1
|
Mocanu AC, Miculescu F, Constantinescu AE, Pandele MA, Voicu ȘI, Cîmpean A, Miculescu M, Negrescu AM. Selection Route of Precursor Materials in 3D Printing Composite Filament Development for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2359. [PMID: 36984239 PMCID: PMC10058857 DOI: 10.3390/ma16062359] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/03/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Additive manufacturing or 3D printing technologies might advance the fabrication sector of personalised biomaterials with high-tech precision. The selection of optimal precursor materials is considered the first key-step for the development of new printable filaments destined for the fabrication of products with diverse orthopaedic/dental applications. The selection route of precursor materials proposed in this study targeted two categories of materials: prime materials, for the polymeric matrix (acrylonitrile butadiene styrene (ABS), polylactic acid (PLA)); and reinforcement materials (natural hydroxyapatite (HA) and graphene nanoplatelets (GNP) of different dimensions). HA was isolated from bovine bones (HA particles size < 40 μm, <100 μm, and >125 μm) through a reproducible synthesis technology. The structural (FTIR-ATR, Raman spectroscopy), morphological (SEM), and, most importantly, in vitro (indirect and direct contact studies) features of all precursor materials were comparatively evaluated. The polymeric materials were also prepared in the form of thin plates, for an advanced cell viability assessment (direct contact studies). The overall results confirmed once again the reproducibility of the HA synthesis method. Moreover, the biological cytotoxicity assays established the safe selection of PLA as a future polymeric matrix, with GNP of grade M as a reinforcement and HA as a bioceramic. Therefore, the obtained results pinpointed these materials as optimal for future composite filament synthesis and the 3D printing of implantable structures.
Collapse
Affiliation(s)
- Aura-Cătălina Mocanu
- Department of Metallic Materials Science, Physical Metallurgy, University Politehnica of Bucharest, 313 Splaiul Independentei, J Building, District 6, 060042 Bucharest, Romania
| | - Florin Miculescu
- Department of Metallic Materials Science, Physical Metallurgy, University Politehnica of Bucharest, 313 Splaiul Independentei, J Building, District 6, 060042 Bucharest, Romania
| | - Andreea Elena Constantinescu
- Department of Metallic Materials Science, Physical Metallurgy, University Politehnica of Bucharest, 313 Splaiul Independentei, J Building, District 6, 060042 Bucharest, Romania
| | - Mădălina-Andreea Pandele
- Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 1-7 Gh. Polizu Str., 011061 Bucharest, Romania
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Str., 011061 Bucharest, Romania
| | - Ștefan Ioan Voicu
- Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 1-7 Gh. Polizu Str., 011061 Bucharest, Romania
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Str., 011061 Bucharest, Romania
| | - Anișoara Cîmpean
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania
| | - Marian Miculescu
- Department of Metallic Materials Science, Physical Metallurgy, University Politehnica of Bucharest, 313 Splaiul Independentei, J Building, District 6, 060042 Bucharest, Romania
| | - Andreea Mariana Negrescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania
| |
Collapse
|
2
|
Fernandes PHM, Bordini EAF, Cassiano FB, de Azevedo-Silva LJ, Ferrairo BM, Lisboa-Filho PN, Fortulan CA, Soares Dos Passos DG, Borges AFS. TiO 2 nanoparticles added to dense bovine hydroxyapatite bioceramics increase human osteoblast mineralization activity. Dent Mater 2022; 38:e275-e283. [PMID: 36068105 DOI: 10.1016/j.dental.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES This study evaluated the effect of TiO2 nanoparticles + dense hydroxyapatite (HA) on human osteoblast cells (SAOS-2). METHODS Particulate bovine HA powder with or without the addition of either 5 or 8 % TiO2 (HA, HA/TiO2Np5 % or HA/TiO2Np8 %) were pressed into disks (Ø = 12.5 mm; thickness = 1.3 mm) uniaxially (100 MPa) and isostatically (200 MPa/1 min) and sintered at 1300 °C. Y-TZP disks were used as control. The following tests were performed: Scanning Electron Microscopy and Dispersive Energy Spectroscopy (SEM/EDS), Atomic Force Microscopy (AFM), cell viability assay (Alamar Blue-AB) and mineralized matrix deposition (Alizarin Red-AR). AB and AR data were submitted to 2-way ANOVA/Tukey tests and ANOVA/Tukey tests, respectively. RESULTS SEM revealed that the surface of HA/TiO2Np5% resembles DPBHA surface, but also contains smaller granules. HA/TiO2Np8% characteristics resembles HA/TiO2Np5% surface, but with irregular topography. Y-TZP showed a typical oxide ceramic surface pattern. EDS revealed Ca, O, and P in all samples. C, O, and Zr appeared in Y-TZP samples. AFM data corroborates SEM analysis. AB test revealed excellent cellular viability for HA/TiO2Np5% group. AR test showed that all groups containing TiO2np had more mineralized matrix deposition than all other groups, with statistically differences between HA/TiO2Np8% and HA cultivated in non-osteogenic medium. Culture in osteogenic medium exhibited much more mineralized matrix deposition by TiO2np groups. SIGNIFICANCE In conclusion, the addition of TiO2np showed chemical, superficial, and biological changes in the reinforced materials. HA/TiO2Np5% showed the best results for cell viability and HA/TiO2Np8% for mineralized matrix deposition.
Collapse
Affiliation(s)
- Paulo Henrique Martins Fernandes
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Ester Alves Ferreira Bordini
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Fernanda Balestrero Cassiano
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Lucas José de Azevedo-Silva
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Brunna Mota Ferrairo
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | | | - Carlos Alberto Fortulan
- Department of Mechanical Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Diana Gabriela Soares Dos Passos
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Ana Flávia Sanches Borges
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil.
| |
Collapse
|
3
|
Osorio-Arciniega R, García-Hipólito M, Alvarez-Fregoso O, Alvarez-Perez MA. Composite Fiber Spun Mat Synthesis and In Vitro Biocompatibility for Guide Tissue Engineering. Molecules 2021; 26:molecules26247597. [PMID: 34946677 PMCID: PMC8704052 DOI: 10.3390/molecules26247597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/03/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Composite scaffolds are commonly used strategies and materials employed to achieve similar analogs of bone tissue. This study aims to fabricate 10% wt polylactic acid (PLA) composite fiber scaffolds by the air-jet spinning technique (AJS) doped with 0.5 or 0.1 g of zirconium oxide nanoparticles (ZrO2) for guide bone tissue engineering. ZrO2 nanoparticles were obtained by the hydrothermal method and characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). SEM and fourier-transform infrared spectroscopy (FTIR) analyzed the synthesized PLA/ZrO2 fiber scaffolds. The in vitro biocompatibility and bioactivity of the PLA/ZrO2 were studied using human fetal osteoblast cells. Our results showed that the hydrothermal technique allowed ZrO2 nanoparticles to be obtained. SEM analysis showed that PLA/ZrO2 composite has a fiber diameter of 395 nm, and the FITR spectra confirmed that the scaffolds’ chemical characteristics are not affected by the synthesized technique. In vitro studies demonstrated that PLA/ZrO2 scaffolds increased cell adhesion, cellular proliferation, and biomineralization of osteoblasts. In conclusion, the PLA/ZrO2 scaffolds are bioactive, improve osteoblasts behavior, and can be used in tissue bone engineering applications.
Collapse
Affiliation(s)
- Rodrigo Osorio-Arciniega
- Laboratorio de Bioingeniería de Tejidos, DEPeI, Facultad de Odontología, Universidad Nacional Autónoma de México, Circuito Exterior s/n. Cd. Universitaria, Coyoacán 04510, Mexico;
| | - Manuel García-Hipólito
- Instituto de Investigaciones en Materiales, Circuito Exterior s/n. Cd. Universitaria, Coyoacán 04510, Mexico; (M.G.-H.); (O.A.-F.)
| | - Octavio Alvarez-Fregoso
- Instituto de Investigaciones en Materiales, Circuito Exterior s/n. Cd. Universitaria, Coyoacán 04510, Mexico; (M.G.-H.); (O.A.-F.)
| | - Marco Antonio Alvarez-Perez
- Laboratorio de Bioingeniería de Tejidos, DEPeI, Facultad de Odontología, Universidad Nacional Autónoma de México, Circuito Exterior s/n. Cd. Universitaria, Coyoacán 04510, Mexico;
- Correspondence:
| |
Collapse
|
4
|
Composites based on zirconia and transition metal oxides for osteosarcoma treatment. Design, structural, magnetic and mechanical evaluation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:1097-1113. [DOI: 10.1016/j.msec.2019.01.072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 12/15/2018] [Accepted: 01/16/2019] [Indexed: 12/13/2022]
|
5
|
Gaihre B, Jayasuriya AC. Fabrication and characterization of carboxymethyl cellulose novel microparticles for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:733-43. [PMID: 27612767 DOI: 10.1016/j.msec.2016.07.060] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/06/2016] [Accepted: 07/20/2016] [Indexed: 11/15/2022]
Abstract
In this study we developed carboxymethyl cellulose (CMC) microparticles through ionic crosslinking with the aqueous ion complex of zirconium (Zr) and further complexing with chitosan (CS) and determined the physio-chemical and biological properties of these novel microparticles. In order to assess the role of Zr, microparticles were prepared in 5% and 10% (w/v) zirconium tetrachloride solution. Scanning electron microscopy (SEM) with energy dispersive X-ray spectrometer (EDS) results showed that Zr was uniformly distributed on the surface of the microparticles as a result of which uniform groovy surface was obtained. We found that Zr enhances the surface roughness of the microparticles and stability studies showed that it also increases the stability of microparticles in phosphate buffered saline. The crosslinking of anionic CMC with cationic Zr and CS was confirmed by Fourier transform infrared spectroscopy (FTIR) results. The response of murine pre-osteoblasts (OB-6) when cultured with microparticles was investigated. Live/dead cell assay showed that microparticles did not induce any cytotoxic effects as cells were attaching and proliferating on the well plate as well as along the surface of microparticles. In addition, SEM images showed that microparticles support the attachment of cells and they appeared to be directly interacting with the surface of microparticle. Within 10days of culture most of the top surface of microparticles was covered with a layer of cells indicating that they were proliferating well throughout the surface of microparticles. We observed that Zr enhances the cell attachment and proliferation as more cells were present on microparticles with 10% Zr. These promising results show the potential applications of CMC-Zr microparticles in bone tissue engineering.
Collapse
Affiliation(s)
- Bipin Gaihre
- Department of Bioengineering, The University of Toledo, Toledo, OH 43614, USA
| | - Ambalangodage C Jayasuriya
- Department of Bioengineering, The University of Toledo, Toledo, OH 43614, USA; Department of Orthopaedic Surgery, University of Toledo Medical Center, Toledo, OH 43614, USA.
| |
Collapse
|
6
|
An B, Li Z, Diao X, Xin H, Zhang Q, Jia X, Wu Y, Li K, Guo Y. In vitro and in vivo studies of ultrafine-grain Ti as dental implant material processed by ECAP. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:34-41. [PMID: 27287096 DOI: 10.1016/j.msec.2016.04.105] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/06/2016] [Accepted: 04/30/2016] [Indexed: 11/18/2022]
Abstract
The aim of this study was to investigate the surface characterization of ultrafine-grain pure titanium (UFG-Ti) after sandblasting and acid-etching (SLA) and to evaluate its biocompatibility as dental implant material in vitro and in vivo. UFG-Ti was produced by equal channel angular pressing (ECAP) using commercially pure titanium (CP-Ti). Microstructure and yield strength were investigated. The morphology, wettability and roughness of the specimens were analyzed after they were modified by SLA. MC3T3-E1 osteoblasts were seeded onto the specimens to evaluate its biocompatibility in vitro. For the in vivo study, UFG-Ti implants after SLA were embedded into the femurs of New Zealand rabbits. Osseointegration was investigated though micro-CT analysis, histological assessment and pull-out test. The control group was CP-Ti. UFG-Ti with enhanced mechanical properties was produced by four passes of ECAP in BC route at room temperature. After SLA modification, the hierarchical porous structure on its surface exhibited excellent wettability. The adhesion, proliferation and viability of cells cultured on the UFG-Ti were superior to that of CP-Ti. In the in vivo study, favorable osseointegration occurred between the implant and bone in CP and UFG-Ti groups. The combination intensity of UF- Ti with bone was higher according to the pull-out test. This study supports the claim that UFG-Ti has grain refinement with outstanding mechanical properties and, with its excellent biocompatibility, has potential for use as dental implant material.
Collapse
Affiliation(s)
- Baili An
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China; National Clinical Research Center for Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China; Shannxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Zhirui Li
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China; National Clinical Research Center for Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China; Shannxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Xiaoou Diao
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China; National Clinical Research Center for Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China; Shannxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Haitao Xin
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China; National Clinical Research Center for Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China; Shannxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
| | - Qiang Zhang
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China; National Clinical Research Center for Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China; Shannxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Xiaorui Jia
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China; National Clinical Research Center for Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China; Shannxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Yulu Wu
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China; National Clinical Research Center for Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China; Shannxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Kai Li
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China; National Clinical Research Center for Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China; Shannxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Yazhou Guo
- School of Aeronautics, Northwestern Polytechnical University, Xi'an 710032, China
| |
Collapse
|
7
|
Schmelzer E, Over P, Gridelli B, Gerlach JC. Response of Primary Human Bone Marrow Mesenchymal Stromal Cells and Dermal Keratinocytes to Thermal Printer Materials In Vitro. J Med Biol Eng 2016; 36:153-167. [PMID: 27231463 PMCID: PMC4853461 DOI: 10.1007/s40846-016-0118-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 12/15/2015] [Indexed: 01/08/2023]
Abstract
Advancement in thermal three-dimensional printing techniques has greatly increased the possible applications of various materials in medical applications and tissue engineering. Yet, potential toxic effects on primary human cells have been rarely investigated. Therefore, we compared four materials commonly used in thermal printing for bioengineering, namely thermally printed acrylonitrile butadiene styrene, MED610, polycarbonate, and polylactic acid, and investigated their effects on primary human adult skin epidermal keratinocytes and bone marrow mesenchymal stromal cells (BM-MSCs) in vitro. We investigated indirect effects on both cell types caused by potential liberation of soluble substances from the materials, and also analyzed BM-MSCs in direct contact with the materials. We found that even in culture without direct contact with the materials, the culture with MED610 (and to a lesser extent acrylonitrile butadiene styrene) significantly affected keratinocytes, reducing cell numbers and proliferation marker Ki67 expression, and increasing glucose consumption, lactate secretion, and expression of differentiation-associated genes. BM-MSCs had decreased metabolic activity, and exhibited increased cell death in direct culture on the materials. MED610 and acrylonitrile butadiene styrene induced the strongest expression of genes associated to differentiation and estrogen receptor activation. In conclusion, we found strong cell-type-specific effects of the materials, suggesting that materials for applications in regenerative medicine should be carefully selected not only based on their mechanical properties but also based on their cell-type-specific biological effects.
Collapse
Affiliation(s)
- Eva Schmelzer
- Department of Surgery, School of Medicine, McGowan Institute for Regenerative Medicine, University of Pittsburgh, 3025 East Carson Street, Suite 216, Pittsburgh, PA 15203 USA
| | - Patrick Over
- Department of Surgery, School of Medicine, McGowan Institute for Regenerative Medicine, University of Pittsburgh, 3025 East Carson Street, Suite 216, Pittsburgh, PA 15203 USA
| | - Bruno Gridelli
- University of Pittsburgh Medical Center, Pittsburgh, PA USA ; Department of Surgery, ISMETT-Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione, Palermo, Italy
| | - Jörg C Gerlach
- Department of Surgery, School of Medicine, McGowan Institute for Regenerative Medicine, University of Pittsburgh, 3025 East Carson Street, Suite 216, Pittsburgh, PA 15203 USA ; Department of Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pennsylvania, USA
| |
Collapse
|