1
|
Guo S, Gu D, Yang Y, Tian J, Chen X. Near-infrared photodynamic and photothermal co-therapy based on organic small molecular dyes. J Nanobiotechnology 2023; 21:348. [PMID: 37759287 PMCID: PMC10523653 DOI: 10.1186/s12951-023-02111-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Near-infrared (NIR) organic small molecule dyes (OSMDs) are effective photothermal agents for photothermal therapy (PTT) due to their advantages of low cost and toxicity, good biodegradation, and strong NIR absorption over a wide wavelength range. Nevertheless, OSMDs have limited applicability in PTT due to their low photothermal conversion efficiency and inadequate destruction of tumor regions that are nonirradiated by NIR light. However, they can also act as photosensitizers (PSs) to produce reactive oxygen species (ROS), which can be further eradicated by using ROS-related therapies to address the above limitations of PTT. In this review, the synergistic mechanism, composition, and properties of photodynamic therapy (PDT)-PTT nanoplatforms were comprehensively discussed. In addition, some specific strategies for further improving the combined PTT and PDT based on OSMDs for cancer to completely eradicate cancer cells were outlined. These strategies include performing image-guided co-therapy, enhancing tumor infiltration, increasing H2O2 or O2 in the tumor microenvironment, and loading anticancer drugs onto nanoplatforms to enable combined therapy with phototherapy and chemotherapy. Meanwhile, the intriguing prospects and challenges of this treatment modality were also summarized with a focus on the future trends of its clinical application.
Collapse
Affiliation(s)
- Shuang Guo
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Dongyu Gu
- College of Marine Science and Environment, Dalian Ocean University, Dalian, 116023, China
| | - Yi Yang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine, Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
2
|
Tertyshnaya YV, Lobanov AV, Morokov ES, Buzanov GA, Abushakhmanova ZR. Polylactide-Meso-Substituted Arylporphyrin Composites: Structure, Properties and Antibacterial Activity. Polymers (Basel) 2023; 15:1027. [PMID: 36850310 PMCID: PMC9965752 DOI: 10.3390/polym15041027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The structural features and antibacterial properties of polymer-porphyrin composites were investigated. Meso-substituted arylporphyrin 0.2-0.5 wt.% was immobilized in a polylactide matrix. The immobilization of porphyrin causes a bathochromic shift and splitting of the Soret band. This study of the morphology of the obtained composites demonstrated a uniform distribution of the meso-substituted arylporphyrin in the polylactide matrix. It was determined by the X-ray diffraction analysis that porphyrin does not affect the α-form of polylactide crystalline formations. However, its addition into the polymer somewhat reduces the melting point (by 1-2 °C) and the degree of crystallinity of polylactide (by 3-4%). The elastic characteristics of the resulting systems were determined by the ultrasonic method, and a decrease in the density of the samples with an increase of the arylporphyrin content was shown. According to the results of the biological test, the dark toxicity of the obtained composites against the microorganisms Staphylococcus aureus, Salmonella Typhimurium and Escherichia coli was shown. Immobilizates containing 0.4 and 0.5 wt.% porphyrin showed the best antibacterial effect. The antibacterial activity of the studied composites makes it possible to attribute the polylactide-porphyrin systems to promising materials in the field of medicine and bioengineering.
Collapse
Affiliation(s)
- Yulia V. Tertyshnaya
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Str., Moscow 119334, Russia
- Laboratory Advanced Composite Materials and Technologies 36 Stremyanniy, Plekhanov Russian University of Economics, Moscow 117997, Russia
| | - Anton V. Lobanov
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Str., Moscow 119334, Russia
- Laboratory Advanced Composite Materials and Technologies 36 Stremyanniy, Plekhanov Russian University of Economics, Moscow 117997, Russia
| | - Egor S. Morokov
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Str., Moscow 119334, Russia
- Department Physics and Mathematics, Pirogov Russian National Research Medical University, 1 Ostrovityanova Str, Moscow 117997, Russia
| | - Grigorii A. Buzanov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninskiy Pr., Moscow 119991, Russia
| | - Zubarzhat R. Abushakhmanova
- Laboratory Advanced Composite Materials and Technologies 36 Stremyanniy, Plekhanov Russian University of Economics, Moscow 117997, Russia
| |
Collapse
|
3
|
Borges-Martínez M, Montenegro-Pohlhammer N, Cárdenas-Jirón G. The bimetallic and the anchoring group effects on both optical and charge transport properties of hexaphyrin amethyrin. NEW J CHEM 2021. [DOI: 10.1039/d1nj00091h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bimetallic Cu(ii)-hexaphyrin amethyrin proposed as a molecular switch operated by the application of an external magnetic field.
Collapse
Affiliation(s)
- Merlys Borges-Martínez
- Laboratory of Theoretical Chemistry
- Faculty of Chemistry and Biology, University of Santiago de Chile (USACH)
- Santiago
- Chile
| | - Nicolás Montenegro-Pohlhammer
- Laboratory of Theoretical Chemistry
- Faculty of Chemistry and Biology, University of Santiago de Chile (USACH)
- Santiago
- Chile
| | - Gloria Cárdenas-Jirón
- Laboratory of Theoretical Chemistry
- Faculty of Chemistry and Biology, University of Santiago de Chile (USACH)
- Santiago
- Chile
| |
Collapse
|
4
|
Oetiker N, Muñoz-Villagrán C, Vásquez CC, Bravo D, Pérez-Donoso JM. Bacterial phototoxicity of biomimetic CdTe-GSH quantum dots. J Appl Microbiol 2020; 131:155-168. [PMID: 33274558 DOI: 10.1111/jam.14957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/12/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022]
Abstract
AIM Fluorescent semiconductor nanoparticles or quantum dots (QDs) have excellent properties as photosensitizers in photodynamic therapy. This is mainly a consequence of their nanometric size and the generation of light-activated redox species. In previous works, we have reported the low-cost biomimetic synthesis of glutathione (GSH) capped QDs (CdTe-GSH QDs) with high biocompatibility. However, no studies have been performed to determine their phototoxic effect. The aim of this work was to characterize the light-induced toxicity of green (QDs500 ) and red (QDs600 ) QDs in Escherichia coli, and to study the molecular mechanism involved. METHODS AND RESULTS Photodegradation and reduction power of biomimetic QDs was determined to analyse their potential for radical generation. Escherichia coli cells were exposed to photoactivated QDs and viability was evaluated at different times. High toxicity was determined in E. coli cells exposed to photoactivated QDs, particularly QDs500 . The molecular mechanism involved in QDs phototoxicity was studied by determining Cd2+ -release and intracellular reactive oxygen species (ROS). Cells exposed to photoactivated QDs500 presented high levels of ROS. Cells exposed to photoactivated QDs500 presented high levels of ROS. Finally, to understand this phenomenon and the importance of oxidative and cadmium-stress in QDs-mediated phototoxicity, experiments were performed in E. coli mutants in ROS and Cd2+ response genes. As expected, E. coli mutants in ROS response genes were more sensitive than the wt strain to photoactivated QDs, with a higher effect in green-QDs500 . No increase in phototoxicity was observed in cadmium-related mutants. CONCLUSION Obtained results indicate that light exposure increases the toxicity of biomimetic QDs on E. coli cells. The mechanism of bacterial phototoxicity of biomimetic CdTe-GSH QDs is mostly associated with ROS generation. SIGNIFICANCE AND IMPACT OF THE STUDY The results presented establish biomimetic CdTe-GSH QDs as a promising cost-effective alternative against microbial infections, particularly QDs500 .
Collapse
Affiliation(s)
- N Oetiker
- BioNanotechnology and Microbiology Laboratory, Center of Bioinformatics and Integrative Biology (CBIB), Biological Sciences Faculty, Universidad Andres Bello, Santiago, Chile
| | - C Muñoz-Villagrán
- Molecular Microbiology Laboratory, Chemistry and Biology Faculty, Universidad de Santiago de Chile, Santiago, Chile
| | - C C Vásquez
- Molecular Microbiology Laboratory, Chemistry and Biology Faculty, Universidad de Santiago de Chile, Santiago, Chile
| | - D Bravo
- Oral Microbiology Laboratory, Dentistry Faculty, Universidad de Chile, Santiago, Chile
| | - J M Pérez-Donoso
- BioNanotechnology and Microbiology Laboratory, Center of Bioinformatics and Integrative Biology (CBIB), Biological Sciences Faculty, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
5
|
Khalifa ME, Elkhawass EA, Ninomiya M, Tanaka K, Koketsu M. Synthesis and In Vitro Evaluation of Anti‐Leukemic Potency of Some Novel Azo‐Naphthol Dyes Conjugated with Metal Nanoparticles as Photosensitizers for Photodynamic Therapy. ChemistrySelect 2020. [DOI: 10.1002/slct.202002081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Mohamed E. Khalifa
- Department of ChemistryFaculty of ScienceTaif University Taif 21974 Saudi Arabia
| | - Elham A. Elkhawass
- Department of ZoologyFaculty of ScienceSuez Canal University Ismailia 41522 Egypt
| | - Masayuki Ninomiya
- Department of Chemistry and Biomolecular ScienceFaculty of EngineeringGifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Kaori Tanaka
- Division of Anaerobe ResearchLife Science Research Center
- United Graduate School of Drug Discovery and Medicinal Information SciencesGifu University 1-1 Yanagido Gifu 501-1194 Japan
| | - Mamoru Koketsu
- Department of Chemistry and Biomolecular ScienceFaculty of EngineeringGifu University 1-1 Yanagido Gifu 501-1193 Japan
| |
Collapse
|
6
|
Development of molecularly imprinted magnetic iron oxide nanoparticles for doxorubicin drug delivery. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02644-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Guo LY, Yan SZ, Tao X, Yang Q, Li Q, Wang TS, Yu SQ, Chen SL. Evaluation of hypocrellin A-loaded lipase sensitive polymer micelles for intervening methicillin-resistant Staphylococcus Aureus antibiotic-resistant bacterial infection. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 106:110230. [PMID: 31753349 DOI: 10.1016/j.msec.2019.110230] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 09/18/2019] [Accepted: 09/18/2019] [Indexed: 11/24/2022]
Abstract
There is an urgent need for new antibacterial strategies to overcome the emergence of antibiotic resistance. Antibacterial photodynamic therapy (APDT) may be an effective method to deliver photosensitizers for the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections. Here, we report that the photosensitizer hypocrellin A (HA) loaded into lipase-sensitive methoxy poly (ethylene glycol)-block-poly(ε-caprolactone) (mPEG-PCL) micelles showed high anti-MRSA activity in vitro and in vivo by PDT. Once the micelles come into contact with bacteria that secrete lipase, the PCL is degraded to release HA. Our results showed that the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of mPEG-PCL/HA micelles after light irradiation were 0.69 and 1.38 mg/L (HA concentration), respectively. In the dark, the MIC and MBC of the micelles were 250 and 500 mg/L (HA concentration), respectively. The fluorescent stain results further demonstrated the photodynamic antibacterial activity of mPEG-PCL/HA micelles. The survival rate of mice subjected to experimental acute peritonitis increased to 86% after treated with the micelles. The polymeric micelles showed low hemolytic activity and biocompatibility, simultaneously preventing aggregation in vivo and enhancing the water solubility of HA. Thus, the photosensitizer HA loaded micelles could be used as APDT for infections caused by bacteria without antibiotic resistance.
Collapse
Affiliation(s)
- Ling-Yuan Guo
- Jiangsu Province Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Shu-Zhen Yan
- Jiangsu Province Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Xin Tao
- Jiangsu Province Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Qing Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 31003, China
| | - Qiang Li
- Jiangsu Province Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Tian-Shu Wang
- Jiangsu Province Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Shu-Qin Yu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Shuang-Lin Chen
- Jiangsu Province Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
8
|
Grigore ME, Ion RM, Iancu L, Grigorescu RM. Tailored porphyrin–gold nanoparticles for biomedical applications. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s108842461930012x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this review we present an updated survey of the main synthesis methods of gold nanoparticles (AuNPs) in order to obtain various tailored nanosystems for biomedical imaging. The synthesis approach significantly impacts on the AuNPs properties such as surface chemistry, biocompatibility and cytotoxicity. In recent years, nanomedicine emphasized the development of functionalized AuNPs for biomedical imaging. AuNPs are a good option for used as delivery photosensitizer agents for PDT of cancer. For example, the complex formed from AuNPs functionalized with PEGylate porphyrins presents several advantages in the medical field such as a better use in photodynamic therapy because of high triplet states and singlet oxygen quantum yield efficiency of porphyrin molecules.
Collapse
Affiliation(s)
- Madalina E. Grigore
- “Evaluation and Conservation of Cultural Heritage” Research Group, ICECHIM Bucharest, 202 Spl. Independentei, 060021, Romania
| | - Rodica-M. Ion
- “Evaluation and Conservation of Cultural Heritage” Research Group, ICECHIM Bucharest, 202 Spl. Independentei, 060021, Romania
- Doctoral School of Materials Engineering, Valahia University of Targoviste, Aleea Sinaia, No. 13, 130005, Romania
| | - Lorena Iancu
- “Evaluation and Conservation of Cultural Heritage” Research Group, ICECHIM Bucharest, 202 Spl. Independentei, 060021, Romania
- Doctoral School of Materials Engineering, Valahia University of Targoviste, Aleea Sinaia, No. 13, 130005, Romania
| | - Ramona M. Grigorescu
- “Evaluation and Conservation of Cultural Heritage” Research Group, ICECHIM Bucharest, 202 Spl. Independentei, 060021, Romania
| |
Collapse
|
9
|
Abstract
The emergence of antimicrobial drug resistance requires development of alternative therapeutic options. Multidrug-resistant strains of Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa and Enterobacter spp. are still the most commonly identified antimicrobial-resistant pathogens. These microorganisms are part of the so-called 'ESKAPE' pathogens to emphasize that they currently cause the majority of hospital acquired infections and effectively 'escape' the effects of antibacterial drugs. Thus, alternative, safer and more efficient antimicrobial strategies are urgently needed, especially against 'ESKAPE' superbugs. Antimicrobial photodynamic inactivation is a therapeutic option used in the treatment of infectious diseases. It is based on a combination of a photosensitizer, light and oxygen to remove highly metabolically active cells.
Collapse
|
10
|
A facile synthesis of formazan dyes conjugated with plasmonic nanoparticles as photosensitizers in photodynamic therapy against leukemia cell line. MONATSHEFTE FUR CHEMIE 2018. [DOI: 10.1007/s00706-018-2302-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Rajendrakumar SK, Uthaman S, Cho CS, Park IK. Nanoparticle-Based Phototriggered Cancer Immunotherapy and Its Domino Effect in the Tumor Microenvironment. Biomacromolecules 2018; 19:1869-1887. [DOI: 10.1021/acs.biomac.8b00460] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Santhosh Kalash Rajendrakumar
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Saji Uthaman
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - In-Kyu Park
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju 61469, South Korea
| |
Collapse
|
12
|
Bagheri S, Yasemi M, Safaie-Qamsari E, Rashidiani J, Abkar M, Hassani M, Mirhosseini SA, Kooshki H. Using gold nanoparticles in diagnosis and treatment of melanoma cancer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:462-471. [DOI: 10.1080/21691401.2018.1430585] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Salman Bagheri
- Nano Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Yasemi
- Department of Cell and Molecular Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Elmira Safaie-Qamsari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jamal Rashidiani
- Nano Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Morteza Abkar
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahmoud Hassani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mirhosseini
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Kooshki
- Nano Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Rizzi V, Vurro D, Placido T, Fini P, Petrella A, Semeraro P, Cosma P. Gold-chlorophyll a-hybrid nanoparticles and chlorophyll a/cetyltrimethylammonium chloride self-assembled-suprastructures as novel carriers for chlorophyll a delivery in water medium: Photoactivity and photostability. Colloids Surf B Biointerfaces 2018; 161:555-562. [DOI: 10.1016/j.colsurfb.2017.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 12/16/2022]
|
14
|
Yang DP, Liu X, Teng CP, Owh C, Win KY, Lin M, Loh XJ, Wu YL, Li Z, Ye E. Unexpected formation of gold nanoflowers by a green synthesis method as agents for a safe and effective photothermal therapy. NANOSCALE 2017; 9:15753-15759. [PMID: 28994849 DOI: 10.1039/c7nr06286a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Star fruit (Averrhoa carambola) juice rich in vitamin C and polyphenolic antioxidants was used to synthesize branched gold nanoflowers. These biocompatible and stable gold nanoflowers show strong near-infrared absorption. They are successfully demonstrated to be highly efficient for both in vitro and in vivo photothermal therapy by using an 808 nm laser.
Collapse
Affiliation(s)
- Da-Peng Yang
- College of Chemical Engineering & Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Li Z, Yang Y, Yao J, Shao Z, Chen X. A facile fabrication of silk/MoS2 hybrids for Photothermal therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [DOI: 10.1016/j.msec.2017.05.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Kashef N, Huang YY, Hamblin MR. Advances in antimicrobial photodynamic inactivation at the nanoscale. NANOPHOTONICS 2017; 6:853-879. [PMID: 29226063 PMCID: PMC5720168 DOI: 10.1515/nanoph-2016-0189] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The alarming worldwide increase in antibiotic resistance amongst microbial pathogens necessitates a search for new antimicrobial techniques, which will not be affected by, or indeed cause resistance themselves. Light-mediated photoinactivation is one such technique that takes advantage of the whole spectrum of light to destroy a broad spectrum of pathogens. Many of these photoinactivation techniques rely on the participation of a diverse range of nanoparticles and nanostructures that have dimensions very similar to the wavelength of light. Photodynamic inactivation relies on the photochemical production of singlet oxygen from photosensitizing dyes (type II pathway) that can benefit remarkably from formulation in nanoparticle-based drug delivery vehicles. Fullerenes are a closed-cage carbon allotrope nanoparticle with a high absorption coefficient and triplet yield. Their photochemistry is highly dependent on microenvironment, and can be type II in organic solvents and type I (hydroxyl radicals) in a biological milieu. Titanium dioxide nanoparticles act as a large band-gap semiconductor that can carry out photo-induced electron transfer under ultraviolet A light and can also produce reactive oxygen species that kill microbial cells. We discuss some recent studies in which quite remarkable potentiation of microbial killing (up to six logs) can be obtained by the addition of simple inorganic salts such as the non-toxic sodium/potassium iodide, bromide, nitrite, and even the toxic sodium azide. Interesting mechanistic insights were obtained to explain this increased killing.
Collapse
Affiliation(s)
- Nasim Kashef
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ying-Ying Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
17
|
Kashef N, Hamblin MR. Can microbial cells develop resistance to oxidative stress in antimicrobial photodynamic inactivation? Drug Resist Updat 2017; 31:31-42. [PMID: 28867242 DOI: 10.1016/j.drup.2017.07.003] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/28/2017] [Accepted: 07/13/2017] [Indexed: 01/08/2023]
Abstract
Infections have been a major cause of disease throughout the history of humans on earth. With the introduction of antibiotics, it was thought that infections had been conquered. However, bacteria have been able to develop resistance to antibiotics at an exponentially increasing rate. The growing threat from multi-drug resistant organisms calls for intensive action to prevent the emergence of totally resistant and untreatable infections. Novel, non-invasive, non-antibiotic strategies are needed that act more efficiently and faster than current antibiotics. One promising alternative is antimicrobial photodynamic inactivation (APDI), an approach that produces reactive oxygen species when dyes and light are combined. So far, it has been questionable if bacteria can develop resistance against APDI. This review paper gives an overview of recent studies concerning the susceptibility of bacteria towards oxidative stress, and suggests possible mechanisms of the development of APDI-resistance that should at least be addressed. Some ways to potentiate APDI and also to overcome future resistance are suggested.
Collapse
Affiliation(s)
- Nasim Kashef
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran; Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
18
|
Yu Q, Xie A, Huang F, Li S, Xiao Y, Shen Y. Photosensitive multifunctional poly(vinyl alcohol) micelles for enhanced antitumor effect. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:918-924. [DOI: 10.1016/j.msec.2017.03.086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/07/2017] [Accepted: 03/12/2017] [Indexed: 11/30/2022]
|
19
|
Mohammad F, Al-Lohedan HA. Luteinizing hormone-releasing hormone targeted superparamagnetic gold nanoshells for a combination therapy of hyperthermia and controlled drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:692-700. [PMID: 28482580 DOI: 10.1016/j.msec.2017.03.162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 11/18/2022]
Abstract
In this, we developed superparamagnetic iron oxide nanoparticles (SPIONs) to be appropriate for the diagnosis and treatment of cancer cells by means of magnetic resonance imaging (MRI) and magnetically controlled hyperthermia/drug delivery (respectively). For the preparation of composite, we started with SPIONs, followed by its coating with gold to form SPIONs@Au, which further conjugated with luteinizing hormone-releasing hormone (LHRH) protein by making use of the cysteamine (Cyst) space linker and finally loaded with 5-Fluororacil (5-Fu) anticancer drug to form SPIONs@Au-Cyst-LHRH_5-Fu composite. Thus formed composite was thoroughly characterized by making use of the instrumental analysis such as HRTEM, EDAX, DLS, TGA, XPS, UV-vis, FTIR, HPLC and SQUID magnetics. We found from the analysis that the particles are spherical in shape, monodispersed with a size distribution of around 6.9nm in powdered dry form, while in solution phase it is 8.7nm. The UV-vis, FTIR, and HPLC studies confirmed for the loading of the 5-Fu drug onto the surface of SPIONs core and the maximum amount of drug that got adsorbed to be about 42%. The SQUID magnetic studies provided the information for the superparamagnetic behavior of the drug loaded SPIONs and the saturation magnetization (Ms) values observed to be about 11emu/g and the blocking temperature (TB) of 348K. On testing the particles to see the effects of magnetic fluid hyperthermia (MFH) due to some changes in the solvent medium and oscillating frequency, the material seems to be highly active in aqueous medium and the activity gets increased with respect to the applied frequency of oscillation (430Hz>230Hz>44Hz). From the heat release studies, the calculated specific power loss (SPL) values for the SPIONs@Au-Cyst-LHRH_5-Fu composite are at the highest of 1068W/g in water (430Hz) vs the least of 68W/g in toluene (44Hz). Further, the drug release studies tested under the influence of magnetic field provided the information that the composite released its entire loaded drug following an exposure to the magnetic field (430Hz over 4h time), while only 53% (over 5h) for the controlled measurements of no magnetic field, thereby supporting to have the magnetic field so as to observe the externally controlled drug release effects. Finally, the results of the study provide the information that the SPIONs@Au-Cyst-LHRH_5-Fu composite can be potential for theranostic applications of cancer through the phenomenon of applying for MRI, magnetically controlled hyperthermia and drug delivery externally.
Collapse
Affiliation(s)
- Faruq Mohammad
- Surfactant Research Chair, Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Hamad A Al-Lohedan
- Surfactant Research Chair, Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|