1
|
Zucca G, Vigani B, Valentino C, Ruggeri M, Marchesi N, Pascale A, Giovilli G, Malavasi L, Sandri G, Rossi S. Chondroitin Sulphate-Chitosan Based Nanogels Loaded with Naringenin-β-Cyclodextrin Complex as Potential Tool for the Treatment of Diabetic Retinopathy: A Formulation Study. Int J Nanomedicine 2025; 20:907-932. [PMID: 39867306 PMCID: PMC11766310 DOI: 10.2147/ijn.s488507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/21/2024] [Indexed: 01/28/2025] Open
Abstract
Purpose The main purpose of the study was the formulation development of nanogels (NHs) composed of chondroitin sulfate (CS) and low molecular weight chitosan (lCH), loaded with a naringenin-β-cyclodextrin complex (NAR/β-CD), as a potential treatment for early-stage diabetic retinopathy. Methods Different formulations of NHs were prepared by varying polymer concentration, lCH ratio, and pH and, then, characterized for particle size, zeta potential, particle concentration (particles/mL) and morphology. Cytotoxicity and internalization were assessed in vitro using Human Umbilical Vein Endothelial Cells (HUVEC). The NAR/β-CD complex was prepared and evaluated for morphology, complexation efficiency, and solubility. Finally, the most promising NH prototype was loaded with NAR/β-CD (NH@NAR/β-CD) and further characterized for encapsulation efficiency, loading capacity, opacity and cytotoxicity on HUVEC; in vitro release test and DPPH assay were performed to investigate NH capability to sustain NAR release and NH@NAR/β-CD antioxidant properties, respectively. Results NH properties were influenced by polymer concentration, lCH ratio, and pH. N3 (0.5 mg/mL; lCH=1.5:1; pH = 5) and N9 (0.5 mg/mL; lCH=1:1; pH = 5) showed optimal characteristics, including small size (<350 nm) and positive zeta potential, facilitating cellular uptake. The NAR/β-CD complex showed 71% complexation efficiency and enhanced NAR solubility. Since characterized by superior properties and better in vitro biocompatibility, N3 was loaded with NAR/β-CD. N3@NAR/β-CD capability to sustain in vitro NAR release, radical scavenging activity and in vitro biocompatibility were finally demonstrated. Conclusion The physico-chemical properties of N3@NAR/β-CD were responsible for their cell uptake, suggesting their potential to target retinal endothelial cells. The high NAR/β-CD complexation efficiency and the sustained NAR release over 72 hours could guarantee the maintenance of an effective drug concentration at the damage site while reducing the injection number. Further studies about the safety and the effectiveness of the intravitreal injection of NHs@NAR/β-CD will be performed on a diabetic animal model.
Collapse
Affiliation(s)
- Gaia Zucca
- Department of Drug Sciences, University of Pavia, Pavia, 27100, Italy
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, Pavia, 27100, Italy
| | | | - Marco Ruggeri
- Department of Drug Sciences, University of Pavia, Pavia, 27100, Italy
| | | | - Alessia Pascale
- Department of Drug Sciences, University of Pavia, Pavia, 27100, Italy
| | - Giulia Giovilli
- Department of Chemistry and INSTM, University of Pavia, Pavia, 27100, Italy
| | - Lorenzo Malavasi
- Department of Chemistry and INSTM, University of Pavia, Pavia, 27100, Italy
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Pavia, 27100, Italy
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Pavia, 27100, Italy
| |
Collapse
|
2
|
Wang ZX, Wang YZ, Chen X, Wu AJ, Liu W, Li HJ. Construction of chitosan hydrochloride-carboxymethyl chitosan nanoparticles using anti-solvent method for the co-delivery of puerarin and resveratrol. J Food Sci 2025; 90:e17628. [PMID: 39731710 DOI: 10.1111/1750-3841.17628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/09/2024] [Accepted: 12/11/2024] [Indexed: 12/30/2024]
Abstract
The applications of resveratrol (RES) and puerarin (PUE) with notable physiological functions are greatly limited in functional food and pharmaceutical industries due to their poor water solubility and chemical instability. Accordingly, co-loading of RES and PUE into chitosan-based nanoparticles (NPs) is performed here by an anti-solvent method to improve their bioavailability. The fabricated NPs at 8:1 mass ratio of carboxymethyl chitosan (CMC) to chitosan hydrochloride (CHC) with the particle size of 375.1 nm and zeta potential of +36.5 mV showed encouraging encapsulation efficiency and loading capacity at 85.2% (RES), 89.5% (PUE), and 15.5%. The microstructure of core-shell CMC-CHC was confirmed through dynamic light scattering and transmission electron microscopy. Molecular docking and storage stability indicating the more beneficial encapsulation of chitosan derivatives to PUE in comparison to RES. Cellular antioxidant activity experiments showed that the bioactivities of PUE/RES after loading with 20 and 40 mg·mL-1 were improved by 13.2% and 18.5%, respectively, with respect to free ones. Therefore, RES/PUE-loaded CHC-CMC NPs were successfully prepared in this study, thus significantly improving the RES and PUE bioavailability and promoting their applications in functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Zi-Xuan Wang
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, P.R. China
| | - Yi-Zhen Wang
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, P.R. China
| | - Xiao Chen
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, P.R. China
| | - An-Ji Wu
- Weihai NO.1 High School, Weihai, P.R. China
| | - Wei Liu
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, P.R. China
| | - Hui-Jing Li
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, P.R. China
| |
Collapse
|
3
|
Hasannezhad H, Bakhshi A, Mozafari MR, Naghib SM. A review of chitosan role in milk bioactive-based drug delivery, smart packaging and biosensors: Recent advances and developments. Int J Biol Macromol 2024; 294:139248. [PMID: 39740715 DOI: 10.1016/j.ijbiomac.2024.139248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/21/2024] [Accepted: 12/25/2024] [Indexed: 01/02/2025]
Abstract
Chitosan, a versatile biopolymer derived from chitin, is increasingly recognized in the milk industry for its multifunctional applications in drug delivery, smart packaging, and biosensor development. This review provides a comprehensive analysis of recent advances in chitosan production techniques. These include chemical, biological, and novel methods such as deep eutectic solvents (DES), microwave-assisted approaches, and laser-assisted processes. Surface modification strategies to enhance its functional properties are also discussed. The review highlights the development of various chitosan-based nanocarriers, including nanoparticles, nanofibers, nanogels, and nanocomposites. It emphasizes their stability when combined with milk bioactive ingredients like lipids, peptides, lactose, and minerals. The gastrointestinal fate and safety of chitosan nanoparticles are critically evaluated, showcasing their potential for safe consumption in dairy-related applications. In drug delivery systems, chitosan exhibits excellent compatibility with milk-derived carbohydrates, proteins, and minerals, enabling the development of innovative drug delivery platforms. Additionally, its incorporation into smart packaging materials enhances the shelf-life and quality of dairy products. Chitosan-based biosensors offer precise contaminant detection in the milk industry by enabling precise detection of contaminants such as Bisphenol A, melamine, bacteria, drugs, antibiotics, toxins, heavy metals, and allergens, thus ensuring food safety and quality. Emerging trends, including the integration of artificial intelligence, advanced gene editing, and multifunctional chitosan, are discussed, offering insights into future personalized delivery systems and merging food and drug technologies. The review concludes by highlighting gaps in current research and offering recommendations for future exploration. These suggestions aim to optimize chitosan's unique properties to address key challenges in the milk industry. This article serves as a valuable resource for researchers, industry professionals, and policymakers aiming to innovate within the dairy sector using chitosan-based technologies.
Collapse
Affiliation(s)
- Hossein Hasannezhad
- Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Department of Food Science and Technology, Faculty of Agriculture and Food Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Bakhshi
- Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran.
| |
Collapse
|
4
|
Li X, Wang W, Gao Q, Lai S, Liu Y, Zhou S, Yan Y, Zhang J, Wang H, Wang J, Feng Y, Yang R, Su J, Li B, Liao Y. Intelligent bacteria-targeting ZIF-8 composite for fluorescence imaging-guided photodynamic therapy of drug-resistant superbug infections and burn wound healing. EXPLORATION (BEIJING, CHINA) 2024; 4:20230113. [PMID: 39713199 PMCID: PMC11655311 DOI: 10.1002/exp.20230113] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/02/2024] [Indexed: 12/24/2024]
Abstract
Infected burn wounds are characterized by persistent drug-resistant bacterial infection coupled with an inflammatory response, impeding the wound-healing process. In this study, an intelligent nanoparticle system (CCM+TTD@ZIF-8 NPs) was prepared using curcumin (CCM), an aggregation-induced emission luminogens (TTD), and ZIF-8 for infection-induced wound healing. The CCM+TTD@ZIF-8 NPs showed multiple functions, including bacteria targeting, fluorescence imaging and pH response-guided photodynamic therapy (PDT), and anti-inflammatory. The positive charges of ZIF-8 NPs allowed the targeting of drug-resistant bacteria in infected wounds, thereby realizing fluorescence imaging of bacteria by emitting red fluorescence at the infected site upon blue light irradiation. The pH-responsive characteristics of the CCM+TTD@ZIF-8 NPs also enabled controllable CCM release onto the infected wound site, thereby promoting the specific accumulation of ROS at the infected site, with outstanding bactericidal efficacy against drug-resistant Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) strains in vitro/in vivo. Additionally, due to the excellent bactericidal effect and anti-inflammatory properties of CCM+TTD@ZIF-8 NPs combined with blue light irradiation, the regeneration of epidermal tissue, angiogenesis, and collagen deposition was achieved, accelerating the healing process of infected burn wounds. Therefore, this CCM+TTD@ZIF-8 NPs with multifunctional properties provides great potential for infected burn wound healing.
Collapse
Affiliation(s)
- Xiaoxue Li
- Molecular Diagnosis and Treatment Center for Infectious DiseasesDermatology Hospital of Southern Medical UniversityGuangzhouGuangdongChina
| | - Wei Wang
- Molecular Diagnosis and Treatment Center for Infectious DiseasesDermatology Hospital of Southern Medical UniversityGuangzhouGuangdongChina
| | - Qiuxia Gao
- Molecular Diagnosis and Treatment Center for Infectious DiseasesDermatology Hospital of Southern Medical UniversityGuangzhouGuangdongChina
- School of InspectionNingxia Medical UniversityYinchuanNingxiaChina
| | - Shanshan Lai
- Molecular Diagnosis and Treatment Center for Infectious DiseasesDermatology Hospital of Southern Medical UniversityGuangzhouGuangdongChina
| | - Yan Liu
- Institute for Health Innovation and TechnologyNational University of SingaporeSingaporeSingapore
| | - Sitong Zhou
- Department of DermatologyThe First People's Hospital of FoshanFoshanGuangdongChina
| | - Yan Yan
- Molecular Diagnosis and Treatment Center for Infectious DiseasesDermatology Hospital of Southern Medical UniversityGuangzhouGuangdongChina
| | - Jie Zhang
- Molecular Diagnosis and Treatment Center for Infectious DiseasesDermatology Hospital of Southern Medical UniversityGuangzhouGuangdongChina
| | - Huanhuan Wang
- Molecular Diagnosis and Treatment Center for Infectious DiseasesDermatology Hospital of Southern Medical UniversityGuangzhouGuangdongChina
| | - Jiamei Wang
- Molecular Diagnosis and Treatment Center for Infectious DiseasesDermatology Hospital of Southern Medical UniversityGuangzhouGuangdongChina
| | - Yi Feng
- Molecular Diagnosis and Treatment Center for Infectious DiseasesDermatology Hospital of Southern Medical UniversityGuangzhouGuangdongChina
| | - Ronghua Yang
- Department of Burn and Plastic SurgeryGuangzhou First People's HospitalSouth China University of TechnologyGuangzhouGuangdongChina
| | - Jianyu Su
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhouGuangdongChina
| | - Bin Li
- School of InspectionNingxia Medical UniversityYinchuanNingxiaChina
| | - Yuhui Liao
- Molecular Diagnosis and Treatment Center for Infectious DiseasesDermatology Hospital of Southern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
5
|
Patil P, Vankani A, Sawant K. Design, optimization and characterization of atorvastatin loaded chitosan-based polyelectrolyte complex nanoparticles based transdermal patch. Int J Biol Macromol 2024; 274:133219. [PMID: 38897514 DOI: 10.1016/j.ijbiomac.2024.133219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
AIM Atorvastatin (ATO) loaded chitosan-based polyelectrolyte complex nanoparticles (PECN) incorporated transdermal patch was developed to enhance its skin permeability and bioavailability. METHODOLOGY The ATO loaded PECN were prepared by ionic gelation method and optimized by Box-Behnken design. The optimized batches were evaluated for physicochemical characteristics, in vitro, ex vivo, cell line and stability studies. The optimized ATO-PECN were incorporated into transdermal patches by solvent evaporation method and evaluated for their physicochemical properties, ex vivo skin permeation, in vivo pharmacokinetics and stability study. RESULTS The optimized batch of ATO-PECN had average size of 219.2 ± 5.98 nm with 82.68 ± 2.63 % entrapment and 25.41 ± 3.29 mV zeta potential. ATO-PECN showed sustained drug release and higher skin permeation. The cell line study showed that ATO-PECN increased the cell permeability of ATO as compared to ATO suspension. ATO-PECN loaded transdermal patch showed higher skin permeation. The in vivo pharmacokinetic study revealed that the ATO-PECN transdermal patch showed significant (p < 0.05) increase in pharmacokinetic parameters as compared to marketed oral tablet, confirming enhancement in bioavailability of ATO. CONCLUSIONS The results of the present work concluded that the ATO-PECN loaded transdermal patch is a promising novel drug delivery system for poorly bioavailable drugs.
Collapse
Affiliation(s)
- Pravin Patil
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara 390001, Gujarat, India
| | - Ankit Vankani
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara 390001, Gujarat, India
| | - Krutika Sawant
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara 390001, Gujarat, India.
| |
Collapse
|
6
|
Qin H, Teng Y, Dai R, Wang A, Liu J. Glycan-based scaffolds and nanoparticles as drug delivery system in cancer therapy. Front Immunol 2024; 15:1395187. [PMID: 38799466 PMCID: PMC11116596 DOI: 10.3389/fimmu.2024.1395187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Glycan-based scaffolds are unique in their high specificity, versatility, low immunogenicity, and ability to mimic natural carbohydrates, making them attractive candidates for use in cancer treatment. These scaffolds are made up of glycans, which are biopolymers with well biocompatibility in the human body that can be used for drug delivery. The versatility of glycan-based scaffolds allows for the modulation of drug activity and targeted delivery to specific cells or tissues, which increases the potency of drugs and reduces side effects. Despite their promise, there are still technical challenges in the design and production of glycan-based scaffolds, as well as limitations in their therapeutic efficacy and specificity.
Collapse
Affiliation(s)
- Henan Qin
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yibin Teng
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Rui Dai
- Department of Pharmacy, Peking Union Medical University Hospital, Beijing, China
| | - Aman Wang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiwei Liu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
7
|
Siddiqui B, Ur Rehman A, Gul R, Chaudhery I, Shah KU, Ahmed N. Folate decorated chitosan-chondroitin sulfate nanoparticles loaded hydrogel for targeting macrophages against rheumatoid arthritis. Carbohydr Polym 2024; 327:121683. [PMID: 38171692 DOI: 10.1016/j.carbpol.2023.121683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/14/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Inflammatory cell infiltration, particularly macrophages, plays a major contribution to the pathogenesis of Rheumatoid Arthritis (RA). Exploiting the overexpression of folate receptors (FR-β) on these recruited macrophages has gained significant attraction for ligand-targeted delivery. Leflunomide (LEF), being an immunomodulatory agent is considered the cornerstone of the therapy, however, its oral efficacy is impeded by low solubility and escalating adverse effects profile. Therefore, in the present work, we developed Folate-conjugated chitosan-chondroitin sulfate nanoparticles encapsulating LEF for selective targeting at inflammatory sites in RA. For this purpose, the folate group was first conjugated with the chitosan polymer. After which, Folate Leflunomide Nanoparticles (FA-LEF-NPs) were synthesized through the ionotropic gelation method by employing FA-CHI and CHS. The polymers CHI and CHS were also presented with innate anti-inflammatory and anti-rheumatic attributes that were helpful in provision of synergistic effects to the formulation. These nanoparticles were further fabricated into a hydrogel, employing almond oil (A.O) as a permeation enhancer. The in vivo studies justified the preferential accumulation of FA-conjugated nanoparticles at inflamed joints more than any other organ in comparison to the free LEF and LEF-NPs formulation. The FA-LEF-NPs loaded hydrogel also ascertained a minimal adverse effect profile with an improvement of inflammatory cytokines expression.
Collapse
Affiliation(s)
- Bazla Siddiqui
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Asim Ur Rehman
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Rabia Gul
- Shifa College of Pharmaceutical Sciences, Shifa Tameer e Millat University, Islamabad, Pakistan
| | - Iqra Chaudhery
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Kifayat Ullah Shah
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Naveed Ahmed
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan.
| |
Collapse
|
8
|
Amiryaghoubi N, Fathi M, Safary A, Javadzadeh Y, Omidi Y. In situ forming alginate/gelatin hydrogel scaffold through Schiff base reaction embedded with curcumin-loaded chitosan microspheres for bone tissue regeneration. Int J Biol Macromol 2024; 256:128335. [PMID: 38007028 DOI: 10.1016/j.ijbiomac.2023.128335] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/21/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023]
Abstract
In this study, we developed a biocompatible composite hydrogel that incorporates microspheres. This was achieved using a Schiff base reaction, which combines the amino and aldehyde groups present in gelatin (Gel) and oxidized alginate (OAlg). We suggest this hydrogel as a promising scaffold for bone tissue regeneration. To further boost its osteogenic capabilities and mechanical resilience, we synthesized curcumin (Cur)-loaded chitosan microspheres (CMs) and integrated them into the Gel-OAlg matrix. This formed a robust composite gel framework. We conducted comprehensive evaluations of various properties, including gelation time, morphology, compressive strength, rheological behavior, texture, swelling rate, in vitro degradation, and release patterns. A remarkable observation was that the inclusion of 30 mg/mL Cur-CMs significantly enhanced the hydrogel's mechanical and bioactive features. Over three weeks, the Gel-OAlg/Cur-CMs (30) composite showed a cumulative curcumin release of 35.57%. This was notably lower than that observed in standalone CMs and Gel-OAlg hydrogels. Additionally, the Gel-OAlg/Cur-CMs (30) hydrogel presented a reduced swelling rate and weight loss relative to hydrogels devoid of Cur-CMs. On the cellular front, the Gel-OAlg/Cur-CMs (30) hydrogel showcased superior biocompatibility. It also displayed increased calcium deposition, alkaline phosphatase (ALP) activity, and elevated osteogenic gene expression in human bone marrow mesenchymal stem cells (hBMSCs). These results solidify its potential as a scaffold for bone tissue regeneration.
Collapse
Affiliation(s)
- Nazanin Amiryaghoubi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Azam Safary
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Javadzadeh
- Biotechnology Research Center and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran.
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| |
Collapse
|
9
|
Guo Z, Afza R, Moneeb Khan M, Khan SU, Khan MW, Ali Z, Batool S, Din FU. Investigation of the treatment potential of Raloxifene-loaded polymeric nanoparticles in osteoporosis: In-vitro and in-vivo analyses. Heliyon 2023; 9:e20107. [PMID: 37810010 PMCID: PMC10559869 DOI: 10.1016/j.heliyon.2023.e20107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Osteoporosis (OP), is a systemic bone disorder associated with low bone mass and bone tissue corrosion. Worsening of the disease condition leads to bone delicacy and fracture. Various drugs are available for the treatment of OP, however they have limitations including poor solubility, bioavailability and toxicity. Herein, Raloxifene-loaded polymeric nanoparticles (RLX-PNPs) were developed and investigated for the treatment of OP with possible solutions to the above mentioned problems. RLX-PNPs were prepared by modified ionic gelation method followed by determining their particle properties. FTIR, DSC and PXRD analysis of the RLX-PNPs were performed to check chemical interaction, thermal behavior and crystallinity, respectively. In-vitro release profile of RLX-PNPs was checked in lab setting, whereas its pharmacokinetics was investigated in Sprague-Dawley rats, in-vivo. Finally, the treatment potential of RLX-PNPs was analyzed in OP induced animal model. The optimized PNPs formulation indicated 134.5 nm particle size, +24.4 mV charge and 91.73% % EE. TEM analysis showed spherical and uniform sized particles with no interactions observed in FTIR analysis. In-vitro release of RLX from RLX-PNPs showed more sustained release behavior as compared to RLX-suspension. Moreover, pharmacokinetic investigations showed a significantly enhanced bioavailability of the RLX-PNPs as well as reduced serum levels of alkaline phosphatase and calcium in OP induced rats when compared with RLX-Suspension after oral administration. Findings of this study suggested that the developed RLX-PNPs have the potential to treat OP due to sustained release and improved bioavailability of the incorporated drug.
Collapse
Affiliation(s)
- Zhonghua Guo
- Department of Orthopaedics, Henan Province Hospital of TCM, Zhengzhou City, Henan Province, 450002, China
| | - Rabia Afza
- Department of Botany, Hazara University Mansehra KP, Pakistan
| | - Muhammad Moneeb Khan
- Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Saif Ullah Khan
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsada, KPK, Pakistan
| | - Muhammad Waseem Khan
- Institute of Pharmaceutical Sciences Khyber Medical University, Peshawar, Pakistan
| | - Zakir Ali
- Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Sibgha Batool
- Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Fakhar ud Din
- Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
| |
Collapse
|
10
|
Hogan KJ, Perez MR, Mikos AG. Extracellular matrix component-derived nanoparticles for drug delivery and tissue engineering. J Control Release 2023; 360:888-912. [PMID: 37482344 DOI: 10.1016/j.jconrel.2023.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/16/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
The extracellular matrix (ECM) consists of a complex combination of proteins, proteoglycans, and other biomolecules. ECM-based materials have been demonstrated to have high biocompatibility and bioactivity, which may be harnessed for drug delivery and tissue engineering applications. Herein, nanoparticles incorporating ECM-based materials and their applications in drug delivery and tissue engineering are reviewed. Proteins such as gelatin, collagen, and fibrin as well as glycosaminoglycans including hyaluronic acid, chondroitin sulfate, and heparin have been employed for cancer therapeutic delivery, gene delivery, and wound healing and regenerative medicine. Strategies for modifying and functionalizing these materials with synthetic and natural polymers or to enable stimuli-responsive degradation and drug release have increased the efficacy of these materials and nano-systems. The incorporation and modification of ECM-based materials may be used to drive drug targeting and increase tissue-specific cell differentiation more effectively.
Collapse
Affiliation(s)
- Katie J Hogan
- Department of Bioengineering, Rice University, Houston, TX, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Marissa R Perez
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
11
|
Abbasi M, Sohail M, Minhas MU, Mahmood A, Shah SA, Munir A, Kashif MUR. Folic acid-decorated alginate nanoparticles loaded hydrogel for the oral delivery of diferourylmethane in colorectal cancer. Int J Biol Macromol 2023; 233:123585. [PMID: 36758757 DOI: 10.1016/j.ijbiomac.2023.123585] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/25/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
The disease-related suffering in colorectal cancer remains prevalent despite advancements in the field of drug delivery. Chemotherapy-related side effects and non-specificity remain a challenge in drug delivery. The great majority of hydrophobic drugs cannot be successfully delivered to the colon orally mainly due to poor solubility, low bioavailability, pH differences, and food interactions. Polymeric nanoparticles are potential drug delivery candidates but there are numerous limitations to their usefulness in colon cancer. The nanoparticles are removed from the body rapidly by p-glycoprotein efflux, inactivation, or breakdown by enzymes limiting their efficiency. Furthermore, there is a lack of selectivity in targeting cancer cells; nanoparticles may also target healthy cells, resulting in toxicity and adverse effects. The study aimed to use nanoparticles for specific targeting of the colorectal tumor cells via the oral route of administration without adverse effects. Folic acid (FA), a cancer-targeting ligand possessing a high affinity for folate receptors overexpressed in colorectal cancers was conjugated to sodium alginate- nanoparticles by NH2-linkage. The folic-acid conjugated nanoparticles (FNPs) were delivered to the colon by a pH-sensitive hydrogel synthesized by the free radical polymerization method to provide sustained drug release. The developed system referred to as the "Hydrogel-Nano (HN) drug delivery system," was specifically capable of delivering diferourylmethane to the colon. The HN system was characterized by DLS, FTIR, XRD, TGA, DSC, and SEM. The FNPs size, polydispersity index, and zeta potential were measured. The folic acid-conjugation to nanoparticles' surface was studied by UV-visible spectroscopy using Beer-Lambert's law. In-vitro studies, including sol-gel, porosity, drug loading, entrapment efficiency, etc., revealed promising results. The swelling and release studies showed pH-dependent release of the drug in colonic pH 7.4. Cellular uptake and cytotoxicity studies performed on FR-overexpressed Hela cell lines and FR-negative A-549 cell lines showed facilitated uptake of nanoparticles by folate receptors. A threefold increase in Cmax and prolongation of the mean residence time (MRT) to 14.52 +/- 0.217 h indicated sustained drug release by the HN system. The findings of the study can provide a sufficient ground that the synergistic approach of the HN system can deliver hydrophobic drugs to colorectal cancer cells via the oral route, but further in-vivo animal cancer model studies are required.
Collapse
Affiliation(s)
- Mudassir Abbasi
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, Abbottabad 22060, KPK, Pakistan
| | - Muhammad Sohail
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, Abbottabad 22060, KPK, Pakistan; Faculty of Pharmacy, Cyprus International University, Nicosia, 99258, North Cyprus.
| | | | - Arshad Mahmood
- Collage of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Syed Ahmed Shah
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, Abbottabad 22060, KPK, Pakistan; Department of Pharmaceutical Sciences, The Superior University, Lahore 54600, Pakistan
| | - Abubakar Munir
- Department of Pharmaceutical Sciences, The Superior University, Lahore 54600, Pakistan
| | - Mehboob-Ur-Rehman Kashif
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, Abbottabad 22060, KPK, Pakistan
| |
Collapse
|
12
|
Waiprib Y, Ingrungruengluet P, Worawattanamateekul W. Nanoparticles Based on Chondroitin Sulfate from Tuna Heads and Chitooligosaccharides for Enhanced Water Solubility and Sustained Release of Curcumin. Polymers (Basel) 2023; 15:polym15040834. [PMID: 36850119 PMCID: PMC9965308 DOI: 10.3390/polym15040834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
This study aimed to separate chondroitin sulfate (CS) from the heads of skipjack tuna (Katsuwonus pelamis) and yellowfin tuna (Thunnus albacares), by-products derived from canned tuna processing, via a biological process. The use of 1% w/w papain and an incubation time of 48 h resulted in a degree of hydrolysis of 93.75 ± 2.94% and a CS content of 59.53 ± 1.77 mg/100 g. The FTIR spectra of extracted CS products exhibited identical functional groups found in commercially available CS. The molecular weights of CS extracted from skipjack and yellowfin tuna heads were 11.0 kDa and 7.7 kDa, respectively. Subsequently, a CH:CS ratio of 3:2 for CS and chitooligosaccharides (CH) was chosen as the optimal ratio for the preparation of spherical nanoparticles, with %EE, mean particle size, PDI, and zeta potential values of 50.89 ± 0.66%, 128.90 ± 3.29 nm, 0.27 ± 0.04, and -12.47 ± 2.06, respectively. The CU content was enhanced to 127.21 ± 1.66 μg/mL. The release of CU from this particular nanosystem involved mainly a drug diffusion mechanism, with a burst release in the first 3 h followed by a sustained release of CU over 24 h. The DPPH and ABTS scavenging activity results confirmed the efficient encapsulation of CU into CHCS nanoparticles. This study will provide a theoretical basis for CS derived from tuna head cartilages to be used as a functional component with specific functional properties in food and biomedical applications.
Collapse
Affiliation(s)
- Yaowapha Waiprib
- Department of Fishery Products, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand
- Center for Advanced Studies for Agriculture and Food (CASAF), Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
- Correspondence: ; Tel.: +66-814592125
| | | | | |
Collapse
|
13
|
Jin H, Li M, Tian F, Yu F, Zhao W. An Overview of Antitumour Activity of Polysaccharides. Molecules 2022; 27:molecules27228083. [PMID: 36432183 PMCID: PMC9692906 DOI: 10.3390/molecules27228083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Cancer incidence and mortality are rapidly increasing worldwide; therefore, effective therapies are required in the current scenario of increasing cancer cases. Polysaccharides are a family of natural polymers that hold unique physicochemical and biological properties, and they have become the focus of current antitumour drug research owing to their significant antitumour effects. In addition to the direct antitumour activity of some natural polysaccharides, their structures offer versatility in synthesizing multifunctional nanocomposites, which could be chemically modified to achieve high stability and bioavailability for delivering therapeutics into tumor tissues. This review aims to highlight recent advances in natural polysaccharides and polysaccharide-based nanomedicines for cancer therapy.
Collapse
Affiliation(s)
- Hongzhen Jin
- College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Maohua Li
- College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Feng Tian
- College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Fan Yu
- College of Life Sciences, Nankai University, Weijin Road, Nankai District, Tianjin 300350, China
- Correspondence: (F.Y.); (W.Z.)
| | - Wei Zhao
- College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
- Correspondence: (F.Y.); (W.Z.)
| |
Collapse
|
14
|
Moghadam NA, Bagheri F, Eslaminejad MB. Chondroitin sulfate modified chitosan nanoparticles as an efficient and targeted gene delivery vehicle to chondrocytes. Colloids Surf B Biointerfaces 2022; 219:112786. [PMID: 36049252 DOI: 10.1016/j.colsurfb.2022.112786] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 08/02/2022] [Accepted: 08/20/2022] [Indexed: 11/24/2022]
Abstract
Conventional treatments for osteoarthritis (OA), including drug delivery and tissue engineering approaches, could not offer a high yield of cartilage repair due to the compact and exclusive structure of cartilage. Targeted and high-efficiency delivery of gene sequences is necessary to rebalance the lost homeostatic properties of the cartilage in OA. Herein, we synthesized chitosan (CH)-chondroitin sulfate (CS) nanoparticles (NPs) as a platform for delivering gene sequences. These new nanoparticles benefit from two natural polymers that minimize the toxicity, and the presence of CS can be in favor of targeted delivery. The CAG-GFP plasmid was used as a gene sequence model, and the nanoparticles could successfully encapsulate approximately all of them in their structure. Loaded nanoparticles were characterized in terms of morphology, size, zeta potential, the efficiency of encapsulation and, DNA release pattern. Cell viability and uptake of new nanoparticles were compared to the chitosan nanoparticles and Lipofectamine. After substituting TPP with CS, NPs exhibited a significant decrease in size. In addition, there was little difference in zeta potential between nanoparticles. Furthermore, a tremendous increase in plasmid uptake and cell viability was observed by CH-CS NPs compared to CH-TPP NPs and Lipofectamine. In the final stage, the knockdown level of MMP13 was evaluated with real-time RT-PCR for confirming the potential uptake of CH-CS NPs. The results revealed cellular uptake of siRNA loaded NPs and effective knockdown of MMP13 in chondrocytes. In conclusion, CH-CS nanoparticles can be considered as a candidate for gene therapy purposes in cartilage diseases.
Collapse
Affiliation(s)
- Naghmeh Akbari Moghadam
- Department of Biomedical Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Bagheri
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
15
|
Zheng G, Cui Y, Jiang Z, Zhou M, Yu Y, Wang P, Wang Q. Fiber-based photothermal, UV-resistant, and self-cleaning coatings fabricated by silicon grafted copolymers of chitosan derivatives and gallic acid. Int J Biol Macromol 2022; 222:1560-1577. [PMID: 36195235 DOI: 10.1016/j.ijbiomac.2022.09.230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 11/25/2022]
Abstract
Superhydrophobic and hydrophobic properties are generally created by adopting low surface free energy materials. Therefore, most studies have focused on creating surface hydrophobicity by using hydrophobic or fluorinated materials. However, few studies are reported on realizing surface hydrophobicity by directly introducing hydrophilic molecules, which is also a challenge. Herein, with platinum nanozyme as the catalyst, the novel hydrophobic coatings have been rapidly gained via anchoring the polymer of hydrophilic gallic acid and chitosan or chitosan quaternary ammonium salt onto cotton fabric surface. Notably, the novel hydrophobic coatings exhibit significant advances compared with conventional hydrophobic ones created by utilizing fluorinated or hydrophobic materials, which breaks the limitation of employing low surface energy materials for gaining surface hydrophobicity. Subsequently, the sodium methyl silicate was grafted on the polymer's coatings to strengthen surface hydrophobicity and the abrasion resistance of hydrophobicity. Interestingly, the heating could induce the hydrophilicity of cotton fabric to recover to hydrophobicity. Moreover, the hydrophobic coatings also possess good photothermal conversion, UV resistance, and anti-oxidation activity for self-cleaning application and oil water separation. Briefly, the present work may open a new direction for preparing novel hydrophobic coatings by combining gallic acid and chitosan-based macromolecular carbohydrates.
Collapse
Affiliation(s)
- Guolin Zheng
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Yifan Cui
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Zhe Jiang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Man Zhou
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Yuanyuan Yu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Ping Wang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Qiang Wang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
16
|
Hyaluronan Oligosaccharides-Coated Paclitaxel-Casein Nanoparticles with Enhanced Stability and Antitumor Activity. Nutrients 2022; 14:nu14193888. [PMID: 36235540 PMCID: PMC9573597 DOI: 10.3390/nu14193888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
This study aims to develop specific-molecular-weight hyaluronic acid oligosaccharides-coated paclitaxel-loaded casein nanoparticles (HA-PT-Cas NPs) via chemical conjugation to increase the stability and antitumor effects. Optimized HA-PT-Cas NPs (HA/casein of 3:1) were obtained with a mean size of 235.3 nm and entrapment efficiency of 93.1%. HA-PT-Cas exhibited satisfactory stability at 4 °C for 12 days and 37 °C for 3 h; paclitaxel was retained at rates of 81.4% and 64.7%, respectively, significantly higher than those of PT-Cas (only 27.8% at 4 °C after 16 h and 20.3% at 37 °C after 3 h). HA-PT-Cas exhibited high efficiency (61.3%) in inhibiting A375 tumor owing to the enhanced stability of HA oligosaccharides barrier, which was comparable with that of 10 μg/mL cis-platinum (64.9%). Mice experiments showed the 74.6% tumor inhibition of HA-PT-Cas by intravenously administration, significantly higher than that of PT-casein (39.8%). Therefore, this work provides an effective carrier for drug delivery via HA oligomers-coated modification.
Collapse
|
17
|
In vitro cytotoxic and antioxidant evaluation of quercetin loaded in ionic cross-linked chitosan nanoparticles. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Polysaccharide-based nanoparticles fabricated from oppositely charged curdlan derivatives for curcumin encapsulation. Int J Biol Macromol 2022; 213:923-933. [DOI: 10.1016/j.ijbiomac.2022.05.179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/18/2022]
|
19
|
Abbasi M, Sohail M, Minhas MU, Iqbal J, Mahmood A, Shaikh AJ. Folic acid-functionalized nanoparticles-laden biomaterials for the improved oral delivery of hydrophobic drug in colorectal cancer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
20
|
Preparation of Doxorubicin-Loaded Carboxymethyl-β-Cyclodextrin/Chitosan Nanoparticles with Antioxidant, Antitumor Activities and pH-Sensitive Release. Mar Drugs 2022; 20:md20050278. [PMID: 35621929 PMCID: PMC9146362 DOI: 10.3390/md20050278] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 01/16/2023] Open
Abstract
In this study, chitosan nanoparticles (HF-CD NPs) were synthesized by an ionic gelation method using negatively charged carboxymethyl-β-cyclodextrin and positively charged 2-hydroxypropyltrimethyl ammonium chloride chitosan bearing folic acid. The surface morphology of HF-CD NPs was spherical or oval, and they possessed relatively small particle size (192 ± 8 nm) and positive zeta potential (+20 ± 2 mV). Meanwhile, doxorubicin (Dox) was selected as model drug to investigate the prepared nanoparticles’ potential to serve as a drug delivery carrier. The drug loading efficiency of drug-loaded nanoparticles (HF-Dox-CD NPs) was 31.25%. In vitro release profiles showed that Dox release of nanoparticles represented a pH-sensitive sustained and controlled release characteristic. At the same time, the antioxidant activity of nanoparticles was measured, and chitosan nanoparticles possessed good antioxidant activity and could inhibit the lipid peroxidation inside the cell and avoid material infection. Notably, CCK-8 assay testified that the nanoparticles were safe drug carriers and significantly enhanced the antitumor activity of Dox. The nanoparticles possessed good antioxidant activity, pH-sensitive sustained controlled release, enhanced antitumor activity, and could be expected to serve as a drug carrier in future with broad application prospects.
Collapse
|
21
|
Jardim KV, Palomec‐Garfias AF, Araújo MV, Márquez‐Beltrán C, Bakuzis AF, Moya SE, Parize AL, Sousa MH. Remotely triggered curcumin release from stimuli‐responsive magneto‐polymeric
layer‐by‐layer
engineered nanoplatforms. J Appl Polym Sci 2022. [DOI: 10.1002/app.52200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | | | - Andris Figueiroa Bakuzis
- Instituto de Física Universidade Federal de Goiás, Campus Samambaia Goiânia Brazil
- CNanoMed, Parque Tecnológico Samambaia Universidade Federal de Goiás Goiânia Brazil
| | - Sergio Enrique Moya
- Soft Matter Nanotechnology Laboratory CIC biomaGUNE San Sebastián, Guip Spain
| | - Alexandre Luis Parize
- Polimat, Grupo de Estudos em Materiais Poliméricos, Departamento de Química Universidade Federal de Santa Catarina Florianópolis Brazil
| | | |
Collapse
|
22
|
Fathi M, Emam-Djomeh Z, Aliabbasi N. Developing two new types of nanostructured vehicles to improve biological activity and functionality of curcumin. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101386] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Mi Y, Chen Y, Gu G, Miao Q, Tan W, Li Q, Guo Z. New synthetic adriamycin-incorporated chitosan nanoparticles with enhanced antioxidant, antitumor activities and pH-sensitive drug release. Carbohydr Polym 2021; 273:118623. [PMID: 34561017 DOI: 10.1016/j.carbpol.2021.118623] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
In this paper, adriamycin-incorporated chitosan nanoparticles were synthesized by ionic gelation using negatively charged carboxymethyl chitosan and positively charged 2-hydroxypropyltrimethyl ammonium chloride chitosan. The method was efficient to obtain nanoparticles with low polydispersity index and small hydrodynamic diameter. And high zeta potential value indicated that nanoparticles had good stability. The adriamycin release of nanoparticles represented a significant response to pH, with the fastest release in phosphate buffer solution at pH 6.8. Meanwhile, the antioxidant efficiency of nanoparticles was assayed, and nanoparticles represented significant enhancement in radicals scavenging activity. The assay of cell viability by CCK-8 test exhibited that nanoparticles led to statistically significant decrease in cell viability for four kinds of cancer cells (HEPG-2, A549, MCF-7, and BGC-823). It was indicated that the nanoparticles with enhanced biological activity, reduced cytotoxicity, and pH-sensitive release could be served as potential drug carrier in drug delivery system.
Collapse
Affiliation(s)
- Yingqi Mi
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Chen
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Guodong Gu
- Alliance Pharma, Inc., 17 Lee Boulevard, Malvern, PA 19355, USA
| | - Qin Miao
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqiang Tan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
24
|
Mohanty S, Konkimalla VB, Pal A, Sharma T, Si SC. Naringin as Sustained Delivery Nanoparticles Ameliorates the Anti-inflammatory Activity in a Freund's Complete Adjuvant-Induced Arthritis Model. ACS OMEGA 2021; 6:28630-28641. [PMID: 34746558 PMCID: PMC8567265 DOI: 10.1021/acsomega.1c03066] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/05/2021] [Indexed: 05/08/2023]
Abstract
Naringin (NAR), a naturally occurring essential flavonoid, present in grapefruit and Chinese herbal medicines, creates great interest in researchers due to its diverse biological and pharmacological activities. However, further development of NAR is hindered due to its poor water solubility and dissolution rates in GIT. To address these limitations, in this study, we report polymeric nanoparticles (NPs) of NAR (NAR-PLGA-NPs) for enhancing the oral NAR efficiency, with a biodegradable polymer (PLGA) to improve its absorption and bioavailability. NAR-PLGA-NPs were fabricated by a modified solvent emulsification-evaporation technique. Physicochemical properties were evaluated by SEM, particle size distribution, entrapment efficiency, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and differential scanning calorimetry (DSC). In vitro drug release and ex vivo permeation studies were carried out in phosphate buffer (pH 6.8) for 24 h. Furthermore, in vivo anti-arthritic studies were performed on a mouse model, and the results were compared with free NAR. The modulation of inflammatory mediators was also evidently supported by docking studies. Optimized nanoformulation FN4 (NAR-PLGA-NPs) prepared with acetone-ethanol (2:1) as a solvent system in a combination of stabilizers, i.e., poloxamer-188 and sodium deoxylate (1:1), along with 2% PVA solution, was prepared. From size characterization studies, it was observed that nanoformulations possessed a low particle size (179.7 ± 2.05 nm), a low polydispersity index (0.206 ± 0.001), and a negative zeta potential (-9.18 ± 0.78 mV) with a maximum entrapment efficiency (74 ± 3.61%). The drug release followed a Korsmeyer-Peppas release kinetic model (anomalous non-Fickian diffusion), providing greater NAR release after lyophilization (82.11 ± 3.65%) drug release in pH 6.8 phosphate buffer for 24 h. Ex vivo permeation analysis through an isolated goat intestinal membrane revealed 80.02 ± 3.69% drug release in 24 h. Encapsulation of a drug into PLGA is well described by the results of FTIR, DSC, and XRD. Finally, the therapeutic efficacy of optimized FN4 (NAR-PLGA-NPs) and its possible application on RA were further confirmed in a Freund's complete adjuvant-induced rat arthritic model as against free NAR at a dose of 20 mg/kg body wt. Our findings demonstrate that sustained action of NAR from optimized FN4 NPs with a rate-controlling polymeric carrier system exhibited prolonged circulation time and reduced arthritic inflammation, hence indicating the possibility as a novel strategy to secure the unpropitious biological interactions of hydrophobic NAR in a gastric environment.
Collapse
Affiliation(s)
- Sangeeta Mohanty
- School
of Pharmaceutical Sciences, Siksha O Anusandhan
Deemed to be University, Bhubaneswar 751030, India
| | - V. Badireenath Konkimalla
- School
of Biological Sciences, National Institute
of Science Education and Research HBNI, Bhubaneswar 752050, India
| | - Abhisek Pal
- Gitam
School of Pharmacy, Gitam Deemed to be University, Hyderabad 502329, India
| | - Tripti Sharma
- School
of Pharmaceutical Sciences, Siksha O Anusandhan
Deemed to be University, Bhubaneswar 751030, India
| | - Sudam Chandra Si
- School
of Pharmaceutical Sciences, Siksha O Anusandhan
Deemed to be University, Bhubaneswar 751030, India
| |
Collapse
|
25
|
Pereira FM, Melo MN, Santos ÁKM, Oliveira KV, Diz FM, Ligabue RA, Morrone FB, Severino P, Fricks AT. Hyaluronic acid-coated chitosan nanoparticles as carrier for the enzyme/prodrug complex based on horseradish peroxidase/indole-3-acetic acid: Characterization and potential therapeutic for bladder cancer cells. Enzyme Microb Technol 2021; 150:109889. [PMID: 34489042 DOI: 10.1016/j.enzmictec.2021.109889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/08/2021] [Accepted: 07/29/2021] [Indexed: 01/07/2023]
Abstract
Hybrid nanoparticles composed of different biopolymers for delivery of enzyme/prodrug systems are of interest for cancer therapy. Hyaluronic acid-coated chitosan nanoparticles (CS/HA NP) were prepared to encapsulate individually an enzyme/pro-drug complex based on horseradish peroxidase (HRP) and indole-3-acetic acid (IAA). CS/HA NP showed size around 158 nm and increase to 170 and 200 nm after IAA and HRP encapsulation, respectively. Nanoparticles showed positive zeta potential values (between +20.36 mV and +24.40 mV) and higher encapsulation efficiencies for both nanoparticles (up to 90 %) were obtained. Electron microscopy indicated the formation of spherical particles with smooth surface characteristic. Physicochemical and thermal characterizations suggest the encapsulation of HRP and IAA. Kinetic parameters for encapsulated HRP were similar to those of the free enzyme. IAA-CS/HA NP showed a bimodal release profile of IAA with a high initial release (72 %) followed by a slow-release pattern. The combination of HRP-CS/HA NP and IAA- CS/HA NP reduced by 88 % the cell viability of human bladder carcinoma cell line (T24) in the concentrations 0.5 mM of pro-drug and 1.2 μg/mL of the enzyme after 24 h.
Collapse
Affiliation(s)
- Fernanda Menezes Pereira
- Tiradentes University, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil
| | - Micael Nunes Melo
- Tiradentes University, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil
| | - Átali Kayane Mendes Santos
- Tiradentes University, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil
| | - Karony Vieira Oliveira
- Tiradentes University, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil
| | - Fernando Mendonça Diz
- School of Technology, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Av. Ipiranga 6681, 90619-900, Porto Alegre, RS, Brazil
| | - Rosane Angélica Ligabue
- School of Technology, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Av. Ipiranga 6681, 90619-900, Porto Alegre, RS, Brazil
| | - Fernanda Bueno Morrone
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Av. Ipiranga 6681, 90619-900, Porto Alegre, RS, Brazil
| | - Patrícia Severino
- Tiradentes University, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil
| | - Alini Tinoco Fricks
- Tiradentes University, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil.
| |
Collapse
|
26
|
Tunable high internal phase emulsions stabilized by cross-linking/ electrostatic deposition of polysaccharides for delivery of hydrophobic bioactives. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106742] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Khalid A, Ahmed N, Qindeel M, Asad MI, Khan GM, Ur Rehman A. Development of novel biopolymer-based nanoparticles loaded cream for potential treatment of topical fungal infections. Drug Dev Ind Pharm 2021; 47:1090-1099. [PMID: 34279160 DOI: 10.1080/03639045.2021.1957914] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Biodegradable polymers are extensively used due to their efficient safety profiles. The aim of the current study was to fabricate, evaluate, and characterize biodegradable, biocompatible fluconazole (FLZ) loaded chitosan (CHS) chondroitin sulfate (CS) nanoparticles (NPs) for topical delivery. Polymers utilized in the formulation not only served as a carrier system but also aided in fighting with complex etiology of the disease due to their innate antifungal activities. METHODS NPs were prepared by the complex coacervation method, then were optimized for various parameters and subsequently loaded into a cream. RESULTS Scanning electron microscopic (SEM) analysis showed spherical morphology of the NPs. Prepared NPs showed an average particle size in the range of 350-450 nm and an encapsulation efficiency (EE) of 86%. The polydispersity index (PDI) was found to be 0.148 that showed a uniform distribution of NPs. Fourier transform infrared (FTIR) spectroscopy confirmed the absence of any electrostatic interaction between ingredients. In vitro drug release analyses exhibited a sustained release of the drug and higher antifungal activity than free FLZ. Ex vivo permeability and drug distribution in different skin layers ensured a site-specific delivery of the FLZ-NPs. As compared with free FLZ and other control groups, the prepared NPs also exhibited significantly higher antifungal activity against Candida albicans (p < .01). CONCLUSION It was concluded from the results that the FLZ-NPs laden cream could be a potential candidate for topical and site-specific delivery of the drug cargo for the potential treatment of fungal infections.
Collapse
Affiliation(s)
- Aimen Khalid
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Naveed Ahmed
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Maimoona Qindeel
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Gul Majid Khan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Asim Ur Rehman
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
28
|
Melo MN, Pereira FM, Rocha MA, Ribeiro JG, Junges A, Monteiro WF, Diz FM, Ligabue RA, Morrone FB, Severino P, Fricks AT. Chitosan and chitosan/PEG nanoparticles loaded with indole-3-carbinol: Characterization, computational study and potential effect on human bladder cancer cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112089. [PMID: 33947529 DOI: 10.1016/j.msec.2021.112089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/11/2021] [Accepted: 03/26/2021] [Indexed: 12/24/2022]
Abstract
Indole-3-carbinol (I3C) is a plant molecule known to be active against several types of cancer, but some chemical characteristics limit its clinical applications. In order to overcome these limitations, polymeric nanoparticles can be used as carrier systems for targeted delivery of I3C. In this study, chitosan and chitosan/polyethylene glycol nanoparticles (CS NP and CS/PEG NP, respectively) were prepared to encapsulate I3C by ionic gelation method. The polymeric nanoparticles were characterized by Dynamic Scattering Light (DLS), Zeta Potential (ZP), Fourier Transform Infrared (FTIR) spetroscopy, X-Ray Diffraction (XRD), Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), and Field Emission Gun Scanning Electron Microscopy (FEG-SEM). I3C release testing was performed at an acidic media and the interactions between I3C and chitosan or PEG were evaluated by Density Functional Theory (DFT). Cytotoxicity of nanoparticles in bladder cancer T24 cell line was evaluated by the Methyl-thiazolyl-tetrazolium (MTT) colorimetric assay. The average size of the nanoparticles was observed to be in the range from 133.3 ± 3.7 nm to 180.4 ± 2.7 nm with a relatively homogeneous distribution. Samples had relatively high positive zeta potential values (between +20.3 ± 0.5 mV and + 24.3 ± 0.5 mV). Similar encapsulation efficiencies (about 80%) for both nanoparticles were obtained. Physicochemical and thermal characterizations pointed to the encapsulation of I3c. electron microscopy showed spherical particles with smooth or ragged surface characteristics, depending on the presence of PEG. The mathematical fitting of the release profile demonstrated that I3C-CS NP followed the Higuchi model whereas I3C-CS/PEG NP the Korsmeyer-Peppas model. Chemical differences between the nanoparticles as based on the I3C/CS or I3C/PEG interactions were demonstrate by computational characterization. The assessment of cell viability by the MTT test showed that the presence of both free I3C and I3C-loaded nanoparticles lead to statistically significant reduction in T24 cells viability in the concentrations from 500 to 2000 μM, when comparison to the control group after 24 h of exposure. Thus, CS and CS/PEG nanoparticles present as feasible I3C carrier systems for cancer therapy.
Collapse
Affiliation(s)
- Micael Nunes Melo
- Tiradentes University - UNIT, Av. Murilo Dantas 300, 49032-490 Aracaju, SE, Brazil; Institute of Technology and Research - ITP, Av. Murilo Dantas 300, 49032-490 Aracaju, SE, Brazil
| | - Fernanda Menezes Pereira
- Tiradentes University - UNIT, Av. Murilo Dantas 300, 49032-490 Aracaju, SE, Brazil; Institute of Technology and Research - ITP, Av. Murilo Dantas 300, 49032-490 Aracaju, SE, Brazil
| | - Matheus Alves Rocha
- Tiradentes University - UNIT, Av. Murilo Dantas 300, 49032-490 Aracaju, SE, Brazil; Institute of Technology and Research - ITP, Av. Murilo Dantas 300, 49032-490 Aracaju, SE, Brazil
| | - Jesica Gonçalves Ribeiro
- Tiradentes University - UNIT, Av. Murilo Dantas 300, 49032-490 Aracaju, SE, Brazil; Institute of Technology and Research - ITP, Av. Murilo Dantas 300, 49032-490 Aracaju, SE, Brazil
| | - Alexander Junges
- Department of Food Engineering, URI - Erechim Av. Sete de Setembro, 1621, 99709-910 Erechim, Rio Grande do Sul, Brazil
| | - Wesley Formentin Monteiro
- Chemistry Institute, Federal University of Rio Grande do Sul - UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Fernando Mendonça Diz
- School of Technology, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Av. Ipiranga 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Rosane Angélica Ligabue
- School of Technology, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Av. Ipiranga 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Fernanda Bueno Morrone
- School of Life and Health Sciences, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Av. Ipiranga 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Patrícia Severino
- Tiradentes University - UNIT, Av. Murilo Dantas 300, 49032-490 Aracaju, SE, Brazil; Institute of Technology and Research - ITP, Av. Murilo Dantas 300, 49032-490 Aracaju, SE, Brazil
| | - Alini Tinoco Fricks
- Tiradentes University - UNIT, Av. Murilo Dantas 300, 49032-490 Aracaju, SE, Brazil; Institute of Technology and Research - ITP, Av. Murilo Dantas 300, 49032-490 Aracaju, SE, Brazil.
| |
Collapse
|
29
|
Tan C, Wang J, Sun B. Polysaccharide dual coating of yeast capsules for stabilization of anthocyanins. Food Chem 2021; 357:129652. [PMID: 33865001 DOI: 10.1016/j.foodchem.2021.129652] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/05/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023]
Abstract
The dual coated yeast capsules for anthocyanin encapsulation and stabilization were fabricated. Anthocyanins were preloaded in hollow yeast capsules, and then the dual coating was performed by deposition of opposite charged polysaccharides using layer-by-layer technique. The combination of positively charged chitosan and negatively charged chondroitin sulfate was found to confer the yeast capsules with the highest encapsulation efficiency and retention rate of anthocyanins. Additionally, the coated yeast capsules featured high tolerance to environmental stresses (i.e., oxygen, ascorbic acid, and heat) and therefore effectively inhibited the degradation of anthocyanins. These stabilizing effects were related to the formation of high penetration barrier provided by the double layers of polysaccharides, as well as the enhanced hydrophobic microenvironment in the capsules. Further development of the polysaccharide-coated yeast capsules may hold promise for the controlled delivery of other water-soluble bioactive components.
Collapse
Affiliation(s)
- Chen Tan
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University (BTBU), Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University (BTBU), Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Baoguo Sun
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
30
|
Berdiaki A, Neagu M, Giatagana EM, Kuskov A, Tsatsakis AM, Tzanakakis GN, Nikitovic D. Glycosaminoglycans: Carriers and Targets for Tailored Anti-Cancer Therapy. Biomolecules 2021; 11:395. [PMID: 33800172 PMCID: PMC8001210 DOI: 10.3390/biom11030395] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment (TME) is composed of cancerous, non-cancerous, stromal, and immune cells that are surrounded by the components of the extracellular matrix (ECM). Glycosaminoglycans (GAGs), natural biomacromolecules, essential ECM, and cell membrane components are extensively altered in cancer tissues. During disease progression, the GAG fine structure changes in a manner associated with disease evolution. Thus, changes in the GAG sulfation pattern are immediately correlated to malignant transformation. Their molecular weight, distribution, composition, and fine modifications, including sulfation, exhibit distinct alterations during cancer development. GAGs and GAG-based molecules, due to their unique properties, are suggested as promising effectors for anticancer therapy. Considering their participation in tumorigenesis, their utilization in drug development has been the focus of both industry and academic research efforts. These efforts have been developing in two main directions; (i) utilizing GAGs as targets of therapeutic strategies and (ii) employing GAGs specificity and excellent physicochemical properties for targeted delivery of cancer therapeutics. This review will comprehensively discuss recent developments and the broad potential of GAG utilization for cancer therapy.
Collapse
Affiliation(s)
- Aikaterini Berdiaki
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
| | - Monica Neagu
- Department of Immunology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
| | - Eirini-Maria Giatagana
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
| | - Andrey Kuskov
- Department of Technology of Chemical Pharmaceutical and Cosmetic Substances, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia;
| | - Aristidis M. Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - George N. Tzanakakis
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
- Laboratory of Anatomy, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
| |
Collapse
|
31
|
Rezazadeh M, Akbari V, Varshosaz J, Karbasizadeh P, Minaiyan M. Sustained-release of erythropoietin using a novel injectable thermosensitive hydrogel: in vitro studies, biological activity, and efficacy in rats. Pharm Dev Technol 2021; 26:412-421. [PMID: 33538616 DOI: 10.1080/10837450.2021.1883059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In the current study erythropoietin (EPO) loaded trimethyl chitosan/tripolyphosphate nanoparticles-embedded in a thermosensitive hydrogel was prepared. The influence of the main experimental factors on the properties of EPO-loaded nanoparticles were evaluated using a two-factors central composite design and the optimized formulation was then freeze dried. Sodium dodecyl sulfate-page and circular dichroismspectroscopy were used to confirm the structural stability of EPO following encapsulation and freeze drying. Rheological properties, and the release rate of EPO from the hydrogel were examined. Mean particle size, zeta potential, and entrapment efficiency of the optimized EPO-loaded nanoparticles were confirmed 151.5 ± 16 nm, 11.5 ± 1.8 mV, and 78.5 ± 5.9%, respectively. The hydrogel containing nanoparticles existed as a solution at room temperature converted to a semisolid upon increasing the temperature to 35 ± 1.2 °C and demonstrated controlled release of EPO for more than 10 days. The stability of EPO in the hydrogel system was further investigated using in vivo biological activity assay and the result revealed relative potency of 0.85 as calibrated with standard EPO. Finally, a single injection of the EPO-loaded nanoparticles-embedded in the hydrogel administered to Sprague-Dawley rats resulted in elevated reticulocytes for about 20 days compared to control group received blank hydrogel.
Collapse
Affiliation(s)
- Mahboubeh Rezazadeh
- Department of Pharmaceutics, Novel Drug Delivery System Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran
| | - Vajihe Akbari
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran
| | - Jaleh Varshosaz
- Department of Pharmaceutics, Novel Drug Delivery System Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran
| | - Parisa Karbasizadeh
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran
| | - Mohsen Minaiyan
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran
| |
Collapse
|
32
|
Kurnik IS, D'Angelo NA, Mazzola PG, Chorilli M, Kamei DT, Pereira JFB, Vicente AA, Lopes AM. Polymeric micelles using cholinium-based ionic liquids for the encapsulation and release of hydrophobic drug molecules. Biomater Sci 2021; 9:2183-2196. [DOI: 10.1039/d0bm01884h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We generated stable amphiphilic copolymer-based polymeric micelles (PMs) with temperature-responsive properties utilizing Pluronic® L35 and a variety of ionic liquids (ILs) for the encapsulation and release of curcumin.
Collapse
Affiliation(s)
- Isabelle S. Kurnik
- Department of Engineering of Bioprocesses and Biotechnology
- School of Pharmaceutical Sciences
- São Paulo State University (UNESP)
- Araraquara
- Brazil
| | | | | | - Marlus Chorilli
- Department of Drugs and Medicines
- School of Pharmaceutical Sciences
- São Paulo State University (UNESP)
- Araraquara
- Brazil
| | - Daniel T. Kamei
- Department of Bioengineering
- University of California
- Los Angeles
- USA
| | - Jorge F. B. Pereira
- University of Coimbra
- CIEPQPF
- Department of Chemical Engineering
- Coimbra
- Portugal
| | | | - André M. Lopes
- Faculty of Pharmaceutical Sciences
- University of Campinas
- Campinas
- Brazil
| |
Collapse
|
33
|
Developed simvastatin chitosan nanoparticles co-crosslinked with tripolyphosphate and chondroitin sulfate for ASGPR-mediated targeted HCC delivery with enhanced oral bioavailability. Saudi Pharm J 2020; 28:1851-1867. [PMID: 33424274 PMCID: PMC7783227 DOI: 10.1016/j.jsps.2020.11.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Simvastatin (SV) repurposing has emerged as an alternative approach for the treatment of cancer. In this study, SV chitosan nanoparticles co-crosslinked with tripolyphosphate and chondroitin sulfate (SVCSChSNPs) were developed in order to maximize SV therapeutic efficiency. The hepatic targeting was realized using N-acetylgalactosamine (GalNAc) residues of ChS, which can be identified by the ASGPR receptors specifically expressed in hepatocytes. SV was repurposed as an anticancer agent against hepatocellular carcinoma (HCC). NPs were fabricated by the ionic gelation method, and the formulation variables (CS concentration, CS:ChS ratio, and CS solution pH) were optimized using a three-factor, three-level Box-Behnken design. The optimized NPs were investigated for particle size, size distribution, zeta potential, morphology, in vitro cytotoxicity, apoptotic effects against human hepatocellular carcinoma HepG2 cells, and detection of intracellular localization. The NPs were further evaluated for in vitro release behavior of SV and pharmacokinetics using Wister albino rats. Transmission electron microscopy (TEM) imaging showed a spherical shape with regular surface NPs of < 100 nm diameter. In vitro cytotoxicity testing showed that the SVCSChSNPs exhibited greater inhibition of proliferation in HepG2 cells and high cellular uptake through ASGPR-mediated endocytosis. The in vitro dissolution profile was 2.1-fold greater than that of pure SV suspension. Furthermore, in vivo oral pharmacokinetics revealed that the obtained NPs enhanced the bioavailability of SV by up to 2- and 1.6-fold for SV and SVA, respectively, compared to the pure SV suspension. These findings demonstrated that hepatic-targeted CSChSNPs delivering SV could potentially serve as a promising platform for HCC and other liver-related diseases.
Collapse
|
34
|
Siddiqui B, Rehman A, Haq IU, Ahmad NM, Ahmed N. Development, optimisation, and evaluation of nanoencapsulated diacerein emulgel for potential use in osteoarthritis. J Microencapsul 2020; 37:595-608. [DOI: 10.1080/02652048.2020.1829140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Bazla Siddiqui
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Asim.ur. Rehman
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ihsan-Ul Haq
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Nasir M. Ahmad
- Polymer Research Lab, School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Naveed Ahmed
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
35
|
Grazioli G, Silva AF, Souza JF, David C, Diehl L, Sousa-Neto MD, Cava SS, Fajardo AR, Moraes RR. Synthesis and characterization of poly(vinyl alcohol)/chondroitin sulfate composite hydrogels containing strontium-doped hydroxyapatite as promising biomaterials. J Biomed Mater Res A 2020; 109:1160-1172. [PMID: 32985092 DOI: 10.1002/jbm.a.37108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/21/2020] [Accepted: 09/26/2020] [Indexed: 01/20/2023]
Abstract
Novel poly(vinyl alcohol)/chondroitin sulfate (PVA/CS) composite hydrogels containing hydroxyapatite (HA) or Sr-doped HA (HASr) particles were synthesized by a freeze/thaw method and characterized aiming towards biomedical applications. HA and HASr were synthesized by a wet-precipitation method and added to the composite hydrogels in fractions up to 15 wt%. Physical-chemical characterizations of particles and hydrogels included scanning electron microscopy, energy-dispersive spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, thermogravimetry, porosity, compressive strength/elastic modulus, swelling degree, and cell viability. Particles were irregular in shape and appeared to have narrow size variation. The thermal behavior of composite hydrogels was altered compared to the control (bare) hydrogel. All hydrogels exhibited high porosity. HA/HASr particles reduced total porosity without reducing pore size. The mechanical strength was improved as the fraction of HA or HASr was increased. HASr particles led to a faster water uptake but did not interfere with the total hydrogel swelling capacity. In cell viability essay, increased cell growth (above 120%) was observed in all groups including the control hydrogel, suggesting a bioactive effect. In conclusion, PVA/CS hydrogels containing HA or HASr particles were successfully synthesized and showed promising morphological, mechanical, and swelling properties, which are particularly required for scaffolding.
Collapse
Affiliation(s)
- Guillermo Grazioli
- Department of Dental Materials, University of the Republic, Montevideo, Uruguay.,Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, Brazil
| | - Adriana F Silva
- Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, Brazil
| | - Jaqueline F Souza
- Laboratory of Technology and Development of Composites and Polymeric Materials - LaCoPol, Federal University of Pelotas, Pelotas, Brazil
| | - Carla David
- Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, Brazil
| | - Lisiane Diehl
- Advanced Crystal Growth and Photonics - CCAF, Federal University of Pelotas, Pelotas, Brazil
| | - Manoel D Sousa-Neto
- Department of Restorative Dentistry, University of São Paulo, Ribeirão Preto, Brazil
| | - Sergio S Cava
- Advanced Crystal Growth and Photonics - CCAF, Federal University of Pelotas, Pelotas, Brazil
| | - André R Fajardo
- Laboratory of Technology and Development of Composites and Polymeric Materials - LaCoPol, Federal University of Pelotas, Pelotas, Brazil
| | - Rafael R Moraes
- Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
36
|
Feng S, Sun Y, Wang D, Sun P, Shao P. Effect of adjusting pH and chondroitin sulfate on the formation of curcumin-zein nanoparticles: Synthesis, characterization and morphology. Carbohydr Polym 2020; 250:116970. [PMID: 33049899 DOI: 10.1016/j.carbpol.2020.116970] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 10/23/2022]
Abstract
This study is aiming to investigate the stabilizing effect of chondroitin sulfate (CS) on the preparation of curcumin nanoparticles (NPs). The results showed that adding CS before the anti-solvent process of zein (Z) at pH7 could fabricate most stable NPs (Cur/CS/Z-pH7) with particle size of 197 ± 5 nm and zeta-potential of -48.4 ± 1.9 mV. The pH had a significant effect on the fabrication of NPs. Cur/CS/Z-pH7 was more stable than Cur/CS/Z-pH3, while Cur/Z-CS-pH3 was more stable than the Cur/Z-CS-pH7. According to the results of XRD, FTIR, DSC and CD, CS can form irreversible macromolecular complexes with zein through non-electrostatic interactions during the anti-solvent process (Cur/CS/Z-pH7, Cur/CS/Z-pH3). However, CS was adsorbed on the surface of Zein NPs by electrostatic interaction (Cur/Z-CS-pH7, Cur/Z-CS-pH3), when CS was added after anti-solvent process of zein. These results illustrated that it is better to add CS before the anti-solvent process of zein at neutral pH.
Collapse
Affiliation(s)
- Simin Feng
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, 310014, PR China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, PR China
| | - Yuxin Sun
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, 310014, PR China
| | - Dan Wang
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, 310014, PR China
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, 310014, PR China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, PR China
| | - Ping Shao
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, 310014, PR China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, PR China.
| |
Collapse
|
37
|
|
38
|
Enumo A, Argenta DF, Bazzo GC, Caon T, Stulzer HK, Parize AL. Development of curcumin-loaded chitosan/pluronic membranes for wound healing applications. Int J Biol Macromol 2020; 163:167-179. [PMID: 32615217 DOI: 10.1016/j.ijbiomac.2020.06.253] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/16/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022]
Abstract
The emergence of new materials with improved antibacterial, anti-inflammatory and healing properties compared to conventional wound dressings has both social and economic appeal. In this study, novel chitosan-based (CTS) membranes containing curcumin (CUR) incorporated in Pluronic (PLU) copolymers were developed and characterized to obtain suitable properties for applications as a wound healing dressing. The mechanical, thermal, swelling, wettability, release and permeation properties were evaluated by DSC, TGA, water contact angle measurements, FTIR, fluorescence and microscopic techniques. Membranes containing PLU and CUR presented wettability close to the ideal range for interaction with cellular components (contact angle ~40-70°), improved mechanical properties, higher thermal stability, high swelling degree (>800%) and CUR release (~60%) compared to samples without PLU addition. A higher retention of CUR in the epidermis than in the dermis layer was observed, which also was confirmed by confocal microscopy. Furthermore, the CTS-PLU membranes loaded with CUR showed to be active against Staphylococcus aureus and Pseudomonas aeruginosa (MIC = 25 and 100 mg mL-1, respectively), the microbial species most present in chronic wounds. Overall, the CTS-PLU-CUR membranes presented suitable properties to act as a new wound healing dressing formulation and in vivo studies should be performed to confirm these benefits.
Collapse
Affiliation(s)
- Adalberto Enumo
- Polimat, Grupo de Estudos em Materiais Poliméricos, Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Débora Fretes Argenta
- Laboratório de Farmacotécnica e Cosmetologia, Departamento de Ciências Farmacêuticas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Giovana Carolina Bazzo
- Laboratório de Controle de Qualidade de Fármacos e Medicamentos, Departamento de Ciências Farmacêuticas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Thiago Caon
- Laboratório de Farmacotécnica e Cosmetologia, Departamento de Ciências Farmacêuticas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Hellen Karine Stulzer
- Laboratório de Controle de Qualidade de Fármacos e Medicamentos, Departamento de Ciências Farmacêuticas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Alexandre Luis Parize
- Polimat, Grupo de Estudos em Materiais Poliméricos, Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| |
Collapse
|
39
|
Çakır MA, Icyer NC, Tornuk F. Optimization of production parameters for fabrication of thymol-loaded chitosan nanoparticles. Int J Biol Macromol 2020; 151:230-238. [DOI: 10.1016/j.ijbiomac.2020.02.096] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/30/2020] [Accepted: 02/10/2020] [Indexed: 12/21/2022]
|
40
|
Jardim KV, Siqueira JLN, Báo SN, Sousa MH, Parize AL. The role of the lecithin addition in the properties and cytotoxic activity of chitosan and chondroitin sulfate nanoparticles containing curcumin. Carbohydr Polym 2020; 227:115351. [DOI: 10.1016/j.carbpol.2019.115351] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 07/04/2019] [Accepted: 09/18/2019] [Indexed: 01/06/2023]
|
41
|
Yuan Y, Li H, Liu C, Zhu J, Xu Y, Zhang S, Fan M, Zhang D, Zhang Y, Zhang Z, Wang D. Fabrication of stable zein nanoparticles by chondroitin sulfate deposition based on antisolvent precipitation method. Int J Biol Macromol 2019; 139:30-39. [DOI: 10.1016/j.ijbiomac.2019.07.090] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/01/2019] [Accepted: 07/12/2019] [Indexed: 01/08/2023]
|
42
|
Wu LX, Qiao ZR, Cai WD, Qiu WY, Yan JK. Quaternized curdlan/pectin polyelectrolyte complexes as biocompatible nanovehicles for curcumin. Food Chem 2019; 291:180-186. [DOI: 10.1016/j.foodchem.2019.04.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 04/07/2019] [Accepted: 04/07/2019] [Indexed: 12/18/2022]
|
43
|
Black rice anthocyanins embedded in self-assembled chitosan/chondroitin sulfate nanoparticles enhance apoptosis in HCT-116 cells. Food Chem 2019; 301:125280. [PMID: 31377624 DOI: 10.1016/j.foodchem.2019.125280] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/25/2019] [Accepted: 07/28/2019] [Indexed: 02/06/2023]
Abstract
Self-assembled nanoparticles using the biopolymers chitosan (CH) and chondroitin sulfate (CS) were developed to improve the biological activity of anthocyanin (ACN). The 86.32 ± 0.15% (w/w) of ACN was incorporated into ACN/CH/CS nanoparticles, with the particle size of 350.1 ± 0.99 nm in diameter (i.d.) and 42.55 ± 0.54 in zeta potential (mV). Morphological study and thermogravimetric analysis suggested that the ACN/CH/CS nanoparticles exhibited heterogeneous morphology and high thermal stability. Significant increases in apoptosis by 12.1% and 35.1% were observed with 0.05 mg/ml ACN and ACN/CH/CS nanoparticles in the HCT-116 cell line, indicating that the nanoparticle system led to significant increase in apoptosis (p < 0.05). Structural changes in mitochondria caused by ACN/CH/CS nanoparticles indicated that the nanoparticles had negative impacts on mitochondria. These results showed that nanoparticles could potentially be used as a carrier system to improve the efficacy of ACN.
Collapse
|
44
|
Sharma S, Swetha KL, Roy A. Chitosan-Chondroitin sulfate based polyelectrolyte complex for effective management of chronic wounds. Int J Biol Macromol 2019; 132:97-108. [PMID: 30926509 DOI: 10.1016/j.ijbiomac.2019.03.186] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 11/26/2022]
Abstract
Acute and chronic wound remain an unresolved clinical problem among various demographic groups. Traditional marketed products focus mainly on inhibition of bacterial growth at the wound site neglecting the tissue repair, which significantly affect the healing rate. It would be highly beneficial if a wound healing material can be developed which has both antibacterial as well as tissue regenerating potential. We have prepared a polyelectrolyte complex (PEC) using chitosan (CH) and chondroitin sulfate (CS) which can form an in-situ scaffold by spontaneous mixing. The fabrication of CH-CS PEC was optimized using Quality-By-Design (QbD) approach. The prepared PEC showed very high swelling and porosity property. It was found to be non-hemolytic with good blood compatibility and low blood clotting index. It also exhibited good antibacterial activity against both gram-positive and gram-negative bacteria. The cell proliferation study exhibited good cytocompatibility and almost four-fold increase in cell density when treated with CH-CS PEC compared to control. In summary, we demonstrated that the prepared CH-CS PEC showed good blood compatibility, high antibacterial effect, and promoted wound healing potentially by stimulating fibroblast growth, making it an ideal wound dressing material.
Collapse
|
45
|
Amorim A, Mafud AC, Nogueira S, Jesus JR, Araújo ARD, Plácido A, Brito Neta M, Alves MMM, Carvalho FAA, Rufino Arcanjo DD, Braun S, López MSP, López-Ruiz B, Delerue-Matos C, Mascarenhas Y, Silva D, Eaton P, Almeida Leite JRS. Copper nanoparticles stabilized with cashew gum: Antimicrobial activity and cytotoxicity against 4T1 mouse mammary tumor cell line. J Biomater Appl 2019; 34:188-197. [DOI: 10.1177/0885328219845964] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Adriany Amorim
- Centre for Biodiversity Research and Biotechnology, Biotec, Universidade Federal do Piaui, Parnaíba 64202020, PI, Brazil
| | - Ana Carolina Mafud
- São Carlos Physical Institute, University of São Paulo, USP, São Carlos 13566590, SP, Brazil
| | - Silvania Nogueira
- Centre for Biodiversity Research and Biotechnology, Biotec, Universidade Federal do Piaui, Parnaíba 64202020, PI, Brazil
| | - Joilson Ramos- Jesus
- Centre for Biodiversity Research and Biotechnology, Biotec, Universidade Federal do Piaui, Parnaíba 64202020, PI, Brazil
| | - Alyne Rodrigues de Araújo
- Centre for Biodiversity Research and Biotechnology, Biotec, Universidade Federal do Piaui, Parnaíba 64202020, PI, Brazil
| | - Alexandra Plácido
- Glial Cell Biology Lab, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200135, Portugal
- Bioprospectum, Lda, UPTEC, Porto 4200135, Portugal
| | - Maria Brito Neta
- Department of Genetics and Morphology, Institute of Biology Science, University of Brasilia, Brasília-DF 70910900, Brazil
| | | | | | - Daniel Dias Rufino Arcanjo
- Centre for Biodiversity Research and Biotechnology, Biotec, Universidade Federal do Piaui, Parnaíba 64202020, PI, Brazil
- Medicinal Plants Research Center, NPPM, UFPI, Teresina 64049550, PI, Brazil
| | - Sacha Braun
- Department of Genetics and Morphology, Institute of Biology Science, University of Brasilia, Brasília-DF 70910900, Brazil
| | - Marta Sánchez-Paniagua López
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Ciudad Universitaria, Madrid 28240, Spain
| | - Beatriz López-Ruiz
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Ciudad Universitaria, Madrid 28240, Spain
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Superior Engineering Institute of Porto, Polytechnic Institute of Porto, Porto 4200072, Portugal
| | - Yvonne Mascarenhas
- São Carlos Physical Institute, University of São Paulo, USP, São Carlos 13566590, SP, Brazil
| | - Durcilene Silva
- Department of Genetics and Morphology, Institute of Biology Science, University of Brasilia, Brasília-DF 70910900, Brazil
| | - Peter Eaton
- Centre for Biodiversity Research and Biotechnology, Biotec, Universidade Federal do Piaui, Parnaíba 64202020, PI, Brazil
- Requimte/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, Porto 4169007, Portugal
| | - José Roberto Souza Almeida Leite
- Nucleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Area Morphology, Faculty of Medicine, University of Brasília, UnB, 70910900, Campus Darcy Ribeiro, Brasília, Brazil
| |
Collapse
|
46
|
Synthesis of chitosan biocomposites loaded with pyrrole-2-carboxylic acid and assessment of their antifungal activity against Aspergillus niger. Appl Microbiol Biotechnol 2019; 103:2985-3000. [PMID: 30747297 DOI: 10.1007/s00253-019-09670-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 01/27/2019] [Accepted: 01/29/2019] [Indexed: 12/20/2022]
Abstract
A wide variety of chitosan (CS) biomaterials have been loaded with different antimicrobial agents to improve the activity of CS against phytopathogenic fungi. Recently, the antimicrobial activity of 1H-pyrrole-2-carboxylic acid (PCA) has been reported as a secondary metabolite of Streptomyces griseus, which was identified as the main bioactive compound in the biological control. However, it is sensitive to light and its activity against filamentous fungi has not yet been reported. The aim of the present research work was to evaluate the biological activity of CS-PCA biocomposites for the control of Aspergillus niger. CS-PCA biocomposites were obtained through nanoprecipitation. In vitro antifungal activity was determined by viability assay, spore germination, morphometric analysis of spores and hyphae, and the analysis of cellular components by fluorescence microscopy. CS-PCA showed an average size and Z potential of 502 ± 72 nm and + 54.7 ± 15 mV, respectively. Micrographs demonstrated well-distributed biocomposites with an apparently spherical shape. A new signal at 1473 cm-1 in the FT-IR spectrum of the CS-PCA biocomposite was observed, confirming the presence of PCA in the composition of the CS-PCA nanosystem. CS-PCA biocomposites reduced the spores' viability by up to 58%. Effects on fungi morphometry, observed as an increase in the spores' average diameter, swelling, distortion, and an increase in the branching of hyphae, were observed. Fluorescence analysis showed oxidative stress and membrane and cell wall damage, mainly at early growth stages. The inhibitory effect against CS-resistant fungi, such as A. niger, opens a door for the control of CS-sensitive fungi.
Collapse
|
47
|
Nutritional and Additive Uses of Chitin and Chitosan in the Food Industry. SUSTAINABLE AGRICULTURE REVIEWS 36 2019. [DOI: 10.1007/978-3-030-16581-9_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Soe ZC, Poudel BK, Nguyen HT, Thapa RK, Ou W, Gautam M, Poudel K, Jin SG, Jeong JH, Ku SK, Choi HG, Yong CS, Kim JO. Folate-targeted nanostructured chitosan/chondroitin sulfate complex carriers for enhanced delivery of bortezomib to colorectal cancer cells. Asian J Pharm Sci 2019; 14:40-51. [PMID: 32104437 PMCID: PMC7032194 DOI: 10.1016/j.ajps.2018.09.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/10/2018] [Accepted: 09/23/2018] [Indexed: 02/04/2023] Open
Abstract
Folate-targeting self-assembled nanoparticles (NPs) using biocompatible and biodegradable natural polymers chitosan (Cs) and chondroitin sulfate (Chs) were developed to address the major challenge in cancer treatment, the selective delivery of nanoparticles to the target site. In this study, we successfully incorporated a hydrophobic drug, bortezomib (Bor), into folic acid (FA)-conjugated Cs/Chs self-assembled NPs (Bor/Cs/Chs-FA) for colorectal cancer therapy. The particle size and polydispersity index of Bor/Cs/Chs-FA were ∼196.5 ± 1.2 nm and ∼0.21 ± 0.5, respectively. A pH-dependent release profile was observed, facilitating cancer cell-targeted drug release under an acidic tumor microenvironment. Moreover, in vitro data revealed enhanced cellular uptake and apoptosis in folate receptor-expressing colorectal cancer cells (HCT-116 and HT-29) as compared to that in lung cancer cells (A549), which do not express folate receptors. Furthermore, intravenous administration of Bor/Cs/Chs-FA in a HCT-116 bearing xenograft mouse model showed that the NPs were a safe and effective drug delivery system. The results suggest that folate-targeted nanoparticle can be effectively applied for efficient chemotherapy of colorectal cancer.
Collapse
Affiliation(s)
- Zar Chi Soe
- College of Pharmacy, Yeungnam University, Gyeongsan 712749, Republic of Korea
- Department of Pharmaceutics, University of Pharmacy (Yangon), Yangon 11031, Myanmar
| | - Bijay Kumar Poudel
- College of Pharmacy, Yeungnam University, Gyeongsan 712749, Republic of Korea
| | - Hanh Thuy Nguyen
- College of Pharmacy, Yeungnam University, Gyeongsan 712749, Republic of Korea
| | - Raj Kumar Thapa
- College of Pharmacy, Yeungnam University, Gyeongsan 712749, Republic of Korea
| | - Wenquan Ou
- College of Pharmacy, Yeungnam University, Gyeongsan 712749, Republic of Korea
| | - Milan Gautam
- College of Pharmacy, Yeungnam University, Gyeongsan 712749, Republic of Korea
| | - Kishwor Poudel
- College of Pharmacy, Yeungnam University, Gyeongsan 712749, Republic of Korea
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, Cheonan 31116, Republic of Korea
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan 712749, Republic of Korea
| | - Sae Kwang Ku
- College of Korean Medicine, Haany University, Gyeongsan 712715, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, Ansan 426791, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, Gyeongsan 712749, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan 712749, Republic of Korea
| |
Collapse
|
49
|
S G, T G, K V, Faleh A A, Sukumaran A, P N S. Development of 3D scaffolds using nanochitosan/silk-fibroin/hyaluronic acid biomaterials for tissue engineering applications. Int J Biol Macromol 2018; 120:876-885. [PMID: 30171951 DOI: 10.1016/j.ijbiomac.2018.08.149] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 08/26/2018] [Indexed: 01/13/2023]
Abstract
Bone tissue engineering put emphasis on fabrication three-dimensional biodegradable porous scaffolds that supporting bone regeneration and functional bone tissue formation. In the present work, we prepared novel 3D tripolymeric scaffolds of nanochitosan (NCS)/silk fibroin (SF)/hyaluronic acid (HA) ternary blends and demonstrating the synergistic effect of scaffolds and its use in tissue engineering applications. The physico-chemical characterization of the prepared scaffold was evaluated by FTIR, XRD and SEM studies. The FT-IR and XRD results confirmed the interfacial bonding interaction existing between polymers. SEM images showed good interconnected porous structure with rough surface morphology. The in vitro cytocompatibility tests carried out with osteoblast cells by the MTT assay demonstrated that the blended scaffold favors the early adhesion, growth and proliferation of preosteoblast MC3T3-E1 cells. The alizarin red assay indicated that the prepared scaffold can promote the osteogenic differentiation and facilitate the calcium mineralization of MC3T3-E1 cells. The alkaline phosphatase assay confirmed that the NCS/SF/HA scaffold provide conducive environment for osteoblast proliferation and mineral deposition. The bactericidal action of NCS/SF/HA scaffold reveals that the prepared sample has the potential to kill the microorganisms to a greater extent. Hence the overall findings concluded that the NCS/SF/HA scaffolds have better applications in tissue engineering.
Collapse
Affiliation(s)
- Gokila S
- Biomaterials Research Lab and Department of Chemistry, D.K.M. College for Women, Vellore, Tamil Nadu, India
| | - Gomathi T
- Biomaterials Research Lab and Department of Chemistry, D.K.M. College for Women, Vellore, Tamil Nadu, India
| | - Vijayalakshmi K
- Biomaterials Research Lab and Department of Chemistry, D.K.M. College for Women, Vellore, Tamil Nadu, India
| | - Alshahrani Faleh A
- Department of Oral and Maxillofacial Surgery, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Anil Sukumaran
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha University, Poonamallee High Road, Chennai 600077, India
| | - Sudha P N
- Biomaterials Research Lab and Department of Chemistry, D.K.M. College for Women, Vellore, Tamil Nadu, India.
| |
Collapse
|
50
|
Moraes AF, Moreira Filho RNF, Passos CCO, Cunha AP, Silva LMAE, Freitas LBN, Vasconcelos NF, Ricardo NMPS, Canuto KM, Rosa MF, Leal LKAM, Vieira RS. Hemocompatibility of 2‐
N
‐3,6‐
O
‐sulfated chitosan films. J Appl Polym Sci 2018. [DOI: 10.1002/app.47128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- A. F. Moraes
- Departamento de Engenharia QuímicaUniversidade Federal do Ceará, Centro de Tecnologia Avenue Mister Hull, s/n ‐ Campus do Pici ‐ Bloco 709 Pici. CEP, 60455‐760, Fortaleza, Ceará Brazil
| | - R. N. F. Moreira Filho
- Departamento de Engenharia QuímicaUniversidade Federal do Ceará, Centro de Tecnologia Avenue Mister Hull, s/n ‐ Campus do Pici ‐ Bloco 709 Pici. CEP, 60455‐760, Fortaleza, Ceará Brazil
| | - C. C. O. Passos
- Centro de Estudos Farmacêuticos e CosméticosUniversidade Federal do Ceará CEP 60430‐370 Fortaleza Ceará Brazil
| | - A. P. Cunha
- Laboratório de Polímeros e Inovação de MateriaisUniversidade Federal do Ceará CEP 60455‐760 Fortaleza Ceará Brazil
| | - L. M. A e Silva
- Embrapa Agroindústria Tropical CEP 60020‐181 Fortaleza Ceará Brazil
| | - L. B. N. Freitas
- Centro de Estudos Farmacêuticos e CosméticosUniversidade Federal do Ceará CEP 60430‐370 Fortaleza Ceará Brazil
| | | | - N. M. P. S. Ricardo
- Laboratório de Polímeros e Inovação de MateriaisUniversidade Federal do Ceará CEP 60455‐760 Fortaleza Ceará Brazil
| | - K. M. Canuto
- Embrapa Agroindústria Tropical CEP 60020‐181 Fortaleza Ceará Brazil
| | - M. F. Rosa
- Embrapa Agroindústria Tropical CEP 60020‐181 Fortaleza Ceará Brazil
| | - L. K. A. M. Leal
- Centro de Estudos Farmacêuticos e CosméticosUniversidade Federal do Ceará CEP 60430‐370 Fortaleza Ceará Brazil
| | - R. S. Vieira
- Departamento de Engenharia QuímicaUniversidade Federal do Ceará, Centro de Tecnologia Avenue Mister Hull, s/n ‐ Campus do Pici ‐ Bloco 709 Pici. CEP, 60455‐760, Fortaleza, Ceará Brazil
| |
Collapse
|