1
|
Crapnell R, Adarakatti PS, Banks CE. Electroanalytical Overview: The Sensing of Mesalamine (5-Aminosalicylic Acid). ACS MEASUREMENT SCIENCE AU 2024; 4:42-53. [PMID: 38404492 PMCID: PMC10885326 DOI: 10.1021/acsmeasuresciau.3c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 02/27/2024]
Abstract
Mesalamine, known as 5-aminosalicylic acid, is a medication used primarily in the treatment of inflammatory bowel disease, including ulcerative colitis and Crohn's disease. 5-Aminosalicylic acid can be measured using various benchtop laboratory techniques which involve liquid chromatography-mass spectroscopy, but these are sophisticated and large, meaning that they cannot be used on-site because transportation of the samples, chemicals, and physical and biological reactions can potentially occur, which can affect the sample's composition and potentially result in inaccurate results. An alternative approach is the use of electrochemical based sensing platforms which has the advantages of portability, cost-efficiency, facile miniaturization, and rapid analysis while nonetheless providing sensitivity and selectivity. We provide an overview of the use of the electroanalytical techniques for the sensing of 5-aminosalicylic acid and compare them to other laboratory-based measurements. The applications, challenges faced, and future opportunities for electroanalytical based sensing platforms are presented in this review.
Collapse
Affiliation(s)
- Robert
D. Crapnell
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester
Street, Manchester M1 5GD, United Kingdom
| | - Prashanth S. Adarakatti
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester
Street, Manchester M1 5GD, United Kingdom
| | - Craig E. Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester
Street, Manchester M1 5GD, United Kingdom
| |
Collapse
|
2
|
Caval M, Dettori MA, Carta P, Dallocchio R, Dessì A, Marceddu S, Serra PA, Fabbri D, Rocchitta G. Sustainable Electropolymerization of Zingerone and Its C2 Symmetric Dimer for Amperometric Biosensor Films. Molecules 2023; 28:6017. [PMID: 37630267 PMCID: PMC10459948 DOI: 10.3390/molecules28166017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Polymeric permselective films are frequently used for amperometric biosensors to prevent electroactive interference present in the target matrix. Phenylenediamines are the most commonly used for the deposition of shielding polymeric films against interfering species; however, even phenolic monomers have been utilized in the creation of these films for microsensors and biosensors. The purpose of this paper is to evaluate the performances of electrosynthesized polymers, layered by means of constant potential amperometry (CPA), of naturally occurring compound zingerone (ZING) and its dimer dehydrozingerone (ZING DIM), which was obtained by straight oxidative coupling reaction. The polymers showed interesting shielding characteristics against the main interfering species, such as ascorbic acid (AA): actually, polyZING exhibited an AA shielding aptitude comprised between 77.6 and 99.6%, comparable to that obtained with PPD. Moreover, a marked capability of increased monitoring of hydrogen peroxide (HP), when data were compared with bare metal results, was observed. In particular, polyZING showed increases ranging between 55.6 and 85.6%. In the present work, the molecular structures of the obtained polymers have been theorized and docking analyses were performed to understand their peculiar characteristics better. The structures were docked using the Lamarckian genetic algorithm (LGA). Glutamate biosensors based on those polymers were built, and their performances were compared with biosensors based on PPD, which is the most widespread polymer for the construction of amperometric biosensors.
Collapse
Affiliation(s)
- Myriam Caval
- Dipartimento di Scienze Biomediche, Università Degli Studi di Sassari, 07100 Sassari, Italy;
| | - Maria Antonietta Dettori
- Istituto di Chimica Biomolecolare, Consiglio Nazionale Ricerche, 07100 Sassari, Italy; (M.A.D.); (P.C.); (R.D.); (A.D.)
| | - Paola Carta
- Istituto di Chimica Biomolecolare, Consiglio Nazionale Ricerche, 07100 Sassari, Italy; (M.A.D.); (P.C.); (R.D.); (A.D.)
| | - Roberto Dallocchio
- Istituto di Chimica Biomolecolare, Consiglio Nazionale Ricerche, 07100 Sassari, Italy; (M.A.D.); (P.C.); (R.D.); (A.D.)
| | - Alessandro Dessì
- Istituto di Chimica Biomolecolare, Consiglio Nazionale Ricerche, 07100 Sassari, Italy; (M.A.D.); (P.C.); (R.D.); (A.D.)
| | - Salvatore Marceddu
- Istituto di Istituto Scienze delle Produzioni Alimentari, Consiglio Nazionale Ricerche, 07100 Sassari, Italy;
| | - Pier Andrea Serra
- Dipartimento di Medicina, Chirurgia e Farmacia, Università Degli Studi di Sassari, 07100 Sassari, Italy;
| | - Davide Fabbri
- Istituto di Chimica Biomolecolare, Consiglio Nazionale Ricerche, 07100 Sassari, Italy; (M.A.D.); (P.C.); (R.D.); (A.D.)
| | - Gaia Rocchitta
- Dipartimento di Medicina, Chirurgia e Farmacia, Università Degli Studi di Sassari, 07100 Sassari, Italy;
| |
Collapse
|
3
|
Han E, Pan Y, Li L, Cai J. Bisphenol A detection based on nano gold-doped molecular imprinting electrochemical sensor with enhanced sensitivity. Food Chem 2023; 426:136608. [PMID: 37348395 DOI: 10.1016/j.foodchem.2023.136608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 06/10/2023] [Indexed: 06/24/2023]
Abstract
A facile electrochemical sensor based on nano gold-doped molecularly imprinted polymer (MIP) was proposed to realize the selective detection of bisphenol A (BPA) with enhanced sensitivity. Initially, gold-doped MIP (Au@MIP) film was constructed by electropolymerizing p-aminobenzoic acid (PABA) and BPA with in situ gold reduction to distribute gold nanoparticles nearby the imprinted cavities. Subsequently, the template molecules were further extracted from the polymer film, then the MIP could rebind with the template molecules to achieve specific detection of BPA. The nano gold-doped MIP increased the effective surface area and promoted conductivity when BPA was oxidized in the imprinted cavities, which improved the determination sensitivity. Under optimal conditions, the prepared sensor displayed a linear range from 0.5 to 100 μM for BPA detection with a detection limit of 52 nM. The designed sensor was further used to detect BPA in food samples, obtaining satisfactory recoveries from 96.7% to 107.6%.
Collapse
Affiliation(s)
- En Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Yingying Pan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Lei Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jianrong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
4
|
Taherkhani F, La Mantia F. Investigation of ion pairs in Electrochemical Ferrocene Methanol –Ferrocenium Methanol system in presence of Supporting Electrolyte. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Maia PP, Zin LC, Silva CF, Nascimento CS. Atenolol-imprinted polymer: a DFT study. J Mol Model 2022; 28:177. [PMID: 35654919 DOI: 10.1007/s00894-022-05171-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022]
Abstract
The purpose of this work was to investigate, via DFT calculations, the molecularly imprinted polymer (MIP) for atenolol (ATL) β-blocker evaluating distinct functional monomers (FMs), solvents, and cross-linker agents (CLAs). As the main result, we could determine from structural and thermodynamic data the best MIP synthesis protocol as being: p-vinyl benzoic acid (APV) as FM, toluene as solvent, and pentaerythritol triacrylate (PETRA) as CLA. We believe this rational design can be very useful for experimentalists in an attempt to perform an efficient synthesis of a MIP for this important β-blocker drug.
Collapse
Affiliation(s)
- Pollyanna P Maia
- LQTC: Laboratório de Química Teórica E Computacional, Departamento de Ciências Naturais (DCNAT), Universidade Federal de São João Del-Rei (UFSJ), Campus Dom Bosco, Praça Dom Helvécio 74São João Del Rei, Fábricas, MG, 36301-160, Brazil
| | - Lilian C Zin
- LQTC: Laboratório de Química Teórica E Computacional, Departamento de Ciências Naturais (DCNAT), Universidade Federal de São João Del-Rei (UFSJ), Campus Dom Bosco, Praça Dom Helvécio 74São João Del Rei, Fábricas, MG, 36301-160, Brazil
| | - Camilla F Silva
- LQTC: Laboratório de Química Teórica E Computacional, Departamento de Ciências Naturais (DCNAT), Universidade Federal de São João Del-Rei (UFSJ), Campus Dom Bosco, Praça Dom Helvécio 74São João Del Rei, Fábricas, MG, 36301-160, Brazil
| | - Clebio S Nascimento
- LQTC: Laboratório de Química Teórica E Computacional, Departamento de Ciências Naturais (DCNAT), Universidade Federal de São João Del-Rei (UFSJ), Campus Dom Bosco, Praça Dom Helvécio 74São João Del Rei, Fábricas, MG, 36301-160, Brazil.
| |
Collapse
|
6
|
Electrochemical Sensors Based on the Electropolymerized Natural Phenolic Antioxidants and Their Analytical Application. SENSORS 2021; 21:s21248385. [PMID: 34960482 PMCID: PMC8707084 DOI: 10.3390/s21248385] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 11/17/2022]
Abstract
The design and fabrication of novel electrochemical sensors with high analytical and operational characteristics are one of the sustainable trends in modern analytical chemistry. Polymeric film formation by the electropolymerization of suitable monomers is one of the methods of sensors fabrication. Among a wide range of the substances able to polymerize, the phenolic ones are of theoretical and practical interest. The attention is focused on the sensors based on the electropolymerized natural phenolic antioxidants and their analytical application. The typical electropolymerization reaction schemes are discussed. Phenol electropolymerization leads to insulating coverage formation. Therefore, a combination of electropolymerized natural phenolic antioxidants and carbon nanomaterials as modifiers is of special interest. Carbon nanomaterials provide conductivity and a high working surface area of the electrode, while the polymeric film properties affect the selectivity and sensitivity of the sensor response for the target analyte or the group of structurally related compounds. The possibility of guided changes in the electrochemical response for the improvement of target compounds' analytical characteristics has appeared. The analytical capabilities of sensors based on electropolymerized natural phenolic antioxidants and their future development in this field are discussed.
Collapse
|
7
|
Taherkhani A, Fazli H, Taherkhani F. Application of Janus Magnetic Nanoparticle Fe
3
O
4
@SiN functionalized with beta‐cyclodextrin in thymol drug delivery procedure: An in vitro study. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ali Taherkhani
- Department of Physics Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan Iran
| | - Hossein Fazli
- Department of Physics Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan Iran
| | - Farid Taherkhani
- Departments of Production Engineering University of Bremen Bremen Germany
| |
Collapse
|
8
|
Nicholls IA, Golker K, Olsson GD, Suriyanarayanan S, Wiklander JG. The Use of Computational Methods for the Development of Molecularly Imprinted Polymers. Polymers (Basel) 2021; 13:2841. [PMID: 34502881 PMCID: PMC8434026 DOI: 10.3390/polym13172841] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/29/2022] Open
Abstract
Recent years have witnessed a dramatic increase in the use of theoretical and computational approaches in the study and development of molecular imprinting systems. These tools are being used to either improve understanding of the mechanisms underlying the function of molecular imprinting systems or for the design of new systems. Here, we present an overview of the literature describing the application of theoretical and computational techniques to the different stages of the molecular imprinting process (pre-polymerization mixture, polymerization process and ligand-molecularly imprinted polymer rebinding), along with an analysis of trends within and the current status of this aspect of the molecular imprinting field.
Collapse
Affiliation(s)
- Ian A. Nicholls
- Bioorganic & Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University, SE-391 82 Kalmar, Sweden; (K.G.); (G.D.O.); (S.S.); (J.G.W.)
| | | | | | | | | |
Collapse
|
9
|
WS2 hierarchical nanoflowers on rGO with enhanced electrochemical performance for sensitive and selective detection of mesalazine in real sample analysis. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126452] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
10
|
Silva CF, Menezes LF, Pereira AC, Nascimento CS. Molecularly Imprinted Polymer (MIP) for thiamethoxam: A theoretical and experimental study. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129980] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Trace level electrochemical detection of mesalazine in human urine sample using poly (N-Vinyl)-2-Pyrrolidone capped Bi-EDTA complex sheets incorporated with ultrasonically exfoliated graphene oxide. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.04.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Hybrid Nanocomposite Platform, Based on Carbon Nanotubes and Poly(Methylene Blue) Redox Polymer Synthesized in Ethaline Deep Eutectic Solvent for Electrochemical Determination of 5-Aminosalicylic Acid. SENSORS 2021; 21:s21041161. [PMID: 33562228 PMCID: PMC7915580 DOI: 10.3390/s21041161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/04/2021] [Accepted: 02/04/2021] [Indexed: 11/17/2022]
Abstract
A novel hybrid composite of conductive poly(methylene blue) (PMB) and carbon nanotubes (CNT) was prepared for the detection of 5-aminosalicylic acid (5-ASA). Electrosynthesis of PMB with glassy carbon electrode (GCE) or with carbon nanotube modified GCE was done in ethaline deep eutectic solvent of choline chloride mixed with ethylene glycol and a 10% v/v aqueous solution. Different sensor architectures were evaluated in a broad range of pH values in a Britton-Robinson (BR) buffer using electrochemical techniques, chronoamperometry (CA), and differential pulse voltammetry (DPV), to determine the optimum sensor configuration for 5-ASA sensing. Under optimal conditions, the best analytical performance was obtained with CNT/PMBDES/GCE in 0.04 M BR buffer pH 7.0 in the range 5-100 µM 5-ASA using the DPV method, with an excellent sensitivity of 9.84 μA cm-2 μM-1 (4.9 % RSD, n = 5) and a detection limit (LOD) (3σ/slope) of 7.7 nM, outclassing most similar sensors found in the literature. The sensitivity of the same sensor obtained in CA (1.33 μA cm-2 μM-1) under optimal conditions (pH 7.0, Eapp = +0.40 V) was lower than that obtained by DPV. Simultaneous detection of 5-ASA and its analogue, acetaminophen (APAP), was successfully realized, showing a catalytic effect towards the electro-oxidation of both analytes, lowering their oxidation overpotential, and enhancing the oxidation peak currents and peak-to-peak separation as compared with the unmodified electrode. The proposed method is simple, sensitive, easy to apply, and economical for routine analysis.
Collapse
|
13
|
Tavares Junior AG, de Araújo JTC, Meneguin AB, Chorilli M. Characteristics, Properties and Analytical/Bioanalytical Methods of 5-Aminosalicylic Acid: A Review. Crit Rev Anal Chem 2020; 52:1000-1014. [PMID: 33258695 DOI: 10.1080/10408347.2020.1848516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Five-aminosalicylic acid (5-ASA) is an anti-inflammatory drug indicated in the treatment of inflammatory bowel diseases such as ulcerative colitis and Crohn's disease. Among the analytical methods of quantification of 5-ASA described in the literature, the High Efficiency Liquid Chromatography stands out, a sensitive technique but with a high cost. In recent years, alternative methods have been developed, presenting efficiency and reduced cost, such as UV/visible spectrophotometric, spectrofluorescent, and electrochemical methods, techniques recommended for the application in quality control and quantification of 5-ASA in pharmaceutical forms and biological fluids. This article aims to review the physicochemical characteristics, pharmacokinetics, mechanisms of action, controlled release systems, and the different analytical and bioanalytical methods for the quantification of 5-ASA.
Collapse
Affiliation(s)
| | | | | | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
14
|
Adeosun WA, Katowah DF, Asiri AM, Hussein MA. Conducting terpolymers and its hybrid nanocomposites variable trends. From synthesis to applications. A review. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1811316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Waheed A. Adeosun
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Dina F. Katowah
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdullah M. Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmoud A. Hussein
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Polymer Chemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
15
|
Bozal-Palabiyik B, Erkmen C, Uslu B. Molecularly Imprinted Electrochemical Sensors: Analytical and Pharmaceutical Applications Based on Ortho-Phenylenediamine Polymerization. CURR PHARM ANAL 2020. [DOI: 10.2174/1573412915666190304150159] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The molecular imprinting technique has been applied in many fields including
separation, artificial antibody mimics, catalysis, sensing studies, and drug delivery. The reasons for the
popularity of this technique among the researchers are high selectivity due to the cavities that are
formed on the polymer surface for the specific analyte, high robustness, high durability under extreme
conditions and low cost. When these advantages are combined with the advantages of electrochemical
methods such as rapid response time, ease of use, cheapness and miniaturizability, Molecularly Imprinted
Polymer (MIP) based electrochemical sensors turn out to be a widely-preferred sensing tool.
Objective:
This article provides the reader with information on MIP-based electrochemical sensors and
reviews the applications of the MIP sensors prepared by electropolymerization of orthophenylenediamine,
a monomer whose mechanical and chemical stability is very high.
Results and Conclusion:
The literature survey summarized in this review shows that cyclic voltammetry
is the most widely preferred electrochemical technique for electropolymerization of o-PD. The media
chosen is generally acetate or phosphate buffers with different pH values. Although there are numerous
solvents used for template removal, generally methanol and NaOH have been chosen.
Collapse
Affiliation(s)
- Burcin Bozal-Palabiyik
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Yenimahalle, Ankara, Turkey
| | - Cem Erkmen
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Yenimahalle, Ankara, Turkey
| | - Bengi Uslu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Yenimahalle, Ankara, Turkey
| |
Collapse
|
16
|
Essousi H, Barhoumi H, Karastogianni S, Girousi ST. An Electrochemical Sensor Based on Reduced Graphene Oxide, Gold Nanoparticles and Molecular Imprinted Over‐oxidized Polypyrrole for Amoxicillin Determination. ELECTROANAL 2020. [DOI: 10.1002/elan.201900751] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Houda Essousi
- Laboratory of Interfaces and Advanced MaterialsUniversity of MonastirFaculty of Sciences of Monastir 5000 Monastir Tunisia
| | - Houcine Barhoumi
- Laboratory of Interfaces and Advanced MaterialsUniversity of MonastirFaculty of Sciences of Monastir 5000 Monastir Tunisia
| | - Sofia Karastogianni
- Analytical chemistry Laboratory, Chemistry DepartmentAristotle University of Thessaloniki Thessaloniki Greece
| | - Stella T. Girousi
- Analytical chemistry Laboratory, Chemistry DepartmentAristotle University of Thessaloniki Thessaloniki Greece
| |
Collapse
|
17
|
Sukanya R, Ramki S, Chen SM, Karthik R. Ultrasound treated cerium oxide/tin oxide (CeO2/SnO2) nanocatalyst: A feasible approach and enhanced electrode material for sensing of anti-inflammatory drug 5-aminosalicylic acid in biological samples. Anal Chim Acta 2020; 1096:76-88. [DOI: 10.1016/j.aca.2019.10.059] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/25/2019] [Accepted: 10/27/2019] [Indexed: 02/09/2023]
|
18
|
Computational Design and Electropolymerization of Molecularly Imprinted Poly(
p
‐Aminobenzoic‐Acid‐Co–Dapsone) Using Multivariate Optimization for Tetradifon Residue Analysis. ChemistrySelect 2019. [DOI: 10.1002/slct.201902830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Xie L, Xiao N, Li L, Xie X, Li Y. An Investigation of the Intermolecular Interactions and Recognition Properties of Molecular Imprinted Polymers for Deltamethrin through Computational Strategies. Polymers (Basel) 2019; 11:polym11111872. [PMID: 31766182 PMCID: PMC6918425 DOI: 10.3390/polym11111872] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 12/23/2022] Open
Abstract
Deltamethrin (DM) is a toxic pesticide that is nonetheless widely used to control insect pests in agricultural production. Although the number of DM molecularly imprinted polymers (MIPs) is increasing in many scientific applications, the theoretical aspects of the participating intramolecular forces are not fully understood. This paper aims to explore the intermolecular interactions between the template molecule DM and the functional monomer acrylamide (AM) through density functional theory (DFT), analysis of hydrogen nuclear magnetic resonance (1H-NMR), Fourier transform infrared spectroscopy (FTIR), and adsorption thermodynamics. The results indicated that there is strong hydrogen bonding between O19 of DM and H9 of AM, suggesting that it is the preferable site for the binding of the target molecule. The existence of interaction sites was found to play an important role in the recognition process. The results from selective adsorption experiments showed that the DM MIPs exhibited the highest adsorption capacity for DM (Q = 75.72 mg g−1) as compared to the five structural analogs. Furthermore, the recovery rates of spiked DM from various teas using the DM MIPs as solid-phase extraction filler also possessed a high value (all greater than 83.68%), which enables them to be used as separate and recognition functional materials.
Collapse
Affiliation(s)
| | | | - Lu Li
- Correspondence: ; Tel.: +86-137-1124-0878
| | | | | |
Collapse
|
20
|
Electrochemical sensing of anti-inflammatory agent in paramedical sample based on FeMoSe2 modified SPCE: Comparison of various preparation methods and morphological effects. Anal Chim Acta 2019; 1083:88-100. [DOI: 10.1016/j.aca.2019.07.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/07/2019] [Accepted: 07/09/2019] [Indexed: 01/07/2023]
|
21
|
Enhanced electrochemical responses at supramolecularly modified graphene: Simultaneous determination of sulphasalazine and its metabolite 5-aminosalicylic acid. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Essousi H, Barhoumi H, Jaffrezic‐Renault N. Molecularly Imprinted Electrochemical Sensor Based on Modified Reduced Graphene Oxide‐gold Nanoparticles‐polyaniline Nanocomposites Matrix for Dapsone Determination. ELECTROANAL 2019. [DOI: 10.1002/elan.201800818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Houda Essousi
- University of MonastirFaculty of Sciences of MonastirLaboratory of Advanced Materials and Interfaces Monastir Tunisia
| | - Houcine Barhoumi
- University of MonastirFaculty of Sciences of MonastirLaboratory of Advanced Materials and Interfaces Monastir Tunisia
| | | |
Collapse
|
23
|
Electrochemical sensing of the thyroid hormone thyronamine (T0AM) via molecular imprinted polymers (MIPs). Talanta 2019; 194:689-696. [DOI: 10.1016/j.talanta.2018.10.090] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 11/21/2022]
|
24
|
Pereira TF, da Silva AT, Borges KB, Nascimento CS. Carvedilol-Imprinted Polymer: Rational design and selectivity studies. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.09.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Muthukutty B, Karthik R, Chen SM, Abinaya M. Designing novel perovskite-type strontium stannate (SrSnO3) and its potential as an electrode material for the enhanced sensing of anti-inflammatory drug mesalamine in biological samples. NEW J CHEM 2019. [DOI: 10.1039/c9nj02197c] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The enhanced electrocatalytic activity of an electrode developed with a perovskite-type inorganic material is witnessed very often because of its unique properties.
Collapse
Affiliation(s)
- Balamurugan Muthukutty
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Raj Karthik
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | | |
Collapse
|
26
|
Florea A, Feier B, Cristea C. In situ analysis based on molecularly imprinted polymer electrochemical sensors. COMPREHENSIVE ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/bs.coac.2019.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
27
|
Affiliation(s)
- Joseph J. BelBruno
- Dartmouth College, Department of Chemistry, Hanover, New Hampshire 03755, United States
| |
Collapse
|
28
|
Silva CF, Borges KB, do Nascimento CS. Rational design of a molecularly imprinted polymer for dinotefuran: theoretical and experimental studies aimed at the development of an efficient adsorbent for microextraction by packed sorbent. Analyst 2018; 143:141-149. [PMID: 29120471 DOI: 10.1039/c7an01324h] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this work, we studied theoretically the formation process of a molecularly imprinted polymer (MIP) for dinotefuran (DNF), testing distinct functional monomers (FM) in various solvents through density functional theory calculations. The results revealed that the best conditions for MIP synthesis were established with methacrylic acid (MAA) as FM in a 1 : 4 stoichiometry and with chloroform as the solvent. This protocol showed the most favourable stabilization energies for the pre-polymerization complexes. Furthermore, the formation of the FM/template complex is enthalpy driven and the occurrence of hydrogen bonds between the DNF and MAA plays a major role in the complex stability. To confirm the theoretical results, MIP was experimentally synthesized considering the best conditions found at the molecular level and characterized by scanning electron microscopy and thermogravimetric analysis. After that, the synthesized material was efficiently employed in microextraction by packed sorbent combined with high-performance liquid chromatography in a preliminary study of the recovery of DNF from water and artificial saliva samples.
Collapse
Affiliation(s)
- Camilla Fonseca Silva
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio 74, Fábricas, 36301-160, São João del-Rei, Minas Gerais, Brazil.
| | | | | |
Collapse
|
29
|
Kiani S, Taherkhani F. Free energy, configurational and nonextensivity of Tsallis entropy with the size and temperature in colloidal silver nanoparticles in [EMim][PF6] ionic liquid. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2017.11.139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
30
|
Yan C, Zhang R, Chen Y, Wang G. Electrochemical determination of enrofloxacin based on molecularly imprinted polymer via one-step electro-copolymerization of pyrrole and o -phenylenediamine. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.10.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
A comprehensive theoretical study of structural optimization, interaction energies calculations and solvent effects between ractopamine and functional monomers in molecular imprinting polymers. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-017-2140-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Size and temperature dependency on structure, heat capacity and phonon density of state for colloidal silver nanoparticle in 1-Ethyl-3-methylimidazolium Hexafluorophosphate ionic liquid. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.01.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Xi S, Zhang K, Xiao D, He H. Computational-aided design of magnetic ultra-thin dummy molecularly imprinted polymer for selective extraction and determination of morphine from urine by high-performance liquid chromatography. J Chromatogr A 2016; 1473:1-9. [DOI: 10.1016/j.chroma.2016.09.074] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 12/24/2022]
|
34
|
Cowen T, Karim K, Piletsky S. Computational approaches in the design of synthetic receptors – A review. Anal Chim Acta 2016; 936:62-74. [DOI: 10.1016/j.aca.2016.07.027] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/13/2016] [Accepted: 07/15/2016] [Indexed: 01/02/2023]
|
35
|
Karimian N, Gholivand M, Malekzadeh G. Cefixime detection by a novel electrochemical sensor based on glassy carbon electrode modified with surface imprinted polymer/multiwall carbon nanotubes. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.03.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Ultrasensitive and selective assay of glutathione species in arsenic trioxide-treated leukemia HL-60 cell line by molecularly imprinted polymer decorated electrochemical sensors. Biosens Bioelectron 2016; 80:491-496. [DOI: 10.1016/j.bios.2016.02.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/31/2016] [Accepted: 02/08/2016] [Indexed: 12/22/2022]
|
37
|
Electrochemical sensor based on molecularly imprinted polymer for sensitive and selective determination of metronidazole via two different approaches. Anal Bioanal Chem 2016; 408:4287-95. [DOI: 10.1007/s00216-016-9520-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/15/2016] [Accepted: 03/24/2016] [Indexed: 10/21/2022]
|
38
|
Gholivand M, Torkashvand M. The fabrication of a new electrochemical sensor based on electropolymerization of nanocomposite gold nanoparticle-molecularly imprinted polymer for determination of valganciclovir. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 59:594-603. [DOI: 10.1016/j.msec.2015.09.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 08/19/2015] [Accepted: 09/02/2015] [Indexed: 11/28/2022]
|
39
|
Theoretical investigation on functional monomer and solvent selection for molecular imprinting of tramadol. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2015.12.061] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|