1
|
Ender Biçer, Tanju NÖ, Macit M. Voltammetric and Spectroscopic Evaluation of the Interactions of (E)-1-((4-phenoxyphenylimino)methyl)naphthalen-2-ol with Bovine and Human Serum Albumins at Physiological pH. RUSS J ELECTROCHEM+ 2022. [DOI: 10.1134/s1023193522090038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Gu J, Huang X, Ma Y, Sun X. Spectroscopic study on the separate and simultaneous interaction of nicotinic and its metabolite to bovine serum albumin. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
3
|
Preparation of Antihypertensive Drugs in Biological Matrix with Solvent Front Position Extraction for LC–MS/MS Analysis. Molecules 2021; 27:molecules27010205. [PMID: 35011437 PMCID: PMC8746826 DOI: 10.3390/molecules27010205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
Solvent front position extraction procedure was used to prepare biological samples containing selected antihypertensive drugs (ramipril, lercanidipine, indapamide, valsartan, hydrochlorothiazide, perindopril, and nebivolol). Substances separated from the biological matrix components (bovine serum albumin) were quantified by means of liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Sample preparation process was performed with the use of a prototype horizontal chamber with a moving pipette driven by a 3D printer mechanism enabling a controlled eluent flow velocity. Application of this device was advantageous for simultaneous preparation of several samples for further quantitative analysis, with a synchronized reduction of manual operations and solvent consumption. Quantitative results obtained for the majority of the investigated antihypertensive drugs in a complex biological matrix were satisfactory. The values of the %RSD were around 5% for six of the seven substances (with the exception of indapamide). The method exhibits a suitable accuracy (the relative error percentage was below 10% for most drugs). The values of LOD and LOQ were in the range of 1.19 µg/L–8.53 µg/L and 3.61 µg/L–25.8 µg/L, respectively.
Collapse
|
4
|
Interaction of artemisinin protects the activity of antioxidant enzyme catalase: A biophysical study. Int J Biol Macromol 2021; 172:418-428. [PMID: 33460658 DOI: 10.1016/j.ijbiomac.2021.01.072] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/22/2020] [Accepted: 01/12/2021] [Indexed: 01/09/2023]
Abstract
The major antioxidant enzyme catalase is downregulated and the enzyme activity is compromised in various disease conditions such as malarial and cancer. Hence, the restoration and protection of catalase is a promising therapeutic strategy in disease management. In the present study, for the first time we have demonstrated the protective role of well-known anti-malarial drug Artemisinin (ART) on the time and temperature-induced degradation of bovine liver catalase (BLC) activity. The findings at different time intervals and at higher temperature showed the protective role of ART on BLC activity. Molecular docking studies suggested specific binding of ART on BLC through heme group interface which was further supported by cyclic voltammetry and dynamic light scattering study. The stabilization of BLC in presence of ART was mediated through forming a BLC-ART complex with reduced and shifted electrochemical peak and increased hydrodynamic diameter. ART substantially prevents the temperature-induced reduction in α-helical content with simultaneous increment in other secondary structures like antiparallel, parallel, β-turn and random coils. Nevertheless, the protective role of ART was accepted from the enhanced thermal stability and increased Tm value of BLC in presence of ART at higher temperatures. Our results uncover the mechanism of interaction between ART with BLC and suggest the protective role of ART towards spatiotemporal alteration of BLC by preventing the structural and molecular change in BLC. Thus, the findings advocate ART as a potential therapeutic drug for diseases associated with reduced catalase activity.
Collapse
|
5
|
|
6
|
Isildak I, Navaeipour F, Afsharan H, Kanberoglu GS, Agir I, Ozer T, Annabi N, Totu EE, Khalilzadeh B. Electrochemiluminescence methods using CdS quantum dots in aptamer-based thrombin biosensors: a comparative study. Mikrochim Acta 2019; 187:25. [PMID: 31811449 DOI: 10.1007/s00604-019-3882-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 09/29/2019] [Indexed: 11/25/2022]
Abstract
The detection of thrombin by using CdS nanocrystals (CdS NCs), gold nanoparticles (AuNPs) and luminol is investigated in this work. Thrombin is detected by three methods. One is called the quenching method. It is based on the quenching effect of AuNPs on the yellow fluorescence of CdS NCs (with excitation/emission wavelengths of 355/550 nm) when placed adjacent to CdS NCs. The second method (called amplification method) is based on an amplification mechanism in which the plasmonics on the AuNPs enhance the emission of CdS NCs through distance related Förster resonance energy transfer (FRET). The third method is ratiometric and based on the emission by two luminophores, viz. CdS NCs and luminol. In this method, by increasing the concentration of thrombin, the intensity of CdS NCs decreases, while that of luminol increases. The results showed that ratiometric method was most sensitive (with an LOD of 500 fg.mL-1), followed by the amplification method (6.5 pg.mL-1) and the quenching method (92 pg.mL-1). Hence, the latter is less useful. Graphical abstract Schematic representation of three different methods (quenching, amplification and ratiometric) were applied for detection of thrombin via aptasensor. The CdS nanocrystals, streptavidin (Str) coated AuNPs and also Str-luminol coated AuNPs were used for the construction steps of the electrochemiluminescence (ECL)-based biosensor.
Collapse
Affiliation(s)
- Ibrahim Isildak
- Department of Bioengineering, Faculty of Chemistry-Metallurgy, Yildiz Technical University, 34220, Istanbul, Turkey.
| | - Farzaneh Navaeipour
- Faculty of Physics, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Hadi Afsharan
- Faculty of Physics, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | | | - Ismail Agir
- Bioengineering Department, Istanbul Medeniyet University, Goztepe, 34700, Istanbul, Turkey
| | - Tugba Ozer
- Department of Bioengineering, Faculty of Chemistry-Metallurgy, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Nasim Annabi
- Chemical and Biomolecular Engineering Department, University of California, Los Angeles, CA, 90095, USA
| | - Eugenia Eftimie Totu
- Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, 11061, Bucharest, Romania
| | - Balal Khalilzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, 51664-14766, Iran.
- Biosensors and Bioelectronics Research Center, Ardabil University of Medical Sciences, Ardabil, 56189-85991, Iran.
| |
Collapse
|
7
|
CdS nanocrystals/graphene oxide-AuNPs based electrochemiluminescence immunosensor in sensitive quantification of a cancer biomarker: p53. Biosens Bioelectron 2019; 126:7-14. [DOI: 10.1016/j.bios.2018.10.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/30/2018] [Accepted: 10/16/2018] [Indexed: 11/19/2022]
|
8
|
Ultrahigh sensitive enhanced-electrochemiluminescence detection of cancer biomarkers using silica NPs/graphene oxide: A comparative study. Biosens Bioelectron 2018; 102:226-233. [DOI: 10.1016/j.bios.2017.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/04/2017] [Accepted: 11/01/2017] [Indexed: 12/31/2022]
|
9
|
Liu D, Zheng H. Xylenol orange probe-based spectroscopic insight into the interaction between strontium (II) and bovine serum albumin. J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-017-5508-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
10
|
BODIPY-Triphenylamine with conjugated pyridines and a quaternary pyridium salt: Synthesis, aggregation-induced red emission and interaction with bovine serum albumin. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2017.05.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Guo Y, Shen L, Yao X, Liu Y, Liu Y, Chen H, Min K, Zheng X. Spectroscopic and molecular docking study on the structure-affinity relationship and mechanism in the interaction of genistein and its derivatives with bovine serum albumin. LUMINESCENCE 2017; 32:1368-1384. [DOI: 10.1002/bio.3333] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/07/2017] [Accepted: 03/01/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Yu Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology; University of South China, Hengyang; Hu'nan China
| | - Lixian Shen
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology; University of South China, Hengyang; Hu'nan China
| | - Xu Yao
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology; University of South China, Hengyang; Hu'nan China
| | - Yang Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology; University of South China, Hengyang; Hu'nan China
| | - Yunmei Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology; University of South China, Hengyang; Hu'nan China
| | - Hongfei Chen
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology; University of South China, Hengyang; Hu'nan China
| | - Ke Min
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology; University of South China, Hengyang; Hu'nan China
| | - Xing Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology; University of South China, Hengyang; Hu'nan China
| |
Collapse
|