1
|
Xu W, Yu F, Addison O, Zhang B, Guan F, Zhang R, Hou B, Sand W. Microbial corrosion of metallic biomaterials in the oral environment. Acta Biomater 2024; 184:22-36. [PMID: 38942189 DOI: 10.1016/j.actbio.2024.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/29/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
A wide variety of microorganisms have been closely linked to metal corrosion in the form of adherent surface biofilms. Biofilms allow the development and maintenance of locally corrosive environments and/or permit direct corrosion including pitting corrosion. The presence of numerous genetically distinct microorganisms in the oral environment poses a threat to the integrity and durability of the surface of metallic prostheses and implants used in routine dentistry. However, the association between oral microorganisms and specific corrosion mechanisms is not clear. It is of practical importance to understand how microbial corrosion occurs and the associated risks to metallic materials in the oral environment. This knowledge is also important for researchers and clinicians who are increasingly concerned about the biological activity of the released corrosion products. Accordingly, the main goal was to comprehensively review the current literature regarding oral microbiologically influenced corrosion (MIC) including characteristics of biofilms and of the oral environment, MIC mechanisms, corrosion behavior in the presence of oral microorganisms and potentially mitigating technologies. Findings included that oral MIC has been ascribed mostly to aggressive metabolites secreted during microbial metabolism (metabolite-mediated MIC). However, from a thermodynamic point of view, extracellular electron transfer mechanisms (EET-MIC) through pili or electron transfer compounds cannot be ruled out. Various MIC mitigating methods have been demonstrated to be effective in short term, but long term evaluations are necessary before clinical applications can be considered. Currently most in-vitro studies fail to simulate the complexity of intraoral physiological conditions which may either reduce or exacerbate corrosion risk, which must be addressed in future studies. STATEMENT OF SIGNIFICANCE: A thorough analysis on literature regarding oral MIC (microbiologically influenced corrosion) of biomedical metallic materials has been carried out, including characteristics of oral environment, MIC mechanisms, corrosion behaviors in the presence of typical oral microorganisms and potential mitigating methods (materials design and surface design). There is currently a lack of mechanistic understanding of oral MIC which is very important not only to corrosion researchers but also to dentists and clinicians. This paper discusses the significance of biofilms from a biocorrosion perspective and summarizes several aspects of MIC mechanisms which could be caused by oral microorganisms. Oral MIC has been closely associated with not only the materials research but also the dental/clinical research fields in this work.
Collapse
Affiliation(s)
- Weichen Xu
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China.
| | - Fei Yu
- School of Basic Medicine, Qingdao Medical College, Qingdao University, 308 Ningxia Road, Qingdao 266021, China.
| | - Owen Addison
- Centre for Oral Clinical Translational Science, Faculty of Dentistry Oral and Craniofacial Sciences, King's College London, Strand, London WC2R 2LS, United Kingdom
| | - Binbin Zhang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Fang Guan
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Ruiyong Zhang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Baorong Hou
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Wolfgang Sand
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Biofilm Centre, University of Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
2
|
Camargo SEA, Xia X, Fares C, Ren F, Hsu SM, Budei D, Aravindraja C, Kesavalu L, Esquivel-Upshaw JF. Nanostructured Surfaces to Promote Osteoblast Proliferation and Minimize Bacterial Adhesion on Titanium. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4357. [PMID: 34442878 PMCID: PMC8398300 DOI: 10.3390/ma14164357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 01/19/2023]
Abstract
The objective of this study was to investigate the potential of titanium nanotubes to promote the proliferation of human osteoblasts and to reduce monomicrobial biofilm adhesion. A secondary objective was to determine the effect of silicon carbide (SiC) on these nanostructured surfaces. Anodized titanium sheets with 100-150 nm nanotubes were either coated or not coated with SiC. After 24 h of osteoblast cultivation on the samples, cells were observed on all titanium sheets by SEM. In addition, the cytotoxicity was evaluated by CellTiter-BlueCell assay after 1, 3, and 7 days. The samples were also cultivated in culture medium with microorganisms incubated anaerobically with respective predominant periodontal bacteria viz. Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia as monoinfection at 37 °C for 30 days. The biofilm adhesion and coverage were evaluated through surface observation using Scanning Electron Microscopy (SEM). The results demonstrate that Ti nanostructured surfaces induced more cell proliferation after seven days. All groups presented no cytotoxic effects on human osteoblasts. In addition, SEM images illustrate that Ti nanostructured surfaces exhibited lower biofilm coverage compared to the reference samples. These results indicate that Ti nanotubes promoted osteoblasts proliferation and induced cell proliferation on the surface, compared with the controls. Ti nanotubes also reduced biofilm adhesion on titanium implant surfaces.
Collapse
Affiliation(s)
- Samira Esteves Afonso Camargo
- Department of Restorative Dental Sciences, Division of Prosthodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (S.E.A.C.); (S.-M.H.)
| | - Xinyi Xia
- Department of Chemical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA; (X.X.); (C.F.); (F.R.)
| | - Chaker Fares
- Department of Chemical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA; (X.X.); (C.F.); (F.R.)
| | - Fan Ren
- Department of Chemical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA; (X.X.); (C.F.); (F.R.)
| | - Shu-Min Hsu
- Department of Restorative Dental Sciences, Division of Prosthodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (S.E.A.C.); (S.-M.H.)
| | | | - Chairmandurai Aravindraja
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32611, USA; (C.A.); (L.K.)
| | - Lakshmyya Kesavalu
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32611, USA; (C.A.); (L.K.)
| | - Josephine F. Esquivel-Upshaw
- Department of Restorative Dental Sciences, Division of Prosthodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (S.E.A.C.); (S.-M.H.)
| |
Collapse
|
3
|
Camargo SEA, Roy T, Xia X, Fares C, Hsu SM, Ren F, Clark AE, Neal D, Esquivel-Upshaw JF. Novel Coatings to Minimize Corrosion of Titanium in Oral Biofilm. MATERIALS (BASEL, SWITZERLAND) 2021; 14:E342. [PMID: 33445481 PMCID: PMC7827847 DOI: 10.3390/ma14020342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022]
Abstract
The aim of this work is to investigate the effects produced by polymicrobial biofilm (Porphyromonas gingivalis, Streptococcus mutans, Streptococcus sanguinis, and Streptococcus salivarius) on the corrosion behavior of titanium dental implants. Pure titanium disks were polished and coated with titanium nitride (TiN) and silicon carbide (SiC) along with their quarternized versions. Next, the disks were cultivated in culture medium (BHI) with P. gingivalis, S. mutans, S. sanguinis, and S. salivarius and incubated anaerobically at 37 °C for 30 days. Titanium corrosion was evaluated through surface observation using Scanning Electron Microscope (SEM) and Atomic Force Microscopy (AFM). Furthermore, the Ti release in the medium was evaluated by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). SEM images showed that coated Ti disks exhibited lower corrosion compared to non-coated disks, except for the quartenized TiN. This was confirmed by AFM, where the roughness was higher in non-coated Ti disks. ICP showed that Ti levels were low in all coating disks. These results indicate that these SiC and TiN-based coatings could be a useful tool to reduce surface corrosion on titanium implant surfaces.
Collapse
Affiliation(s)
- Samira Esteves Afonso Camargo
- Department of Restorative Dental Sciences, Division of Prosthodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (S.E.A.C.); (S.-M.H.); (A.E.C.)
| | - Tanaya Roy
- Department of Materials Science Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA;
| | - Xinyi Xia
- Department of Chemical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA; (X.X.); (C.F.); (F.R.)
| | - Chaker Fares
- Department of Chemical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA; (X.X.); (C.F.); (F.R.)
| | - Shu-Min Hsu
- Department of Restorative Dental Sciences, Division of Prosthodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (S.E.A.C.); (S.-M.H.); (A.E.C.)
| | - Fan Ren
- Department of Chemical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA; (X.X.); (C.F.); (F.R.)
| | - Arthur E. Clark
- Department of Restorative Dental Sciences, Division of Prosthodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (S.E.A.C.); (S.-M.H.); (A.E.C.)
| | - Dan Neal
- Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL 32610, USA;
| | - Josephine F. Esquivel-Upshaw
- Department of Restorative Dental Sciences, Division of Prosthodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (S.E.A.C.); (S.-M.H.); (A.E.C.)
| |
Collapse
|
4
|
Xu LN, Yu XY, Chen WQ, Zhang SM, Qiu J. Biocorrosion of pure and SLA titanium surfaces in the presence of Porphyromonas gingivalis and its effects on osteoblast behavior. RSC Adv 2020; 10:8198-8206. [PMID: 35497867 PMCID: PMC9049922 DOI: 10.1039/d0ra00154f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/20/2020] [Indexed: 01/25/2023] Open
Abstract
Objective: The study aims to investigate the biocorrosion behavior of Porphyromonas gingivalis on pure and SLA titanium surfaces and its effects on surface characteristics and osteoblast behavior. Methods: Pure and SLA titanium specimens were immersed in culture medium with P. gingivalis and incubated for 7 days. P. gingivalis colonization on the pure and SLA titanium surfaces was observed by scanning electron microscopy (SEM). The pure and SLA titanium surface characteristics were analyzed via X-ray photoelectron spectroscopy (XPS), surface roughness and surface wettability. The corrosion behaviors of pure and SLA titanium specimens were evaluated by electrochemical corrosion test. The osteoblast behavior of MC3T3-E1 cells on the pure and SLA titanium surfaces after P. gingivalis colonization was investigated by cell adhesion and western blot assays. Results: P. gingivalis colonized on the pure and SLA titanium surfaces was observed by SEM. The XPS analysis demonstrated reductions in the relative levels of titanium and oxygen and obvious reductions of dominant titanium dioxide (TiO2) on both titanium surfaces after immersing the metal in P. gingivalis culture. In addition, their roughness and wettability were changed. Correspondingly, the electrochemical corrosion test results revealed significant decreases in the corrosion resistance and increases in the corrosion rate of the pure and SLA titanium specimens after immersion in P. gingivalis culture. The results of the in vitro study showed that the pre-corroded pure and SLA titanium surfaces by P. gingivalis exhibited lower osteocompatibility and down-regulated the adhesion, spreading and osteogenic differentiation abilities of MC3T3-E1 cells. Conclusions: P. gingivalis was able to colonize on the pure and SLA titanium surfaces and weaken their surface properties, especially a decrease in the protective TiO2 film, which induced the biocorrosion and further negatively affected the osteoblast behavior. The study demonstrated that P. gingivalis could colonize on pure and SLA titanium surfaces and weaken their surface properties, especially the protective TiO2 film, which induced the biocorrosion and further negatively affected osteoblast behavior.![]()
Collapse
Affiliation(s)
- Li-na Xu
- Department of Oral Implantology
- Affiliated Hospital of Stomatology
- Nanjing Medical University
- Nanjing
- PR China
| | - Xiao-yu Yu
- Department of Oral Implantology
- Affiliated Hospital of Stomatology
- Nanjing Medical University
- Nanjing
- PR China
| | - Wan-qing Chen
- Department of Oral Implantology
- Affiliated Hospital of Stomatology
- Nanjing Medical University
- Nanjing
- PR China
| | - Song-mei Zhang
- Department of General Dentistry
- Eastman Institute for Oral Health
- University of Rochester
- Rochester
- USA
| | - Jing Qiu
- Department of Oral Implantology
- Affiliated Hospital of Stomatology
- Nanjing Medical University
- Nanjing
- PR China
| |
Collapse
|
5
|
Wu W, Liu J, Liu Z, Cui L, Du C, Li X. Surface characterization of the commercially pure titanium after hydrogen charging and its electrochemical characteristics in artificial seawater. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Mystkowska J, Niemirowicz-Laskowska K, Łysik D, Tokajuk G, Dąbrowski JR, Bucki R. The Role of Oral Cavity Biofilm on Metallic Biomaterial Surface Destruction-Corrosion and Friction Aspects. Int J Mol Sci 2018; 19:E743. [PMID: 29509686 PMCID: PMC5877604 DOI: 10.3390/ijms19030743] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/23/2018] [Accepted: 03/03/2018] [Indexed: 12/14/2022] Open
Abstract
Metallic biomaterials in the oral cavity are exposed to many factors such as saliva, bacterial microflora, food, temperature fluctuations, and mechanical forces. Extreme conditions present in the oral cavity affect biomaterial exploitation and significantly reduce its biofunctionality, limiting the time of exploitation stability. We mainly refer to friction, corrosion, and biocorrosion processes. Saliva plays an important role and is responsible for lubrication and biofilm formation as a transporter of nutrients for microorganisms. The presence of metallic elements in the oral cavity may lead to the formation of electro-galvanic cells and, as a result, may induce corrosion. Transitional microorganisms such as sulfate-reducing bacteria may also be present among the metabolic microflora in the oral cavity, which can induce biological corrosion. Microorganisms that form a biofilm locally change the conditions on the surface of biomaterials and contribute to the intensification of the biocorrosion processes. These processes may enhance allergy to metals, inflammation, or cancer development. On the other hand, the presence of saliva and biofilm may significantly reduce friction and wear on enamel as well as on biomaterials. This work summarizes data on the influence of saliva and oral biofilms on the destruction of metallic biomaterials.
Collapse
Affiliation(s)
- Joanna Mystkowska
- Department of Materials Engineering and Production, Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351 Bialystok, Poland.
| | - Katarzyna Niemirowicz-Laskowska
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland.
| | - Dawid Łysik
- Department of Materials Engineering and Production, Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351 Bialystok, Poland.
| | - Grażyna Tokajuk
- Department of Integrated Dentistry, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland.
| | - Jan R Dąbrowski
- Department of Materials Engineering and Production, Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351 Bialystok, Poland.
| | - Robert Bucki
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland.
| |
Collapse
|
7
|
Corrosion behavior of titanium in response to sulfides produced by Porphyromonas gingivalis. Dent Mater 2018; 34:183-191. [DOI: 10.1016/j.dental.2017.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 07/13/2017] [Accepted: 10/02/2017] [Indexed: 11/19/2022]
|
8
|
Liu S, Wang B, Zhang P. Effect of Glucose Concentration on Electrochemical Corrosion Behavior of Pure Titanium TA2 in Hanks' Simulated Body Fluid. MATERIALS 2016; 9:ma9110874. [PMID: 28773993 PMCID: PMC5457212 DOI: 10.3390/ma9110874] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/13/2016] [Accepted: 10/23/2016] [Indexed: 02/07/2023]
Abstract
Titanium and its alloys have been widely used as implant materials due to their excellent mechanical property and biocompatibility. In the present study, the effect of glucose concentration on corrosion behavior of pure titanium TA2 in Hanks’ simulated body fluid is investigated by the electrochemical impedance spectrum (EIS) and potentiodynamic polarization methods. The range of glucose concentrations investigated in this research includes 5 mmol/L (limosis for healthy people), 7 mmol/L (after diet for healthy people), 10 mmol/L (limosis for hyperglycemia patient), and 12 mmol/L (after diet for hyperglycemia patient), as well as, 15 mmol/L and 20 mmol/L, which represent different body fluid environments. The results indicate that the pure titanium TA2 demonstrates the best corrosion resistance when the glucose concentration is less than 10 mmol/L, which shows that the pure titanium TA2 as implant material can play an effective role in the body fluids with normal and slight high glucose concentrations. Comparatively, the corrosion for the pure titanium implant is more probable when the glucose concentration is over 10 mmol/L due to the premature penetration through passive film on the material surface. Corrosion defects of pitting and crevice exist on the corroded surface, and the depth of corrosion is limited to three microns with a low corrosion rate. The oxidation film on the surface of pure titanium TA2 has a protective effect on the corrosion behavior of the implant inner material. The corrosion behavior of pure titanium TA2 will happen easily once the passive film has been penetrated through. The corrosion rate for TA2 implant will accelerate quickly and a pure titanium implant cannot be used.
Collapse
Affiliation(s)
- Shuyue Liu
- High School Attached to Shandong Normal University, Jinan 250014, China.
| | - Bing Wang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University, Jinan 250061, China.
- Department of Mechanical Engineering, Michigan State University, Lansing, MI 48910, USA.
| | - Peirong Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University, Jinan 250061, China.
| |
Collapse
|