1
|
Yu Y, Jiang X, Yu T, Chen F, Huang R, Xun Z, Wang X, Liu X, Xie X, Sun C, Xu Y, Liu X, Sun H, Yuan X, Ma C, Li Y, Song X, Wang D, Shao D, Shi X, Cao L. Maintaining myoprotein and redox homeostasis via an orally recharged nanoparticulate supplement potentiates sarcopenia treatment. Biomaterials 2025; 314:122863. [PMID: 39366185 DOI: 10.1016/j.biomaterials.2024.122863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
Sarcopenia is a progressive skeletal muscle disorder characterized by the accelerated loss of muscle mass and function, with no promising pharmacotherapies. Understanding the imbalance of myoprotein homeostasis within myotubes, which causes sarcopenia, may facilitate the development of novel treatments for clinical use. In this study, we found a strong correlation between low serum selenium levels and muscle function in elderly patients with sarcopenia. We hypothesized that supplementation with selenium might be beneficial for the management of sarcopenia. To verify this hypothesis, we developed diselenide-bridged mesoporous silica nanoparticles (Se-Se-MSNs) with ROS-responsive degradation and release to supplement selenium. Se-Se-MSNs outperformed free selenocysteine in alleviating sarcopenia in both dexamethasone (Dex)- and denervation-induced mouse models. Subsequently, Se-Se-MSNs were loaded with leucine (Leu@Se-Se-MSNs), another nutritional supplement used in sarcopenia management. Oral administration of Leu@Se-Se-MSNs restored myoprotein homeostasis by enhancing mTOR/S6K signaling and inactivating Akt/FoxO3a/MuRF1 signaling, thus exerting optimal therapeutic effects against sarcopenia and exhibiting a more favorable in vivo safety profile. This study provides a proof of concept for treating sarcopenia by maintaining myoprotein and redox homeostasis simultaneously and offers valuable insights into the development of multifunctional nanoparticle-based supplements for sarcopenia management.
Collapse
Affiliation(s)
- Yang Yu
- Health Sciences Institute, China Medical University, Shenyang 110122, Liaoning, China; College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang 110122, Liaoning, China
| | - Xuehan Jiang
- Health Sciences Institute, China Medical University, Shenyang 110122, Liaoning, China; College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang 110122, Liaoning, China; Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shanxi, China
| | - Tianhao Yu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110002, Liaoning, China
| | - Fangman Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, Guangzhou, China
| | - Runnian Huang
- Department of Gerontology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China; Department of Epidemiology and Health Statistics, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Zhe Xun
- Health Sciences Institute, China Medical University, Shenyang 110122, Liaoning, China
| | - Xiaoxun Wang
- Health Sciences Institute, China Medical University, Shenyang 110122, Liaoning, China
| | - Xu Liu
- Health Sciences Institute, China Medical University, Shenyang 110122, Liaoning, China
| | - Xiaochun Xie
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Chen Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Yingxi Xu
- Health Sciences Institute, China Medical University, Shenyang 110122, Liaoning, China
| | - Xiyan Liu
- Health Sciences Institute, China Medical University, Shenyang 110122, Liaoning, China
| | - Huayi Sun
- Health Sciences Institute, China Medical University, Shenyang 110122, Liaoning, China
| | - Xiaoyue Yuan
- Department of Gerontology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China; Department of Epidemiology and Health Statistics, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Chunhua Ma
- Department of Gerontology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China; Department of Epidemiology and Health Statistics, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Yibai Li
- Health Sciences Institute, China Medical University, Shenyang 110122, Liaoning, China
| | - Xiaoyu Song
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang 110122, Liaoning, China.
| | - Difei Wang
- Department of Gerontology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
| | - Dan Shao
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, Guangzhou, China; School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Xuetao Shi
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, Guangzhou, China.
| | - Liu Cao
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang 110122, Liaoning, China.
| |
Collapse
|
2
|
Zhu L, Wang Y, Rao L, Yu X. Se-incorporated polycaprolactone spherical polyhedron enhanced vitamin B2 loading and prolonged release for potential application in proliferative skin disorders. Colloids Surf B Biointerfaces 2024; 245:114295. [PMID: 39368421 DOI: 10.1016/j.colsurfb.2024.114295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/22/2024] [Accepted: 10/03/2024] [Indexed: 10/07/2024]
Abstract
Development of novel drug vehicles for vitamin B2 (VitB2) delivery is very important for designing controllable release system to improve epidermal growth and bone metabolism. In this work, selenium (Se)-incorporated polycaprolactone (PCL) spherical polyhedrons are successfully synthesized via a single emulsion solvent evaporation method which is utilized to load VitB2 to fabricate cell-responsive Se-PCL@VitB2 delivery systems. Their physicochemical properties are characterized by DLS, SEM, XRD, FTIR, and TGA-DSC. The release kinetics of VitB2 or Se from the samples are investigated in PBS solution (pH = 2.0, 5.0, 7.4, 8.0 and 12.0). The cytocompatibilities are also evaluated with normal BMSC and epidermal HaCat cells. Results exhibit that Se-PCL@VitB2 particles presents spherical polyhedral morphology (approximately (3.25 ± 0.46) μm), negative surface charge (-(54.03 ± 2.94) mV), reduced crystallinity and good degradability. Stability experiments imply that both VitB2 and Se might be uniformly dispersed in PCL matrix. And the incorporation of Se facilely promotes the loading of VitB2. The encapsulation efficiency and loading capacity are (98.42 ± 1.06)% and (76.25 ± 1.27) for Se-PCL@VitB2 sample. Importantly, it exhibits more prolonged release of both VitB2 and Se in neutral PBS solution (pH = 7.4) than other pH conditions. Presumably, the electrostatic interaction between Se, VitB2 and PCL contribute to its release mode. Cell experiments show that Se-PCL@VitB2 presents strong cytotoxicity to HaCat cells mainly due to the cytotoxic effect of Se anions and PCL degradation products. However, it exhibits weak inhibitory effect on BMSC cells. These note that the synthesized Se-PCL@VitB2 particles can be promising drug vehicles for potential application in epidermal proliferative disorders.
Collapse
Affiliation(s)
- Lixian Zhu
- The Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Yanhua Wang
- The Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; Department of Morphology, College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, China.
| | - Luping Rao
- The Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Xin Yu
- The Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; Yiling People's Hospital of Yichang City, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
3
|
Du M, Liu J, Wang F, Bi L, Ma C, Song M, Jiang G. A sustained-release microcarrier effectively prolongs and enhances the antibacterial activity of lysozyme. J Environ Sci (China) 2023; 129:128-138. [PMID: 36804229 DOI: 10.1016/j.jes.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 06/18/2023]
Abstract
Bacterial infections have become a great threat to public health in recent years. A primary lysozyme is a natural antimicrobial protein; however, its widespread application is limited by its instability. Here, we present a poly (N-isopropylacrylamide) hydrogel inverse opal particle (PHIOP) as a microcarrier of lysozyme to prolong and enhance the efficiency against bacteria. This PHIOP-based lysozyme (PHIOP-Lys) formulation is temperature-responsive and exhibits long-term sustained release of lysozyme for up to 16 days. It shows a potent antibacterial effect toward both Escherichia coli and Staphylococcus aureus, which is even higher than that of free lysozyme in solution at the same concentration. PHIOPs-Lys were demonstrated to effectively inhibit bacterial infections and enhance wound healing in a full-thickness skin wound rat model. This study provides a novel pathway for prolonging the enzymatic activity and antibacterial effects of lysozyme.
Collapse
Affiliation(s)
- Mei Du
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingzhang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengbang Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Bi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Nanoparticulate cell-free DNA scavenger for treating inflammatory bone loss in periodontitis. Nat Commun 2022; 13:5925. [PMID: 36207325 PMCID: PMC9546917 DOI: 10.1038/s41467-022-33492-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 09/20/2022] [Indexed: 11/12/2022] Open
Abstract
Periodontitis is a common type of inflammatory bone loss and a risk factor for systemic diseases. The pathogenesis of periodontitis involves inflammatory dysregulation, which represents a target for new therapeutic strategies to treat periodontitis. After establishing the correlation of cell-free DNA (cfDNA) level with periodontitis in patient samples, we test the hypothesis that the cfDNA-scavenging approach will benefit periodontitis treatment. We create a nanoparticulate cfDNA scavenger specific for periodontitis by coating selenium-doped hydroxyapatite nanoparticles (SeHANs) with cationic polyamidoamine dendrimers (PAMAM-G3), namely G3@SeHANs, and compare the activities of G3@SeHANs with those of soluble PAMAM-G3 polymer. Both G3@SeHANs and PAMAM-G3 inhibit periodontitis-related proinflammation in vitro by scavenging cfDNA and alleviate inflammatory bone loss in a mouse model of ligature-induced periodontitis. G3@SeHANs also regulate the mononuclear phagocyte system in a periodontitis environment, promoting the M2 over the M1 macrophage phenotype. G3@SeHANs show greater therapeutic effects than PAMAM-G3 in reducing proinflammation and alveolar bone loss in vivo. Our findings demonstrate the importance of cfDNA in periodontitis and the potential for using hydroxyapatite-based nanoparticulate cfDNA scavengers to ameliorate periodontitis. Periodontitis is a common type of inflammatory bone loss, and cell-free DNA (cfDNA) can be a major source that enhances the periodontal tissue destruction. Here, the authors show that a cfDNA-scavenging approach is able to ameliorate periodontitis by using nanoparticulate cfDNA scavenger.
Collapse
|
5
|
Tao Z, Li TL, Yang M, Xu HG. Silibinin Can Promote Bone Regeneration of Selenium Hydrogel by Reducing the Oxidative Stress Pathway in Ovariectomized Rats. Calcif Tissue Int 2022; 110:723-735. [PMID: 35048133 DOI: 10.1007/s00223-021-00936-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/06/2021] [Indexed: 11/02/2022]
Abstract
Osteoporosis-related bone defects are a major public health concern. Considering poor effects of a singular pharmacological treatment, many have sought combination therapies, including local treatment combined with systemic intervention. Based on recent evidence that selenium and silibinin increase bone formation and bone mineral density, it is hypothesized that systemic administration with silibinin plus local treatment with selenium may have an additive effect on bone regeneration in an OVX rat model with bone defects. To verify this hypothesis, 3-month-old ovariectomized Sprague- Dawley rats (n = 10/gp) were intraperitoneally with a dose of 50 mg/kg silibinin with selenium hydrogel scaffolds implanted into femoral metaphysis bone defect. Moreover, the MC3T3-E1 cells were co-cultured with selenium and silibinin, and observed any change of cell viability, ROS, and osteogenic activity. Experiment results show that the cell mineralization and osteogenic activity of silibinin plus selenium (SSe) group is enormously higher than the control (Con) group and selenium (Se) group, while ROS appears to be immensely reduced. Osteogenic protein expressions such as SIRT1, SOD2, RUNX-2 and OC of SSe group are significantly higher than Con group and Se group. Micro-CT and Histological analysis evaluation display that group SSe, compared with Con group and Se group, presents the strongest effect on bone regeneration, bone mineralization and higher expression of SIRT1 and SOD2. RT-qPCR analysis indicates that SSe group manifests increased SIRT1, SOD1, SOD2 and CAT than the Con group and Se group (p < 0.05). Our current study demonstrates that systemic administration with SIL plus local treatment with Se is a scheme for rapid repair of femoral condylar defects, and these effects may be achieved via reducing the oxidative stress pathway.
Collapse
Affiliation(s)
- Zhoushan Tao
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China.
| | - Tian-Lin Li
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| | - Min Yang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| | - Hong-Guang Xu
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| |
Collapse
|
6
|
Li TL, Tao ZS, Wu XJ, Yang M, Xu HG. Selenium-modified calcium phosphate cement can accelerate bone regeneration of osteoporotic bone defect. J Bone Miner Metab 2021; 39:934-943. [PMID: 34189659 DOI: 10.1007/s00774-021-01240-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The purpose is to observe whether local administration with selenium (Se) can enhance the efficacy of calcium phosphate cement (CPC) in the treatment of osteoporotic bone defects. METHODS Thirty ovariectomized (OVX) rats with two defects were generated and randomly allocated into the following graft study groups: (1) OVX group (n = 10), (2) CPC group (n = 10); and (3) Se-CPC group (n = 10). Then, these selenium-modified calcium phosphate cement (Se-CPC) scaffolds were implanted into the femoral epiphysis bone defect model of OVX rats for 12 weeks. Micro-CT, history, western blot and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis were used to observe the therapeutic effect and to explore the possible mechanism. RESULT Micro-CT and histological analysis evaluation showed that the Se-CPC group presented the strongest effect on bone regeneration and bone mineralization when compared with the CPC group and the OVX group. Protein expressions showed that the oxidative stress protein expressions, such as SOD2 and GPX1 of the Se-CPC group, are significantly higher than those of the OVX group and the CPC group, while Se-CPC remarkably reduced the expression of CAT. RT-qPCR analysis showed that the Se-CPC group displayed more OPG than the OVX and CPC groups (p < 0.05), while Se-CPC exhibited less RANKL than the OVX and CPC groups (p < 0.05). CONCLUSION Our current study demonstrated that Se-CPC is a scheme for rapid repair of femoral condylar defects, and these effects may be achieved by inhibiting local oxidative stress and through OPG/RANKL signaling pathway.
Collapse
Affiliation(s)
- Tian-Lin Li
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| | - Zhou-Shan Tao
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China.
| | - Xing-Jing Wu
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| | - Min Yang
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| | - Hong-Guang Xu
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| |
Collapse
|
7
|
Dye removal, antibacterial properties, and morphological behavior of hydroxyapatite doped with Pd ions. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.09.049] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
8
|
Padmanabhan VP, Kulandaivelu R, Venkatachalam V, Veerla SC, Mohammad F, Al-Lohedan HA, Oh WC, Schirhagl R, Obulapuram PK, Hoque ME, Sagadevan S. Influence of sonication on the physicochemical and biological characteristics of selenium-substituted hydroxyapatites. NEW J CHEM 2020. [DOI: 10.1039/d0nj03771k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Selenium-doped hydroxyapatite composite formed by the sonication technique investigated to have superior properties that are specifically advantageous in the tissue engineering, growth, and regeneration sector.
Collapse
Affiliation(s)
| | | | | | - Sarath Chandra Veerla
- Department of Humanities and Basic Sciences
- Godavari Institute of Engineering and Technology (Autonomous)
- Rajahmundry 533296
- India
| | - Faruq Mohammad
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh
- Kingdom of Saudi Arabia
| | - Hamad A. Al-Lohedan
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh
- Kingdom of Saudi Arabia
| | - Won Chun Oh
- Department of Advanced Materials Science and Engineering
- Hanseo University
- Chungnam 356-706
- Korea
| | - Romana Schirhagl
- Groningen University
- University Medical Center Groningen
- 9713 AW Groningen
- The Netherlands
| | - Prasanna Kumar Obulapuram
- Wits Advanced Drug Delivery Platform Research Unit
- Department of Pharmacy and Pharmacology
- School of Therapeutic Sciences
- Faculty of Health Sciences
- University of the Witwatersrand
| | - Md Enamul Hoque
- Department of Biomedical Engineering
- Military Institute of Science and Technology (MIST)
- Dhaka
- Bangladesh
| | - Suresh Sagadevan
- Nanotechnology & Catalysis Research Centre
- University of Malaya
- Kuala Lumpur
- Malaysia
| |
Collapse
|
9
|
Qi C, Musetti S, Fu LH, Zhu YJ, Huang L. Biomolecule-assisted green synthesis of nanostructured calcium phosphates and their biomedical applications. Chem Soc Rev 2019; 48:2698-2737. [PMID: 31080987 DOI: 10.1039/c8cs00489g] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Calcium phosphates (CaPs) are ubiquitous in nature and vertebrate bones and teeth, and have high biocompatibility and promising applications in various biomedical fields. Nanostructured calcium phosphates (NCaPs) are recognized as promising nanocarriers for drug/gene/protein delivery owing to their high specific surface area, pH-responsive degradability, high drug/gene/protein loading capacity and sustained release performance. In order to control the structure and surface properties of NCaPs, various biomolecules with high biocompatibility such as nucleic acids, proteins, peptides, liposomes and phosphorus-containing biomolecules are used in the synthesis of NCaPs. Moreover, biomolecules play important roles in the synthesis processes, resulting in the formation of various NCaPs with different sizes and morphologies. At room temperature, biomolecules can play the following roles: (1) acting as a biocompatible organic phase to form biomolecule/CaP hybrid nanostructured materials; (2) serving as a biotemplate for the biomimetic mineralization of NCaPs; (3) acting as a biocompatible modifier to coat the surface of NCaPs, preventing their aggregation and increasing their colloidal stability. Under heating conditions, biomolecules can (1) control the crystallization process of NCaPs by forming biomolecule/CaP nanocomposites before heating; (2) prevent the rapid and disordered growth of NCaPs by chelating with Ca2+ ions to form precursors; (3) provide the phosphorus source for the controlled synthesis of NCaPs by using phosphorus-containing biomolecules. This review focuses on the important roles of biomolecules in the synthesis of NCaPs, which are expected to guide the design and controlled synthesis of NCaPs. Moreover, we will also summarize the biomedical applications of NCaPs in nanomedicine and tissue engineering, and discuss their current research trends and future prospects.
Collapse
Affiliation(s)
- Chao Qi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | | | | | | | | |
Collapse
|
10
|
Zhou M, Xie F, Li G, Wang Q, Tang L, Yan M, Bi H. Biocompatible HA@Fe 3 O 4 @N-CDs hybrids for detecting and absorbing lead ion. J Biomed Mater Res A 2019; 107:1532-1540. [PMID: 30821077 DOI: 10.1002/jbm.a.36666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 02/11/2019] [Accepted: 02/21/2019] [Indexed: 02/01/2023]
Abstract
The trinary hydroxyapatite@Fe3 O4 @N-doped carbon dots (HA@Fe3 O4 @N-CDs) hybrids were prepared by one-pot hydrothermal approach and utilized to detect and remove lead ion from aqueous solution. The structures and morphologies of as-obtained nanorod-like HA@Fe3 O4 @N-CDs hybrids were characterized by X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy measurements. These HA@Fe3 O4 @N-CDs hybrids possess good magnetism by magnetic hysteresis test and multi-colored fluorescence by the CLSM measurement. Furthermore, the as-obtained hybrids display excellent biocompatibility by MTT assay. Importantly, the trinary magnetic HA@Fe3 O4 @N-CDs hybrids as a green detector and adsorbent of Pb2+ were investigated. The influence of the different pH, the concentration of heavy metal, and the maximum adsorption capacity on removal efficiency was measured in detail. The maximum Pb2+ adsorption capacity on HA@Fe3 O4 @N-CDs hybrids is 450 mg/g. The kinetic mechanism was a pseudo-second order model, and the isotherm data was fitted well by the Langmuir isotherm and Freundlich model. Hence, the nanorod-like HA@Fe3 O4 @N-CDs hybrids could be a multifunctional material with significant potential applications in heavy metal detection and adsorption, bone tissue regeneration, magnetic therapy, and biomedicine. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2019.
Collapse
Affiliation(s)
- Mingchen Zhou
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Fei Xie
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Guocang Li
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Qiyang Wang
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Longxiang Tang
- College of Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Manqing Yan
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Hong Bi
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| |
Collapse
|
11
|
Mansour SF, El-dek SI, Ismail M, Ahmed MK. Structure and cell viability of Pd substituted hydroxyapatite nano particles. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aac07c] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Selenium-Doped Hydroxyapatite Nanocrystals–Synthesis, Physicochemical Properties and Biological Significance. CRYSTALS 2018. [DOI: 10.3390/cryst8050188] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
13
|
Xu Y, An L, Chen L, Xu H, Zeng D, Wang G. Controlled hydrothermal synthesis of strontium-substituted hydroxyapatite nanorods and their application as a drug carrier for proteins. ADV POWDER TECHNOL 2018. [DOI: 10.1016/j.apt.2018.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Qi C, Lin J, Fu LH, Huang P. Calcium-based biomaterials for diagnosis, treatment, and theranostics. Chem Soc Rev 2018; 47:357-403. [DOI: 10.1039/c6cs00746e] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Calcium-based biomaterials with good biosafety and bio-absorbability are promising for biomedical applications such as diagnosis, treatment, and theranostics.
Collapse
Affiliation(s)
- Chao Qi
- Guangdong Key Laboratory for Biomedical
- Measurements and Ultrasound Imaging
- Laboratory of Evolutionary Theranostics
- School of Biomedical Engineering
- Health Science Center
| | - Jing Lin
- Guangdong Key Laboratory for Biomedical
- Measurements and Ultrasound Imaging
- Laboratory of Evolutionary Theranostics
- School of Biomedical Engineering
- Health Science Center
| | - Lian-Hua Fu
- Guangdong Key Laboratory for Biomedical
- Measurements and Ultrasound Imaging
- Laboratory of Evolutionary Theranostics
- School of Biomedical Engineering
- Health Science Center
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical
- Measurements and Ultrasound Imaging
- Laboratory of Evolutionary Theranostics
- School of Biomedical Engineering
- Health Science Center
| |
Collapse
|
15
|
Wang Y, Hao H, Zhang S. Biomimetic Coprecipitation of Silk Fibrin and Calcium Phosphate: Influence of Selenite Ions. Biol Trace Elem Res 2017; 178:338-347. [PMID: 28092074 DOI: 10.1007/s12011-017-0933-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/05/2017] [Indexed: 11/24/2022]
Abstract
Large bone defect creates an urgent need for osteogenic biomaterials. However, bone nonunion and infection are choke points in the therapy of this disease. How to recruit the mesenchymal stem cells to defect sites and increase the cell viability are the critical processes. One effective method was the fabrication of biomimetic silk fibrin/selenium-doped hydroxyapatite (SF/HASe) material, which could create a niche for cell proliferation. So, the aim of the present study was to seek a facile route to prepare this biocomposites and investigate the osteogenic capability. Results showed that the biomimetic coprecipitation was a successful route to prepare SF/HASe biocomposites, which presented higher cell proliferation activity and better modulation of the selenite release during incubation in biological medium. Besides, the biocomposites exhibited weird and porous pot morphology. Such features could provide large surface area for the cells and proteins to attach. Silk fibrin, adhered onto the surface of hydroxyapatite (HA) crystals, plays a crucial impact on the release profile of selenite ions. The release behavior of the selenite ions exhibited stably slow release fashion. Therefore, it is feasible to employ SF/HASe biocomposites to repair bone defects and apply into the therapy of osteosarcoma postoperatively.
Collapse
Affiliation(s)
- Yanhua Wang
- Medical Science College of China Three Gorges University, Life Science Building, No. 8 Daxue Road, Yichang, 443002, People's Republic of China.
| | - Hang Hao
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, China
| | - Shengmin Zhang
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Alshemary AZ, Engin Pazarceviren A, Tezcaner A, Evis Z. Fe3+
/SeO42−
dual doped nano hydroxyapatite: A novel material for biomedical applications. J Biomed Mater Res B Appl Biomater 2017; 106:340-352. [DOI: 10.1002/jbm.b.33838] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/01/2016] [Accepted: 12/05/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Ammar Z. Alshemary
- Department of Biomedical Engineering; Faculty of Engineering, Karabuk University; 78050 Karabuk Turkey
| | | | - Aysen Tezcaner
- Department of Engineering Sciences; Middle East Technical University; Ankara 06800 Turkey
| | - Zafer Evis
- Department of Engineering Sciences; Middle East Technical University; Ankara 06800 Turkey
| |
Collapse
|
17
|
Biodegradable and Biocompatible Systems Based on Hydroxyapatite Nanoparticles. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7010060] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|