1
|
Siswomihardjo W, Ana ID, Ardhani R. Fabrication of strontium ions substituted hydroxyapatite from the shells of the golden apple snail (Pomacea canaliculate L) with enhanced osteoconductive and improved biological properties. Dent Mater J 2024; 43:643-655. [PMID: 39198176 DOI: 10.4012/dmj.2023-246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
The use of biogenic calcium ions for the source of hydroxyapatite (HAp or HA) are very common and have been being explored extensively. However, it usually results high crystalline HA, due to high reaction and decomposition temperatures. In this study, strontium (Sr2+) doped HA from the golden apple snail shells (Pomacea canaliculate L) was successfully synthesized. It was indicated that Sr ions completely replaced calcium (Ca) ions, increased the lattice constant, and consecutively reduced HA crystallinity. Smaller crystal size and β-type carbonate (CO32-) ions substitution with Ca/P close to 1.67 molar ratio that mimic bone crystals were observed in Sr-doped HA, with significant increased rate of MC3T3-E1 cells viability and higher IC50 values. It was proven that Sr ions substitution resolved challenges on the use of biogenic sources for HA fabrication. Further in vivo study is needed to continue to valorise the results into real biomedical and clinical applications.
Collapse
Affiliation(s)
- Widowati Siswomihardjo
- Postgraduate Program of Dental Sciences, Faculty of Dentistry, Universitas Gadjah Mada
- Department of Dental Biomaterials, Faculty of Dentistry, Universitas Gadjah Mada
| | - Ika Dewi Ana
- Department of Dental Biomedical Science, Faculty of Dentistry, Universitas Gadjah Mada
- Research Collaboration Center for Biomedical Scaffolds, National Research and Innovation Agency (BRIN) and Universitas Gadjah Mada (UGM)
| | - Retno Ardhani
- Department of Dental Biomedical Science, Faculty of Dentistry, Universitas Gadjah Mada
| |
Collapse
|
2
|
Nguyen AN, Kung KC, Chen KC, Hsu CW, Huang CL, Lee TM. Characteristics and biological responses of selective laser melted Ti6Al4V modified by micro-arc oxidation. J Dent Sci 2024; 19:1426-1433. [PMID: 39035290 PMCID: PMC11259684 DOI: 10.1016/j.jds.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/09/2024] [Indexed: 07/23/2024] Open
Abstract
Background/purpose Additive manufacturing (AM) technology, such as selective laser melting (SLM), has been used to fabricate medical devices of Ti-6wt.% Al-4wt.%V (Ti6Al4V) alloys in dentistry. Strontium (Sr) has been shown to have the potential to treat osteoporosis. The aim of this study was to investigate the physicochemical and biological properties of strontium-containing coatings on selective laser melted Ti6Al4V (SLM-Ti6Al4V) substrate. Materials and methods The disk of Ti6Al4V was prepared by SLM method. The strontium-containing coatings were prepared by micro-arc oxidation (MAO) in aqueous electrolytes. The surface topography, chemical composition, and phase of strontium-containing MAO (SrMAO) coatings were performed by scanning electron microscope (SEM), energy dispersive X-ray spectrometer (EDS), and thin film X-ray diffraction (TF-XRD), respectively. The apatite-forming ability of the MAO coatings was conducted in simulating body fluid (SBF), and the cell proliferation was determined by methylthiazoletetrazolium (MTT) assay. Results The microstructure of SLM-Ti6Al4V displays acicular α-phase organization. The TF-XRD results indicated that the phase of SrMAO coating was anatase, rutile, and titanium. The calcium, phosphorus, and strontium were detected in the coatings by EDS. Using the SEM, the surface morphology of SrMAO coatings exhibited a uniform 3D porous structure. The SrMAO coatings could induce a bone-like apatite layer after immersion in SBF, and presented significantly higher cell proliferation than untreated specimens in in-vitro experiments. Conclusion All findings in this study indicate that SrMAO coatings formed on SLM-Ti6Al4V surfaces exhibit a benefit on biological responses and thereby are suitable for biomedical applications.
Collapse
Affiliation(s)
- An-Nghia Nguyen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Kuan-Chen Kung
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Ken-Chung Chen
- School of Dentistry, National Cheng Kung University, Tainan, Taiwan
- Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Wei Hsu
- School of Dentistry, National Cheng Kung University, Tainan, Taiwan
- Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Ling Huang
- Center for Fundamental Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tzer-Min Lee
- School of Dentistry, National Cheng Kung University, Tainan, Taiwan
- Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
3
|
Park JE, Jang YS, Seo JM, Lee MH. Facilitated osteogenesis of magnesium implant by coating of strontium incorporated calcium phosphate. Biointerphases 2023; 18:2888968. [PMID: 37144874 DOI: 10.1116/6.0002598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/19/2023] [Indexed: 05/06/2023] Open
Abstract
This study investigated the corrosion resistance and biocompatibility of magnesium coated with strontium-doped calcium phosphate (Sr-CaP) for dental and orthopedic applications. Sr-CaP was coated on biodegradable magnesium using a chemical dipping method. Magnesium coated with Sr-CaP exhibited better corrosion resistance than pure magnesium. Sr-CaP-coated magnesium showed excellent cell proliferation and differentiation. Additionally, new bone formation was confirmed in vivo. Therefore, Sr-CaP-coated magnesium with reduced degradation and improved biocompatibility can be used for orthopedic and dental implant applications.
Collapse
Affiliation(s)
- Jung-Eun Park
- Department of Dental Biomaterials and Institute of Biodegradable material, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju 54896, South Korea
| | - Yong-Seok Jang
- Department of Dental Biomaterials and Institute of Biodegradable material, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju 54896, South Korea
| | - Jae-Min Seo
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, South Korea
- Department of Prosthodontics and Institute of Oral Bio-Science, School of Dentistry, Jeonbuk National University, Jeonju 54896, South Korea
| | - Min-Ho Lee
- Department of Dental Biomaterials and Institute of Biodegradable material, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju 54896, South Korea
| |
Collapse
|
4
|
Park SS, Farwa U, Park I, Moon BG, Im SB, Lee BT. In-vivo bone remodeling potential of Sr-d-Ca-P /PLLA-HAp coated biodegradable ZK60 alloy bone plate. Mater Today Bio 2023; 18:100533. [PMID: 36619205 PMCID: PMC9816808 DOI: 10.1016/j.mtbio.2022.100533] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/12/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022] Open
Abstract
Magnesium and its alloys are widely applied biomaterials due to their biodegradability and biocompatibility. However, rapid degradation and hydrogen gas evolution hinder its applicability on a commercial scale. In this study, we developed an Mg alloy bone plate for bone remodeling and support after a fracture. We further coated the Mg alloy plate with Sr-D-Ca-P (Sr dopped Ca-P coating) and Sr-D-Ca-P/PLLA-HAp to evaluate and compare their biodegradability and biocompatibility in both in vitro and in vivo experiments. Chemical immersion and dip coating were employed for the formation of Sr-D-Ca-P and PLLA-HAp layers, respectively. In vitro evaluation depicted that both coatings delayed the degradation process and exhibited excellent biocompatibility. MC3T3-E1cells proliferation and osteogenic markers expression were also promoted. In vivo results showed that both Sr-D-Ca-P and Sr-D-Ca-P/PLLA-HAp coated bone plates had slower degradation rate as compared to Mg alloy. Remarkable bone remodeling was observed around the Sr-D-Ca-P/PLLA-HAp coated bone plate than bare Mg alloy and Sr-D-Ca-P coated bone plate. These results suggest that Sr-D-Ca-P/PLLA-HAp coated Mg alloy bone plate with lower degradation and enhanced biocompatibility can be applied as an orthopedic implant.
Collapse
Affiliation(s)
- Seong-Su Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Ume Farwa
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, South Korea
| | - Ihho Park
- Korea Institute of Material Science, Changwon, South Korea
| | - Byoung-Gi Moon
- Korea Institute of Material Science, Changwon, South Korea
| | - Soo-Bin Im
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, South Korea
- Department of Neuro-surgery, Soonchunhyang University Medical Centre, Bucheon, South Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, South Korea
| |
Collapse
|
5
|
Yan MD, Ou YJ, Lin YJ, Liu RM, Fang Y, Wu WL, Zhou L, Yao X, Chen J. Does the incorporation of strontium into calcium phosphate improve bone repair? A meta-analysis. BMC Oral Health 2022; 22:62. [PMID: 35260122 PMCID: PMC8905839 DOI: 10.1186/s12903-022-02092-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 02/21/2022] [Indexed: 12/09/2022] Open
Abstract
Background The application of calcium phosphate (CaP)-based bone substitutes plays an important role in periodontal regeneration, implant dentistry and alveolar bone reconstruction. The incorporation of strontium (Sr) into CaP-based bone substitutes appears to improve their biological properties, but the reported in vivo bone repair performance is inconsistent among studies. Herein, we conducted a systematic review and meta-analysis to investigate the in vivo performance of Sr-doped materials. Methods We searched PubMed, EMBASE (via OVIDSP), and reference lists to identify relevant animal studies. The search, study selection, and data extraction were performed independently by two investigators. Meta-analyses and sub-group analyses were conducted using Revman version 5.4.1. The heterogeneity between studies were assessed by I2. Publication bias was investigated through a funnel plot. Results Thirty-five studies were finally enrolled, of which 16 articles that reported on new bone formation (NBF) were included in the meta-analysis, covering 31 comparisons and 445 defects. The overall effect for NBF was 2.25 (95% CI 1.61–2.90, p < 0.00001, I2 = 80%). Eight comparisons from 6 studies reported the outcomes of bone volume/tissue volume (BV/TV), with an overall effect of 1.42 (95% CI 0.65–2.18, p = 0.0003, I2 = 75%). Fourteen comparisons reported on the material remaining (RM), with the overall effect being -2.26 (95% CI − 4.02 to − 0.50, p = 0.0009, I2 = 86%). Conclusions Our study revealed that Sr-doped calcium phosphate bone substitutes improved in vivo performance of bone repair. However, more studies are also recommended to further verify this conclusion. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-022-02092-7.
Collapse
Affiliation(s)
- Ming-Dong Yan
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Yan-Jing Ou
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China.,Department of Oral Implantology, Affiliated Stomatological Hospital of Fujian Medical University, Fuzhou, 350002, China
| | - Yan-Jun Lin
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Rui-Min Liu
- ORAL Center, Fujian Provincial Governmental Hospital (Affiliated Hospital of Fujian Health College), Fuzhou, 350003, China
| | - Yan Fang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Wei-Liang Wu
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Lin Zhou
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Xiu Yao
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China.,Institute of Stomatology and Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jiang Chen
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China.
| |
Collapse
|
6
|
Park JE, Jang YS, Choi JB, Bae TS, Park IS, Lee MH. Evaluation of Corrosion Behavior and In Vitro of Strontium-Doped Calcium Phosphate Coating on Magnesium. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6625. [PMID: 34772160 PMCID: PMC8586916 DOI: 10.3390/ma14216625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022]
Abstract
This study investigated the biocompatibility of strontium-doped calcium phosphate (Sr-CaP) coatings on pure magnesium (Mg) surfaces for bone applications. Sr-CaP coated specimens were obtained by chemical immersion method on biodegradable magnesium. In this study, Sr-CaP coated magnesium was obtained by immersing pure magnesium in a solution containing Sr-CaP at 80 °C for 3 h. The corrosion resistance and biocompatibility of magnesium according to the content of Sr-CaP coated on the magnesium surface were evaluated. As a result, the corrosion resistance of Sr-CaP coated magnesium was improved compared to pure magnesium. In addition, it was confirmed that the biocompatibility of the group containing Sr was increased. Thus, the Ca-SrP coating with a reduced degradation and improved biocompatibility could be used in Mg-based orthopedic implant applications.
Collapse
Affiliation(s)
- Jung-Eun Park
- Department of Dental Biomaterials and Institute of Biodegradable Material and Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju-si 54896, Korea; (J.-E.P.); (Y.-S.J.); (J.-B.C.); (T.-S.B.)
| | - Yong-Seok Jang
- Department of Dental Biomaterials and Institute of Biodegradable Material and Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju-si 54896, Korea; (J.-E.P.); (Y.-S.J.); (J.-B.C.); (T.-S.B.)
| | - Ji-Bong Choi
- Department of Dental Biomaterials and Institute of Biodegradable Material and Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju-si 54896, Korea; (J.-E.P.); (Y.-S.J.); (J.-B.C.); (T.-S.B.)
| | - Tae-Sung Bae
- Department of Dental Biomaterials and Institute of Biodegradable Material and Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju-si 54896, Korea; (J.-E.P.); (Y.-S.J.); (J.-B.C.); (T.-S.B.)
| | - Il-Song Park
- Division of Advanced Materials Engineering, Research Center for Advanced Materials Development and Institute of Biodegradable Materials, Jeonbuk National University, Jeonju-si 54896, Korea
| | - Min-Ho Lee
- Department of Dental Biomaterials and Institute of Biodegradable Material and Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju-si 54896, Korea; (J.-E.P.); (Y.-S.J.); (J.-B.C.); (T.-S.B.)
| |
Collapse
|
7
|
Abstract
Cellulose acetate (CA)/strontium phosphate (SrP) hybrid coating has been proposed as an effective strategy to build up novel bone-like structures for bone healing since CA is soluble in most organic solvents. Strontium (Sr2+) has been reported as a potential agent to treat degenerative bone diseases due to its osteopromotive and antibacterial effects. Herein, bioactive hybrid composite SrP-based coatings (CASrP) were successfully produced for the first time. CASrP was synthesized via a modified biomimetic method (for 7—CA7dSrP, and 14 days—CA14dSrP), in which the metal ion Sr2+ was used in place of Ca2+ in the simulated body fluid. Energy-dispersive X-ray (EDX) and Fourier transform infrared spectroscopy (FTIR) analysis confirmed the SrP incorporation chemically in the CASrP samples. Atomic absorption spectroscopy (AAS) supported EDX data, showing Sr2+ adsorption into CA, and its significant increase with the augmentation of time of treatment (ca. 92%—CA7dSrP and 96%—CA14dSrP). An increment in coating porosity and the formation of SrP crystals were evidenced by scanning electron microscopy (SEM) images. X-ray diffraction (XRD) evidenced a greater crystallinity than CA membranes and a destabilization of CA14dSrP structure compared to CA7dSrP. The composites were extremely biocompatible for fibroblast and osteoblast cells. Cell viability (%) was higher either for CA7dSrP (48 h: ca. 92% and 115%) and CA14dSrP (48 h: ca. 88% and 107%) compared to CA (48 h: ca. 70% and 51%) due to SrP formation and Sr2+ presence in its optimal dose in the culture media (4.6–9 mg·L−1). In conclusion, the findings elucidated here evidence the remarkable potential of CA7dSrP and CA14dSrP as bioactive coatings on the development of implant devices for inducing bone regeneration.
Collapse
|
8
|
Nguyen TDT, Jang YS, Kim YK, Kim SY, Lee MH, Bae TS. Osteogenesis-Related Gene Expression and Guided Bone Regeneration of a Strontium-Doped Calcium-Phosphate-Coated Titanium Mesh. ACS Biomater Sci Eng 2019; 5:6715-6724. [PMID: 33423489 DOI: 10.1021/acsbiomaterials.9b01042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Guided bone regeneration using a perforated titanium membrane is actively used in oral and orthopedic surgeries to provide space for the subsequent filling of a new bone in the case of bone defects and to achieve proper bone augmentation and reconstruction. The surface modification of a titanium membrane using a strontium-substituted calcium phosphate coating has become a popular trend to provide better bioactivity and biocompatibility on the membrane for improving the bone regeneration because strontium can stimulate not only the differentiation of osteoblasts but also inhibit the differentiation of osteoclasts. The strontium-doped calcium phosphate coating on the titanium mesh was formed by the cyclic precalcification method, and its effects on bone regeneration were evaluated by in vitro analysis of osteogenesis-related gene expression and in vivo evaluation of osteogenesis of the titanium mesh using the rat calvarial defect model in this study. It was identified that the strontium-doped calcium phosphate-treated mesh showed a higher expression of all genes related to osteogenesis in the osteoblast cells and resulted in new bone formation with better osseointegration with the mesh in the rat calvarial defect, in comparison with the results of untreated and calcium phosphate-treated meshes.
Collapse
Affiliation(s)
- Thuy-Duong Thi Nguyen
- Faculty of Odonto-Stomatology, Hue University of Medicine and Pharmacy, Hue University, 06 Ngo Quyen Street, Hue City, Thua Thien Hue 530000, Vietnam
| | - Yong-Seok Jang
- Department of Dental Biomaterials and Institute of Biodegradable Material, Institute of Oral Bioscience, BK21 Plus Project, School of Dentistry, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju 54896, Jeollabuk-do, South Korea
| | - Yu-Kyoung Kim
- Department of Dental Biomaterials and Institute of Biodegradable Material, Institute of Oral Bioscience, BK21 Plus Project, School of Dentistry, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju 54896, Jeollabuk-do, South Korea
| | - Seo-Young Kim
- Department of Dental Biomaterials and Institute of Biodegradable Material, Institute of Oral Bioscience, BK21 Plus Project, School of Dentistry, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju 54896, Jeollabuk-do, South Korea
| | - Min-Ho Lee
- Department of Dental Biomaterials and Institute of Biodegradable Material, Institute of Oral Bioscience, BK21 Plus Project, School of Dentistry, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju 54896, Jeollabuk-do, South Korea
| | - Tae-Sung Bae
- Department of Dental Biomaterials and Institute of Biodegradable Material, Institute of Oral Bioscience, BK21 Plus Project, School of Dentistry, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju 54896, Jeollabuk-do, South Korea
| |
Collapse
|
9
|
Nguyen TDT, Jang YS, Lee MH, Bae TS. Effect of strontium doping on the biocompatibility of calcium phosphate-coated titanium substrates. J Appl Biomater Funct Mater 2019; 17:2280800019826517. [PMID: 30803306 DOI: 10.1177/2280800019826517] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND: Titanium biomedical devices coated with strontium-doped calcium phosphate ceramics can support desirable bone regeneration through anabolic and anti-catabolic effects of strontium and the compositions close to that of natural mineral tissue. METHODS: Strontium was doped into the calcium phosphate coating using the cyclic pre-calcification method on the anodized titanium plate. The effects of the different concentration of strontium in treatment solution and cycle numbers of the pre-calcification treatment on the biocompatibility were investigated in terms of the changes in morphology and chemical composition of coating, ion release pattern and cytocompatibility in vitro. RESULTS: At a high substitution ratio of strontium in the calcium phosphate coating, the size of precipitated particles was decreased and the solubility of the coating was increased. ASH55 group, which was coated by pre-calcification treatment of 20 cycles in coating solution with Sr:Ca molar ratio of 5:5, exhibited superior cellular attachment at 1 day and proliferation after 7 days of culturing in comparison with the non-doped surface and other doped surfaces. CONCLUSION: Sufficient strontium doping concentrations in calcium phosphate coating can enhance cell adhesion and proliferation on the titanium biomedical devices for bone regeneration.
Collapse
Affiliation(s)
- Thuy-Duong Thi Nguyen
- 1 Odonto-stomatology Faculty, Hue University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Yong-Seok Jang
- 2 Department of Dental Biomaterials and Institute of Biodegradable Material, Chonbuk National University, Jeonju, South Korea
| | - Min-Ho Lee
- 2 Department of Dental Biomaterials and Institute of Biodegradable Material, Chonbuk National University, Jeonju, South Korea
| | - Tae-Sung Bae
- 2 Department of Dental Biomaterials and Institute of Biodegradable Material, Chonbuk National University, Jeonju, South Korea
| |
Collapse
|
10
|
Gu X, Lin W, Li D, Guo H, Li P, Fan Y. Degradation and biocompatibility of a series of strontium substituted hydroxyapatite coatings on magnesium alloys. RSC Adv 2019; 9:15013-15021. [PMID: 35516316 PMCID: PMC9064257 DOI: 10.1039/c9ra02210d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/04/2019] [Indexed: 01/28/2023] Open
Abstract
Sr-HA coatings could simply improve the degradation and osteoblast response of Mg in a Sr-dose dependent manner.
Collapse
Affiliation(s)
- Xuenan Gu
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100191
- China
- Beijing Advanced Innovation Centre for Biomedical Engineering
| | - Wenting Lin
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100191
- China
| | - Dan Li
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100191
- China
| | - Hongmei Guo
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100191
- China
| | - Ping Li
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100191
- China
- Beijing Advanced Innovation Centre for Biomedical Engineering
| | - Yubo Fan
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100191
- China
- Beijing Advanced Innovation Centre for Biomedical Engineering
| |
Collapse
|
11
|
Bizelli-Silveira C, Pullisaar H, Abildtrup LA, Andersen OZ, Spin-Neto R, Foss M, Kraft DCE. Strontium enhances proliferation and osteogenic behavior of periodontal ligament cells in vitro. J Periodontal Res 2018; 53:1020-1028. [PMID: 30207394 DOI: 10.1111/jre.12601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 07/09/2018] [Accepted: 08/02/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Strontium (Sr) enhances osteogenic differentiation of certain multipotent cells. Periodontal ligament cells (PDLCs) are known to be multipotent, and Sr might be useful in periodontal bone tissue engineering. This study investigates the effect of high concentration of Sr on the proliferation and osteogenic behavior of PDLCs in vitro. MATERIAL AND METHODS Primary human PDLCs were cultured in MEM + 10% FBS without (Ctrl) or with Sr in four diverse concentrations: Sr1, 11.3 × 10-3 mg/L, human serum physiological level; Sr2, 13 mg/L, typical human serum level after strontium ranelate treatment; Sr3, 130 mg/L, and Sr4, 360 mg/L. The spreading area (2, 4, 6, 24 hours), proliferation rate (1, 3, 7 days), osteogenic behavior (alkaline phosphatase - ALP activity, 7 and 14 days; expression of osteogenic genes, ALP, Runt-related transcription factor 2 - RUNX2, osteopontin - OPN, osteocalcin - OCN, and osteoprotegerin -OPG, 1, 3, 7, 14, 21 days), and formation of mineralized nodules (14 and 21 days) of the PDLCs were assessed. Data were compared group- and period-wise using ANOVA tests. RESULTS Periodontal ligament cells cultured with Sr4 showed increased spreading area (after 4 hours), proliferation rate (from 3 days), and OCN and OPN (from 7 days) gene expression as compared to Ctrl, Sr1, Sr2, and Sr3. Sr4 also led to lower ALP activity (from 7 days), ALP (from 3 days), and RUNX2 (at 7 and 14 days) gene expression, together with more evident formation of mineralized nodules, compared to Ctrl, Sr1, Sr2, and Sr3. CONCLUSION Periodontal ligament cells responded to Sr4 with increased cellular proliferation and osteogenic behavior in vitro.
Collapse
Affiliation(s)
- Carolina Bizelli-Silveira
- Department of Dentistry and Oral Health, Faculty of Health, Aarhus University, Aarhus, Denmark.,Department of Physics and Astronomy, Interdisciplinary Nanoscience Center (iNANO), Faculty of Science and Technology, Aarhus University, Aarhus, Denmark
| | - Helen Pullisaar
- Department of Dentistry and Oral Health, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Lisbeth A Abildtrup
- Department of Dentistry and Oral Health, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Ole Z Andersen
- Department of Physics and Astronomy, Interdisciplinary Nanoscience Center (iNANO), Faculty of Science and Technology, Aarhus University, Aarhus, Denmark
| | - Rubens Spin-Neto
- Department of Dentistry and Oral Health, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Morten Foss
- Department of Physics and Astronomy, Interdisciplinary Nanoscience Center (iNANO), Faculty of Science and Technology, Aarhus University, Aarhus, Denmark
| | - David C E Kraft
- Department of Dentistry and Oral Health, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
12
|
Panzavolta S, Torricelli P, Casolari S, Parrilli A, Fini M, Bigi A. Strontium-Substituted Hydroxyapatite-Gelatin Biomimetic Scaffolds Modulate Bone Cell Response. Macromol Biosci 2018; 18:e1800096. [PMID: 29877029 DOI: 10.1002/mabi.201800096] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/07/2018] [Indexed: 11/10/2022]
Abstract
Strontium has a beneficial role on bone remodeling and is proposed for the treatment of pathologies associated to excessive bone resorption, such as osteoporosis. Herein, the possibility to utilize a biomimetic scaffold as strontium delivery system is explored. Porous 3D gelatin scaffolds containing about 30% of strontium substituted hydroxyapatite (SrHA) or pure hydroxyapatite (HA) are prepared by freeze-drying. The scaffolds display a very high open porosity, with an interconnectivity of 100%. Reinforcement with further amount of gelatin provokes a modest decrease of the average pore size, without reducing interconnectivity. Moreover, reinforced scaffolds display reduced water uptake ability and increased values of mechanical parameters when compared to as-prepared scaffolds. Strontium displays a sustained release in phosphate buffered saline: the quantities released after 14 d from as-prepared and reinforced scaffolds are just 14 and 18% of the initial content, respectively. Coculture of osteoblasts and osteoclasts shows that SrHA-containing scaffolds promote osteoblast viability and activity when compared to HA-containing scaffolds. On the other hand, osteoclastogenesis and osteoclast differentiation are significantly inhibited on SrHA-containing scaffolds, suggesting that these systems could be usefully applied for local delivery of strontium in loci characterized by excessive bone resorption.
Collapse
Affiliation(s)
- Silvia Panzavolta
- Department of Chemistry "G. Ciamician", University of Bologna, via Selmi, 2, Bologna, 40126, Italy
| | - Paola Torricelli
- Laboratory of Preclinical and Surgical Studies, IRCCS Rizzoli Orthopaedic Institute, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Sonia Casolari
- Department of Chemistry "G. Ciamician", University of Bologna, via Selmi, 2, Bologna, 40126, Italy
| | - Annapaola Parrilli
- Laboratory of Preclinical and Surgical Studies, IRCCS Rizzoli Orthopaedic Institute, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Milena Fini
- Laboratory of Preclinical and Surgical Studies, IRCCS Rizzoli Orthopaedic Institute, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Adriana Bigi
- Department of Chemistry "G. Ciamician", University of Bologna, via Selmi, 2, Bologna, 40126, Italy
| |
Collapse
|
13
|
The Incorporation of Strontium in a Sodium Alginate Coating on Titanium Surfaces for Improved Biological Properties. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9867819. [PMID: 29109961 PMCID: PMC5646307 DOI: 10.1155/2017/9867819] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/04/2017] [Indexed: 11/18/2022]
Abstract
Orthopedic implant failure is mainly attributed to the poor bonding of the implant to bone tissue. An effective approach to minimize the implant failure would be modifying the surface of the implant. Strontium (Sr) can stimulate the proliferation and differentiation of osteoblasts and reduce the activity of osteoclasts. In this study, a titanium (Ti) surface was successively functionalized by covalently grafting dopamine, sodium alginate (SA), and Sr2+ via the electrostatic immobilization method. The as-prepared coatings on the Ti surface were characterized by using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), and contact angle. The results indicated that the Sr-incorporated coatings were successfully prepared and that Sr distributed uniformly on the surface. A long-lasting and sustained Sr release had been observed in Sr2+ release studies. The Ti/DOPA/SA/Sr exhibited little cytotoxicity and a robust effect of Sr incorporation on the adhesion and spreading of MG63 cells. The proliferation and alkaline phosphatase (ALP) activity of MG63 cells were enhanced by immobilizing Sr2+ on the SA-grafted Ti. The Sr-containing coatings, which displayed excellent biocompatibility and osteogenic activity, may provide a promising solution for promoting the tissue integration of implants.
Collapse
|
14
|
Ehret C, Aid-Launais R, Sagardoy T, Siadous R, Bareille R, Rey S, Pechev S, Etienne L, Kalisky J, de Mones E, Letourneur D, Amedee Vilamitjana J. Strontium-doped hydroxyapatite polysaccharide materials effect on ectopic bone formation. PLoS One 2017; 12:e0184663. [PMID: 28910401 PMCID: PMC5598993 DOI: 10.1371/journal.pone.0184663] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 08/28/2017] [Indexed: 11/29/2022] Open
Abstract
Previous studies performed using polysaccharide-based matrices supplemented with hydroxyapatite (HA) particles showed their ability to form in subcutaneous and intramuscular sites a mineralized and osteoid tissue. Our objectives are to optimize the HA content in the matrix and to test the combination of HA with strontium (Sr-HA) to increase the matrix bioactivity. First, non-doped Sr-HA powders were combined to the matrix at three different ratios and were implanted subcutaneously for 2 and 4 weeks. Interestingly, matrices showed radiolucent properties before implantation. Quantitative analysis of micro-CT data evidenced a significant increase of mineralized tissue formed ectopically with time of implantation and allowed us to select the best ratio of HA to polysaccharides of 30% (w/w). Then, two Sr-substitution of 8% and 50% were incorporated in the HA powders (8Sr-HA and 50Sr-HA). Both Sr-HA were chemically characterized and dispersed in matrices. In vitro studies performed with human mesenchymal stem cells (MSCs) demonstrated the absence of cytotoxicity of the Sr-doped matrices whatever the amount of incorporated Sr. They also supported osteoblastic differentiation and activated the expression of one late osteoblastic marker involved in the mineralization process i.e. osteopontin. In vivo, subcutaneous implantation of these Sr-doped matrices induced osteoid tissue and blood vessels formation.
Collapse
Affiliation(s)
- C. Ehret
- Inserm U1026, University of Bordeaux, Tissue Bioengineering, U1026, Bordeaux, France
| | - R. Aid-Launais
- Inserm U1148, LVTS, X. Bichat Hospital, University Paris Diderot F-75018 Paris, Institut Galilée, University Paris 13, Villetaneuse, France
| | - T. Sagardoy
- Inserm U1026, University of Bordeaux, Tissue Bioengineering, U1026, Bordeaux, France
| | - R. Siadous
- Inserm U1026, University of Bordeaux, Tissue Bioengineering, U1026, Bordeaux, France
| | - R. Bareille
- Inserm U1026, University of Bordeaux, Tissue Bioengineering, U1026, Bordeaux, France
| | - S. Rey
- Inserm U1026, University of Bordeaux, Tissue Bioengineering, U1026, Bordeaux, France
| | - S. Pechev
- ICMCB, Bordeaux University, Bordeaux, France
| | - L. Etienne
- ICMCB, Bordeaux University, Bordeaux, France
| | - J. Kalisky
- Inserm U1026, University of Bordeaux, Tissue Bioengineering, U1026, Bordeaux, France
| | - E. de Mones
- Inserm U1026, University of Bordeaux, Tissue Bioengineering, U1026, Bordeaux, France
- CHU Bordeaux, Oral and Maxillo-Facial Department, Bordeaux, France
| | - D. Letourneur
- Inserm U1148, LVTS, X. Bichat Hospital, University Paris Diderot F-75018 Paris, Institut Galilée, University Paris 13, Villetaneuse, France
| | - J. Amedee Vilamitjana
- Inserm U1026, University of Bordeaux, Tissue Bioengineering, U1026, Bordeaux, France
- * E-mail:
| |
Collapse
|
15
|
Fu DL, Jiang QH, He FM, Fu BP. Adhesion of bone marrow mesenchymal stem cells on porous titanium surfaces with strontium-doped hydroxyapatite coating. J Zhejiang Univ Sci B 2017. [DOI: 10.1631/jzus.b1600517] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
16
|
Robinson L, Salma-Ancane K, Stipniece L, Meenan BJ, Boyd AR. The deposition of strontium and zinc Co-substituted hydroxyapatite coatings. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:51. [PMID: 28197823 DOI: 10.1007/s10856-017-5846-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 01/04/2017] [Indexed: 06/06/2023]
Abstract
The in vitro and in vivo performance of hydroxyapatite (HAp) coatings can be modified by the addition of different trace ions, such as silicon (Si), lithium (Li), magnesium (Mg), zinc (Zn) or strontium (Sr) into the HAp lattice, to more closely mirror the complex chemistry of human bone. To date, most of the work in the literature has considered single ion-substituted materials and coatings, with limited reports on co-substituted calcium phosphate systems. The aim of this study was to investigate the potential of radio frequency magnetron sputtering to deposit Sr and Zn co-substituted HAp coatings using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The FTIR and XPS results highlight that all of the Sr, Zn and Sr-Zn co-substituted surfaces produced are all dehydroxylated and are calcium deficient. All of the coatings contained HPO42- groups, however; only the pure HAp coating and the Sr substituted HAp coating contained additional CO32- groups. The XRD results highlight that none of the coatings produced in this study contain any other impurity CaP phases, showing peaks corresponding to that of ICDD file #01-072-1243 for HAp, albeit shifted to lower 2θ values due to the incorporation of Sr into the HAp lattice for Ca (in the Sr and Sr-Zn co-substituted surfaces only). Therefore, the results here clearly show that RF magnetron sputtering offers a simple means to deliver Sr and Zn co-substituted HAp coatings with enhanced surface properties. (a) XRD patterns for RF magnetron sputter deposited hydroxyapatite coatings and (b)-(d) for Sr, Zn and Sr-Zn co-substituted coatings, respectively. The XPS spectra in (b) confirms the presence of a HA sputter deposited coating as opposed to
Collapse
Affiliation(s)
- L Robinson
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, University of Ulster, Shore Road, Newtownabbey, Co. Antrim, BT37 0QB, Northern Ireland, UK
| | - K Salma-Ancane
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka 3, Riga, LV, 1007, Latvia
| | - L Stipniece
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka 3, Riga, LV, 1007, Latvia
| | - B J Meenan
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, University of Ulster, Shore Road, Newtownabbey, Co. Antrim, BT37 0QB, Northern Ireland, UK
| | - A R Boyd
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, University of Ulster, Shore Road, Newtownabbey, Co. Antrim, BT37 0QB, Northern Ireland, UK.
| |
Collapse
|