paraskevi, 15341, Greece
| | - Angeliki Tserepi
- Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Aghia Paraskevi, 15341, Greece
| | | | - Evangelos Gogolides
- Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Aghia Paraskevi, 15341, Greece
| | - Sotirios Kakabakos
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR "Demokritos", Aghia Paraskevi, 15341, Greece.
| |
Collapse
|
9
|
Anindyajati A, Boughton P, Ruys AJ. Mechanical and Cytocompatibility Evaluation of UHMWPE/PCL/Bioglass ® Fibrous Composite for Acetabular Labrum Implant. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E916. [PMID: 30893909 PMCID: PMC6470684 DOI: 10.3390/ma12060916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/26/2019] [Accepted: 03/08/2019] [Indexed: 11/16/2022]
Abstract
In this study, a fibrous composite was developed as synthetic graft for labral reconstruction treatment, comprised of ultra-high molecular weight polyethylene (UHMWPE) fabric, ultrafine fibre of polycaprolactone (PCL), and 45S5 Bioglass®. This experiment aimed to examine the mechanical performance and cytocompatibility of the composite. Electrospinning and a slurry dipping technique were applied for composite fabrication. To assess the mechanical performance of UHMWPE, tensile cyclic loading test was carried out. Meanwhile, cytocompatibility of the composite on fibroblastic cells was examined through a viability assay, as well as SEM images to observe cell attachment and proliferation. The mechanical test showed that the UHMWPE fabric had a mean displacement of 1.038 mm after 600 cycles, approximately 4.5 times greater resistance compared to that of natural labrum, based on data obtained from literature. A viability assay demonstrated the predominant occupation of live cells on the material surface, suggesting that the composite was able to provide a viable environment for cell growth. Meanwhile, SEM images exhibited cell adhesion and the formation of cell colonies on the material surface. These results indicated that the UHMWPE/PCL/Bioglass® composite could be a promising material for labrum implants.
Collapse
Affiliation(s)
- Adhi Anindyajati
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006, Australia.
| | - Philip Boughton
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006, Australia.
| | - Andrew J Ruys
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
10
|
Neděla O, Slepička P, Švorčík V. Surface Modification of Polymer Substrates for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E1115. [PMID: 28934132 PMCID: PMC5666921 DOI: 10.3390/ma10101115] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/15/2017] [Accepted: 09/18/2017] [Indexed: 01/12/2023]
Abstract
While polymers are widely utilized materials in the biomedical industry, they are rarely used in an unmodified state. Some kind of a surface treatment is often necessary to achieve properties suitable for specific applications. There are multiple methods of surface treatment, each with their own pros and cons, such as plasma and laser treatment, UV lamp modification, etching, grafting, metallization, ion sputtering and others. An appropriate treatment can change the physico-chemical properties of the surface of a polymer in a way that makes it attractive for a variety of biological compounds, or, on the contrary, makes the polymer exhibit antibacterial or cytotoxic properties, thus making the polymer usable in a variety of biomedical applications. This review examines four popular methods of polymer surface modification: laser treatment, ion implantation, plasma treatment and nanoparticle grafting. Surface treatment-induced changes of the physico-chemical properties, morphology, chemical composition and biocompatibility of a variety of polymer substrates are studied. Relevant biological methods are used to determine the influence of various surface treatments and grafting processes on the biocompatibility of the new surfaces-mammalian cell adhesion and proliferation is studied as well as other potential applications of the surface-treated polymer substrates in the biomedical industry.
Collapse
Affiliation(s)
- Oldřich Neděla
- Department of Solid State Engineering, University of Chemistry and Technology, 166 28 Prague, Czech Republic.
| | - Petr Slepička
- Department of Solid State Engineering, University of Chemistry and Technology, 166 28 Prague, Czech Republic.
| | - Václav Švorčík
- Department of Solid State Engineering, University of Chemistry and Technology, 166 28 Prague, Czech Republic.
| |
Collapse
|
11
|
Gilman AB, Piskarev MS, Kuznetsov AA, Ozerin AN. Modification of ultrahigh-molecular-weight polyethylene by low-temperature plasma (review). HIGH ENERGY CHEMISTRY 2017. [DOI: 10.1134/s0018143917020059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Novotná Z, Rimpelová S, Juřík P, Veselý M, Kolská Z, Hubáček T, Ruml T, Švorčík V. The interplay of plasma treatment and gold coating and ultra-high molecular weight polyethylene: On the cytocompatibility. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 71:125-131. [PMID: 27987681 DOI: 10.1016/j.msec.2016.09.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/10/2016] [Accepted: 09/26/2016] [Indexed: 11/30/2022]
Abstract
We have investigated the application of Ar plasma for creation of nanostructured ultra high molecular weight polyethylene (PE) surface in order to enhance adhesion of mouse embryonic fibroblasts (L929). The aim of this study was to investigate the effect of the interface between plasma-treated and gold-coated PE on adhesion and spreading of cells. The surface properties of pristine samples and its modified counterparts were studied by different experimental techniques (gravimetry, goniometry and X-ray photoelectron spectroscopy (XPS), electrokinetic analysis), which were used for characterization of treated and sputtered layers, polarity and surface chemical structure, respectively. Further, atomic force microscopy (AFM) was employed to study the surface morphology and roughness. Biological responses of cells seeded on PE samples were evaluated in terms of cell adhesion, spreading, morphology and proliferation. Detailed cell morphology and intercellular connections were followed by scanning electron microscopy (SEM). As it was expected the thickness of a deposited gold film was an increasing function of the sputtering time. Despite the fact that plasma treatment proceeded in inert plasma, oxidized degradation products were formed on the PE surface which would contribute to increased hydrophilicity (wettability) of the plasma treated polymer. The XPS method showed a decrease in carbon concentration with increasing plasma treatment. Cell adhesion measured on the interface between plasma treated and gold coated PE was inversely proportional to the thickness of a gold layer on a sample.
Collapse
Affiliation(s)
- Zdenka Novotná
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Prague, Czech Republic.
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Petr Juřík
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Martin Veselý
- Department of Organic Technology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Zdenka Kolská
- Faculty and Science, J. E. Purkinje University in Usti nad Labem, Usti nad Labem, Czech Republic
| | - Tomáš Hubáček
- Biology Centre CAS CR, SoWa National Research Infrastructure, Ceske Budejovice, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Václav Švorčík
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Prague, Czech Republic
| |
Collapse
|
13
|
Effect of Electron Beam Treatment in Air on Surface Properties of Ultra-High-Molecular-Weight Polyethylene. J Med Biol Eng 2016. [DOI: 10.1007/s40846-016-0135-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Sharma RK, Agarwal M, Balani K. Effect of ZnO morphology on affecting bactericidal property of ultra high molecular weight polyethylene biocomposite. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:843-51. [DOI: 10.1016/j.msec.2016.02.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/05/2016] [Accepted: 02/09/2016] [Indexed: 11/25/2022]
|
15
|
Saksena R, Gao C, Wicox M, de Mel A. Tubular organ epithelialisation. J Tissue Eng 2016; 7:2041731416683950. [PMID: 28228931 PMCID: PMC5308438 DOI: 10.1177/2041731416683950] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 11/21/2016] [Indexed: 12/11/2022] Open
Abstract
Hollow, tubular organs including oesophagus, trachea, stomach, intestine, bladder and urethra may require repair or replacement due to disease. Current treatment is considered an unmet clinical need, and tissue engineering strategies aim to overcome these by fabricating synthetic constructs as tissue replacements. Smart, functionalised synthetic materials can act as a scaffold base of an organ and multiple cell types, including stem cells can be used to repopulate these scaffolds to replace or repair the damaged or diseased organs. Epithelial cells have not yet completely shown to have efficacious cell-scaffold interactions or good functionality in artificial organs, thus limiting the success of tissue-engineered grafts. Epithelial cells play an essential part of respective organs to maintain their function. Without successful epithelialisation, hollow organs are liable to stenosis, collapse, extensive fibrosis and infection that limit patency. It is clear that the source of cells and physicochemical properties of scaffolds determine the successful epithelialisation. This article presents a review of tissue engineering studies on oesophagus, trachea, stomach, small intestine, bladder and urethral constructs conducted to actualise epithelialised grafts.
Collapse
Affiliation(s)
- Rhea Saksena
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Chuanyu Gao
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Mathew Wicox
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Achala de Mel
- Division of Surgery and Interventional Science, University College London, London, UK
| |
Collapse
|