1
|
Balas M, Badea MA, Ciobanu SC, Piciu F, Iconaru SL, Dinischiotu A, Predoi D. Biocompatibility and Osteogenic Activity of Samarium-Doped Hydroxyapatite-Biomimetic Nanoceramics for Bone Regeneration Applications. Biomimetics (Basel) 2024; 9:309. [PMID: 38921189 PMCID: PMC11201808 DOI: 10.3390/biomimetics9060309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
In this study, we report on the development of hydroxyapatite (HAp) and samarium-doped hydroxyapatite (SmHAp) nanoparticles using a cost-effective method and their biological effects on a bone-derived cell line MC3T3-E1. The physicochemical and biological features of HAp and SmHAp nanoparticles are explored. The X-ray diffraction (XRD) studies revealed that no additional peaks were observed after the integration of samarium (Sm) ions into the HAp structure. Valuable information regarding the molecular structure and morphological features of nanoparticles were obtained by using Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The elemental composition obtained by using energy-dispersive X-ray spectroscopy (EDS) confirmed the presence of the HAp constituent elements, Ca, O, and P, as well as the presence and uniform distribution of Sm3+ ions. Both HAp and SmHAp nanoparticles demonstrated biocompatibility at concentrations below 25 μg/mL and 50 μg/mL, respectively, for up to 72 h of exposure. Cell membrane integrity was preserved following treatment with concentrations up to 100 μg/mL HAp and 400 μg/mL SmHAp, confirming the role of Sm3+ ions in enhancing the cytocompatibility of HAp. Furthermore, our findings reveal a positive, albeit limited, effect of SmHAp nanoparticles on the actin dynamics, osteogenesis, and cell migration compared to HAp nanoparticles. Importantly, the biological results highlight the potential role of Sm3+ ions in maintaining cellular balance by mitigating disruptions in Ca2+ homeostasis induced by HAp nanoparticles. Therefore, our study represents a significant contribution to the safety assessment of both HAp and SmHAp nanoparticles for biomedical applications focused on bone regeneration.
Collapse
Affiliation(s)
- Mihaela Balas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.B.); (M.A.B.)
| | - Madalina Andreea Badea
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.B.); (M.A.B.)
| | - Steluta Carmen Ciobanu
- National Institute of Materials Physics, No. 405A Atomistilor Street, 077125 Magurele, Romania; (S.C.C.); (S.L.I.); (D.P.)
| | - Florentina Piciu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania;
| | - Simona Liliana Iconaru
- National Institute of Materials Physics, No. 405A Atomistilor Street, 077125 Magurele, Romania; (S.C.C.); (S.L.I.); (D.P.)
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.B.); (M.A.B.)
| | - Daniela Predoi
- National Institute of Materials Physics, No. 405A Atomistilor Street, 077125 Magurele, Romania; (S.C.C.); (S.L.I.); (D.P.)
| |
Collapse
|
2
|
Wu H, Wang R, Li S, Chen S, Liu S, Li X, Yang X, Zeng Q, Zhou Y, Zhu X, Zhang K, Tu C, Zhang X. Aspect ratio-dependent dual-regulation of the tumor immune microenvironment against osteosarcoma by hydroxyapatite nanoparticles. Acta Biomater 2023; 170:427-441. [PMID: 37634831 DOI: 10.1016/j.actbio.2023.08.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/03/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Accumulating studies demonstrated that hydroxyapatite nanoparticles (HANPs) showed a selective anti-tumor effect, making them a good candidate for osteosarcoma (OS) treatment. However, the capacity of HANPs with different aspect ratios to regulate tumor immune microenvironment (TIM) was scarcely reported before. To explore it, the three HANPs with aspect ratios from 1.86 to 6.25 were prepared by wet chemical method. After a 24 or 72 h-exposure of OS UMR106 cells or macrophages to the nanoparticles, the tumor cells exhibited immunogenic cell death (ICD) indicated by the increased production of calreticulin (CRT), adenosine triphosphate (ATP) and high mobility group box 1 (HMGB1), and macrophages were activated with the release of pro-inflammatory cytokines. Next, the beneficial crosstalk between tumor cells and macrophages generated in the presence of HANPs for improved anti-tumor immunity activation. In the OS-bearing cognate rat model, HANPs inhibited OS growth, which was positively correlated with CRT and HMGB1 expression, and macrophage polarization in the tumor tissues. Additionally, HANPs promoted CD8+ T cell infiltration into the tumor and systemic dendritic cell maturation. Particularly, HANPs bearing the highest aspect ratio exhibited the strongest immunomodulatory and anti-tumor function. This study suggested the potential of HANPs to be a safe and effective drug-free nanomaterial to control the TIM for OS therapy. STATEMENT OF SIGNIFICANCE: Emerging studies demonstrated that hydroxyapatite nanoparticles (HANPs) inhibited tumor cell proliferation and tumor growth. However, the underlying anti-tumor mechanism still remains unclear, and the capacity of HANPs without any other additive to regulate tumor immune microenvironment (TIM) was scarcely reported before. Herein, we demonstrated that HANPs, in an aspect ratio-dependent manner, showed the potential to delay the growth of osteosarcoma (OS) and to regulate TIM by promoting the invasion of CD8+ T cells and F4/80+ macrophages, and inducing immunogenic cell death (ICD) in tumors. This work revealed the new molecular mechanism for HANPs against OS, and suggested HANPs might be a novel ICD inducer for OS treatment.
Collapse
Affiliation(s)
- Hongfeng Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China; Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Ruiqi Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Shu Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Siyu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Shuo Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan & Research Center for Materials Genome Engineering, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan & Research Center for Materials Genome Engineering, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Qin Zeng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Yong Zhou
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan & Research Center for Materials Genome Engineering, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Kai Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Chongqi Tu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan & Research Center for Materials Genome Engineering, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
3
|
Wang R, Hua Y, Wu H, Wang J, Xiao YC, Chen X, Ao Q, Zeng Q, Zhu X, Zhang X. Hydroxyapatite nanoparticles promote TLR4 agonist-mediated anti-tumor immunity through synergically enhanced macrophage polarization. Acta Biomater 2023; 164:626-640. [PMID: 37086827 DOI: 10.1016/j.actbio.2023.04.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/30/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023]
Abstract
Macrophages represent the most prevalent immune cells in the tumor micro-environment, making them an appealing target for tumor immunotherapy. One of our previous studies showed that hydroxyapatite nanoparticles (HANPs) enhanced Toll-like receptor 4 (TLR4) signal transduction in macrophages. This study was proposed to investigate how HANPs manipulated the phenotype and function of macrophage against 4T1 tumors in the presence or absence of MPLA, a low toxic Toll-like receptor 4 (TLR4) agonist. The results demonstrated that the addition of HANPs to MPLA significantly promoted cytokine secretion and macrophage polarization toward a tumoricidal M1 phenotype. Further, the resulting supernatant from HANPs/MPLA co-stimulated macrophages enhanced 4T1 tumor cells apoptosis compared to that from macrophages treated with a single component or PBS control. In particular, we found HANPs elicited immunogenic cell death (ICD) indicated by the increased expression of "danger signals", including HMGB1, CRT and ATP in 4T1 cells. Subsequently, the ICD derivatives-containing supernatant from HANPs-treated 4T1 cells activated macrophage and shifted the phenotype of the cells toward M1 type. Moreover, in a tumor-bearing mice model, HANPs and MPLA synergistically delayed tumor growth compared to PBS control, which was positively associated with the promoted macrophage polarization and ICD induction. Therefore, our findings demonstrated a potential platform to modulate the function of macrophages, and shed a new insight into the mechanism involving the immunomodulatory effect of HANPs for tumor therapy. STATEMENT OF SIGNIFICANCE: Polarizing macrophage toward tumoricidal phenotype by harnessing Toll-like receptor (TLR) agonists has been proven effective for tumor immunotherapy. However, the immunomodulatory potency of TLR agonists is limited due to immune suppression or tolerance associated with TLR activation in immune cells. Herein, we introduced hydroxyapatite nanoparticles (HANPs) to MPLA, a TLR4 agonist. The results demonstrated that the addition of HANPs to MPLA promoted macrophage shift toward tumoricidal M1 phenotype, supported a "hot" tumor transformation, and delayed 4T1 tumor growth. Moreover, we found that HANPs elicited immunogenic cell death that produced "danger" signals from cancer cells thereby further facilitated macrophage polarization. This work is significant to direct the rational design of HANPs coupled with or without TLR agonists for tumor immunotherapy.
Collapse
Affiliation(s)
- Ruiqi Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China, 610064; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan University, Chengdu, China, 610041
| | - Yuchen Hua
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China, 610064; College of Biomedical Engineering, Sichuan University, Chengdu, China, 610064
| | - Hongfeng Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China, 610064; College of Biomedical Engineering, Sichuan University, Chengdu, China, 610064
| | - Jingyu Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, China, 610064
| | - You-Cai Xiao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan University, Chengdu, China, 610041
| | - Xuening Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China, 610064; College of Biomedical Engineering, Sichuan University, Chengdu, China, 610064
| | - Qiang Ao
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu, China, 610064; College of Biomedical Engineering, Sichuan University, Chengdu, China, 610064
| | - Qin Zeng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China, 610064; NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu, China, 610064; College of Biomedical Engineering, Sichuan University, Chengdu, China, 610064.
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China, 610064; College of Biomedical Engineering, Sichuan University, Chengdu, China, 610064.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China, 610064; NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu, China, 610064; College of Biomedical Engineering, Sichuan University, Chengdu, China, 610064
| |
Collapse
|
4
|
Ou L, Zhang Q, Chang Y, Xia N. Co-Delivery of Methotrexate and Nanohydroxyapatite with Polyethylene Glycol Polymers for Chemotherapy of Osteosarcoma. MICROMACHINES 2023; 14:757. [PMCID: PMC10146394 DOI: 10.3390/mi14040757] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 06/29/2023]
Abstract
Neoadjuvant chemotherapy is an alternative treatment modality for tumors. Methotrexate (MTX) has been often used as a neoadjuvant chemotherapy reagent for osteosarcoma surgery. However, the large dosage, high toxicity, strong drug resistance, and poor improvement of bone erosion restricted the utilization of methotrexate. Here, we developed a targeted drug delivery system using nanosized hydroxyapatite particles (nHA) as the cores. MTX was conjugated to polyethylene glycol (PEG) through the pH-sensitive ester linkage and acted as both the folate receptor-targeting ligand and the anti-cancer drug due to the similarity to the structure of folic acid. Meanwhile, nHA could increase the concentration of calcium ions after being uptake by cells, thus inducing mitochondrial apoptosis and improving the efficacy of medical treatment. In vitro drug release studies of MTX-PEG-nHA in phosphate buffered saline at different pH values (5, 6.4 and 7.4) indicated that the system showed a pH-dependent release feature because of the dissolution of ester bonds and nHA under acidic conditions. Furthermore, the treatment on osteosarcoma cells (143B, MG63, and HOS) by using MTX-PEG-nHA was demonstrated to exhibit higher therapeutic efficacy. Therefore, the developed platform possesses the great potential for osteosarcoma therapy.
Collapse
Affiliation(s)
- Lingbin Ou
- School of Medical Technology, Yongzhou Vocational Technical College, Yongzhou 425100, China
| | - Qiongyu Zhang
- School of Medical Technology, Yongzhou Vocational Technical College, Yongzhou 425100, China
| | - Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| |
Collapse
|
5
|
Yao Y, Ko Y, Grasman G, Raymond JE, Lahann J. The steep road to nonviral nanomedicines: Frequent challenges and culprits in designing nanoparticles for gene therapy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:351-361. [PMID: 36959977 PMCID: PMC10028570 DOI: 10.3762/bjnano.14.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The potential of therapeutically loaded nanoparticles (NPs) has been successfully demonstrated during the last decade, with NP-mediated nonviral gene delivery gathering significant attention as highlighted by the broad clinical acceptance of mRNA-based COVID-19 vaccines. A significant barrier to progress in this emerging area is the wild variability of approaches reported in published literature regarding nanoparticle characterizations. Here, we provide a brief overview of the current status and outline important concerns regarding the need for standardized protocols to evaluate NP uptake, NP transfection efficacy, drug dose determination, and variability of nonviral gene delivery systems. Based on these concerns, we propose wide adherence to multimodal, multiparameter, and multistudy analysis of NP systems. Adoption of these proposed approaches will ensure improved transparency, provide a better basis for interlaboratory comparisons, and will simplify judging the significance of new findings in a broader context, all critical requirements for advancing the field of nonviral gene delivery.
Collapse
Affiliation(s)
- Yao Yao
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yeongun Ko
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- School of Polymer Science and Engineering, Chonnam National University, Buk-gu, Gwangju 61186, South Korea
| | - Grant Grasman
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jeffery E Raymond
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joerg Lahann
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Xu L, Xu S, Xiang TY, Chen LW, Zhong WX, Zhu L, Liu H, Wu L, Li WD, Wang YT, Cai BC, Yao JH, Chen R, Xin WF, Cao G, Chen ZP. A novel peptide hydrogel of metal ion clusters for accelerating bone defect regeneration. J Control Release 2023; 353:738-751. [PMID: 36526019 DOI: 10.1016/j.jconrel.2022.12.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/25/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
In the absence of adequate treatment, effective bone regeneration remains a great challenge. Exploring hydrogels with properties of excellent bioactivity, stability, non-immunogenicity, and commercialization is an important step to develop hydrogel-based bone regeneration materials. In this study, we engineered a self-assembled chelating peptide hydrogel loaded with an osteogenic metal ion cluster extracted from the processed pyritum decoction, including Fe2+, Cu2+, Zn2+, Mn2+, Mg2+, and Ca2+ ions, named processed pyritum hydrogel (PPH). We demonstrated that as a reservoir of beneficial metal ion clusters in bone regeneration, PPH has been shown to regulate a variety of genes in the process of bone regeneration. These genes are mainly involved in extracellular matrix synthesis, cell adhesion and migration, cytokine expression, antimicrobial and inflammation. Therefore, PPH accelerated the progress of various bone healing stages, and shortened the bone healing cycle by 4 weeks. Our investigation outcomes showed that the engineered metal ion cluster hydrogel is a novel, simple, and commercializable bone-regenerating hydrogel with potential clinical use.
Collapse
Affiliation(s)
- Liu Xu
- College of pharmacy, Nanjing University of Chinese Medicine; Nanjing 210023, China
| | - Shan Xu
- College of pharmacy, Nanjing University of Chinese Medicine; Nanjing 210023, China
| | - Tang Yong Xiang
- College of pharmacy, Nanjing University of Chinese Medicine; Nanjing 210023, China
| | - Lin Wei Chen
- College of pharmacy, Nanjing University of Chinese Medicine; Nanjing 210023, China
| | - Wei Xi Zhong
- College of pharmacy, Nanjing University of Chinese Medicine; Nanjing 210023, China
| | - Ling Zhu
- College of pharmacy, Nanjing University of Chinese Medicine; Nanjing 210023, China
| | - Heng Liu
- College of pharmacy, Nanjing University of Chinese Medicine; Nanjing 210023, China
| | - Li Wu
- College of pharmacy, Nanjing University of Chinese Medicine; Nanjing 210023, China
| | - Wei Dong Li
- College of pharmacy, Nanjing University of Chinese Medicine; Nanjing 210023, China
| | - Yu Tong Wang
- College of pharmacy, Nanjing University of Chinese Medicine; Nanjing 210023, China
| | - Bao Chang Cai
- College of pharmacy, Nanjing University of Chinese Medicine; Nanjing 210023, China
| | - Jun Hong Yao
- College of pharmacy, Nanjing University of Chinese Medicine; Nanjing 210023, China
| | - Rui Chen
- College of pharmacy, Nanjing University of Chinese Medicine; Nanjing 210023, China
| | - Wen Feng Xin
- College of Notoginseng Medicine and Pharmacy of Wenshan University; Wenshan 663099, China.
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University; Hangzhou 310053, China.
| | - Zhi Peng Chen
- College of pharmacy, Nanjing University of Chinese Medicine; Nanjing 210023, China.
| |
Collapse
|
7
|
Zhang Q, Qiang L, Liu Y, Fan M, Si X, Zheng P. Biomaterial-assisted tumor therapy: A brief review of hydroxyapatite nanoparticles and its composites used in bone tumors therapy. Front Bioeng Biotechnol 2023; 11:1167474. [PMID: 37091350 PMCID: PMC10119417 DOI: 10.3389/fbioe.2023.1167474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/24/2023] [Indexed: 04/25/2023] Open
Abstract
Malignant bone tumors can inflict significant damage to affected bones, leaving patients to contend with issues like residual tumor cells, bone defects, and bacterial infections post-surgery. However, hydroxyapatite nanoparticles (nHAp), the principal inorganic constituent of natural bone, possess numerous advantages such as high biocompatibility, bone conduction ability, and a large surface area. Moreover, nHAp's nanoscale particle size enables it to impede the growth of various tumor cells via diverse pathways. This article presents a comprehensive review of relevant literature spanning the past 2 decades concerning nHAp and bone tumors. The primary goal is to explore the mechanisms responsible for nHAp's ability to hinder tumor initiation and progression, as well as to investigate the potential of integrating other drugs and components for bone tumor diagnosis and treatment. Lastly, the article discusses future prospects for the development of hydroxyapatite materials as a promising modality for tumor therapy.
Collapse
Affiliation(s)
- Quan Zhang
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Lei Qiang
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yihao Liu
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minjie Fan
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xinxin Si
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
- *Correspondence: Xinxin Si, ; Pengfei Zheng,
| | - Pengfei Zheng
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Xinxin Si, ; Pengfei Zheng,
| |
Collapse
|
8
|
Zantye P, Talukdar I, Ramanan SR, Kowshik M. Self-fluorescence property of octa-arginine functionalized hydroxyapatite nanoparticles aids in studying their intracellular fate in R1 ESCs. Biochem Biophys Res Commun 2022; 627:21-29. [PMID: 36029534 DOI: 10.1016/j.bbrc.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 07/25/2022] [Accepted: 08/04/2022] [Indexed: 11/19/2022]
Abstract
Deciphering the endocytosis mechanisms of nanoparticle entry in cells is crucial to understand the fate of nanoparticles and the biological activity of the transported cargo. Such studies require the use of reporter agents such as fluorescent markers. Previously, we have reported the synthesis of self-fluorescent HAp nanoparticles as efficient nucleic acid delivery agents in prokaryotic and eukaryotic cells. Here, we show the application of biocompatible self-fluorescent nano delivery vehicle based on HAp and CPP- octa-arginine as an efficient system to study the mechanisms of intracellular fate of a gene delivery agent. The pathway of octa-arginine functionalized HAp NP (R8HNP) and HAp NP uptake in R1 ESCs was elucidated using confocal microscopy with the help of endocytic inhibitors. The NPs mainly enter R1 ESCs by clathrin mediated and macropinocytosis pathways. It was established that the NPs escape endosomal degradation by proton sponge effect owing to their ability to buffer the pH and trigger osmotic rupture. The functionalization of CPP, effectively enhanced the internalization and endosomal escape in R1 ESCs. The detailed results of these studies are outlined in this manuscript.
Collapse
Affiliation(s)
- Pranjita Zantye
- Department of Biological Sciences, BITS Pilani K.K. Birla Goa Campus, Zuarinagar, Goa, 403726, India.
| | - Indrani Talukdar
- Department of Biological Sciences, BITS Pilani K.K. Birla Goa Campus, Zuarinagar, Goa, 403726, India.
| | - Sutapa Roy Ramanan
- Department of Chemical Engineering, BITS Pilani K.K. Birla Goa Campus, Zuarinagar, Goa, 403726, India.
| | - Meenal Kowshik
- Department of Biological Sciences, BITS Pilani K.K. Birla Goa Campus, Zuarinagar, Goa, 403726, India.
| |
Collapse
|
9
|
Wu H, Hua Y, Wu J, Zeng Q, Yang X, Zhu X, Zhang X. The morphology of hydroxyapatite nanoparticles regulates clathrin-mediated endocytosis in melanoma cells and resultant anti-tumor efficiency. NANO RESEARCH 2022; 15:6256-6265. [DOI: 10.1007/s12274-022-4220-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 01/04/2025]
|
10
|
Dong X, Sun Y, Li Y, Ma X, Zhang S, Yuan Y, Kohn J, Liu C, Qian J. Synergistic Combination of Bioactive Hydroxyapatite Nanoparticles and the Chemotherapeutic Doxorubicin to Overcome Tumor Multidrug Resistance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007672. [PMID: 33759364 DOI: 10.1002/smll.202007672] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/06/2021] [Indexed: 06/12/2023]
Abstract
Multidrug resistance (MDR) is one of the biggest obstacles in cancer chemotherapy. Here, a remarkable reversal of MDR in breast cancer through the synergistic effects of bioactive hydroxyapatite nanoparticles (HAPNs) and doxorubicin (DOX) is shown. DOX loaded HAPNs (DHAPNs) exhibit a 150-fold reduction in IC50 compared with free DOX for human MDR breast cancer MCF-7/ADR cells, and lead to almost complete inhibition of tumor growth in vivo without obvious side effects of free DOX. This high efficacy and specificity could be attributed to multiple action mechanisms of HAPNs. In addition to acting as the conventional nanocarriers to facilitate the cellular uptake and retention of DOX in MCF-7/ADR cells, more importantly, drug-free HAPNs themselves are able to prevent drug being pumped out of MDR cells through targeting mitochondria to induce mitochondrial damage and inhibit ATP production and to trigger sustained mitochondrial calcium overload and apoptosis in MDR cancer cells while not affecting normal cells. The results demonstrate that this simple but versatile bioactive nanoparticle provides a practical approach to effectively overcome MDR.
Collapse
Affiliation(s)
- Xiulin Dong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yi Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yuanyuan Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Xiaoyu Ma
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Shuiquan Zhang
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yuan Yuan
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Joachim Kohn
- New Jersey Center for Biomaterials, Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08855, USA
| | - Changsheng Liu
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jiangchao Qian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
11
|
Zhang S, Ma X, Sha D, Qian J, Yuan Y, Liu C. A novel strategy for tumor therapy: targeted, PAA-functionalized nano-hydroxyapatite nanomedicine. J Mater Chem B 2021; 8:9589-9600. [PMID: 33006361 DOI: 10.1039/d0tb01603a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rapid development of nanotechnology has provided new strategies for the treatment of tumors. Nano-scale hydroxyapatite (HAP), as the main component of hard tissues in humans and vertebrates, have been found to specifically inhibit tumor cells. However, achieving controllable synthesis of HAP and endowing it with cancer cell-targeting properties remain enormous challenges. To solve this problem, we developed polyacrylic acid-coordinated hydroxyapatite nanoparticles (HAP-PAA) and further chemically grafted them with folic acid (HAP-PAA-FA) for cancer treatment in this study. The nucleation sites and steric hindrance provided by the PAA greatly inhibited the agglomeration of the nanoparticles, and at the same time, the excess functional groups further modified the surface of nanoparticles to achieve targeting efficiency. The spherical, low-crystallinity HAP-PAA nanoparticles exhibited good tumor cell lethality. After grafting the nanoparticles with folic acid for molecular targeting, their cellular uptake and specific killing ability of tumor cells were further enhanced. The HAP-PAA-FA nanoparticle system exerted a regulatory effect on the tumor microenvironment and had good biological safety. All the above results indicate that this research will broaden the application of hydroxyapatite in tumor treatment.
Collapse
Affiliation(s)
- Shuiquan Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China and Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiaoyu Ma
- Key Laboratory for Ultrafine Materials of Ministry of Education, and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China and Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Dongyong Sha
- Key Laboratory for Ultrafine Materials of Ministry of Education, and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China and Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jiangchao Qian
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yuan Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China and Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China and Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
12
|
del Valle LJ, Puiggalí J. Hydroxyapatite Based Polymer Composites for Regenerative Medicine Applications. ENCYCLOPEDIA OF MATERIALS: COMPOSITES 2021:785-803. [DOI: 10.1016/b978-0-12-819724-0.00054-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Gu M, Jiang L, Hao L, Lu J, Liu Z, Lei Z, Li Y, Hua C, Li W, Li X. A novel theranostic nanoplatform for imaging-guided chemo-photothermal therapy in oral squamous cell carcinoma. J Mater Chem B 2021; 9:6006-6016. [PMID: 34282440 DOI: 10.1039/d1tb01136g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is highly malignant and invasive, and current treatments are limited due to serious side effects and unsatisfactory outcomes. Here, we reported the terbium ion-doped hydroxyapatite (HATb) nanoparticle as a luminescent probe to encapsulate both the near-infrared (NIR) photothermal agent polydopamine (PDA) and anticancer doxorubicin (DOX) for imaging-guided chemo-photothermal therapy. The morphology, crystal structure, fluorescence, and composition of HATb-PDA-DOX were characterized. HATb-PDA showed a high DOX loading capacity. A theranostic nanoplatform showed pH/NIR responsive release properties and better antitumor outcomes in OSCC cells than monomodal chemotherapy or photothermal therapy, while keeping side effects at a minimum. Also, the luminescence signal was confirmed to be tracked and the increase of the red/green (R/G) ratio caused by the DOX release could be used to monitor the DOX release content. Furthermore, HATb-PDA-DOX plus NIR treatment synergistically promoted in vitro cell death through the overproduction of reactive oxygen species (ROS), cell cycle arrest, and increased cell apoptosis. Overall, this work presents an innovative strategy in designing a multifunctional nano-system for imaging-guided cancer treatment.
Collapse
Affiliation(s)
- Mengqin Gu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Li Jiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China. and Department of General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Liying Hao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Junzhuo Lu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Zhenqi Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Zixue Lei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yijun Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Chengge Hua
- Department of General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Wei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Xiyu Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China. and Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
14
|
Combination of nano-hydroxyapatite and curcumin in a biopolymer blend matrix: Characteristics and drug release performance of fibrous composite material systems. Int J Pharm 2020; 590:119933. [PMID: 33011251 DOI: 10.1016/j.ijpharm.2020.119933] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 12/20/2022]
Abstract
The design of appropriate materials is required for biomedical applications (e.g. drug delivery systems) in improving people's health care processes. This study focused on the incorporation of nanosized hydroxyapatite (n-HA) with different ratios (ranging from 0.1 wt% to 0.5 wt%) into the poly (ε-caprolactone)/ poly (ethylene oxide) (PCL/PEO) blend matrix loaded or unloaded with curcumin. Composite fibrous material systems were successfully fabricated by the electrospinning technique without the occurrence of bead defects. In addition to the morphological and physicochemical properties of the material systems obtained, the in vitro curcumin release performance was investigated. Further, anti-cancer activity against breast cancer cell line (MCF-7) was examined by MTT assay. Fourier transform infrared spectroscopy and X-ray diffraction characterizations of the fabricated fibrous materials exhibited the interaction of PCL/PEO, n-HA, and curcumin. The 0.3 wt% n-HA incorporated fibrous materials showed a much slower curcumin release manner along with the highest cytotoxicity against MCF-7 cells. The findings obtained from this research are expected to contribute to the appropriate design of nanofiber-based composite materials not only for drug delivery systems but also for the fabrication of biomaterials toward different biomedical applications.
Collapse
|
15
|
Jia Y, Qin L, Gong Y, Chen R, Yang Y, Yang W, Cai K. Experimental and theoretical investigations of the influences of one-dimensional hydroxyapatite nanostructures on cytocompatibility. J Biomed Mater Res A 2020; 109:804-813. [PMID: 32720439 DOI: 10.1002/jbm.a.37068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 11/09/2022]
Abstract
Due to their simple crystal structures, one-dimensional hydroxyapatite (HA) nanostructures are easily to be applied to understand the fundamental concepts about the influences of HA dimensionality on physical, chemical, and biological properties. So, in this work, three typical HA one-dimensional nanostructures, HA nanotubes, HA nanowires, and HA nanospheres, were prepared, whose theoretical structures were built also. in vitro cytocompatibility test proved that, contrasting with TCPS, HA one-dimensional nanostructures had certain degree of cytotoxicity because HA nanostructures increase the generation of intracellular reactive oxygen species (ROS) and intracellular calcium. Theoretical simulation indicated that HA nanosphere has higher intracellular ROS generation and lower ROS storage amount than HA nanowire and HA nanotube, which were the possible reasons for its stronger cytotoxicity. Among these typical one-dimensional nanostructures, owing to higher drug storage amount and sustained delivery ability, HA nanotube was more potential application in orthopedics. The tubular structure of HA nanotubes could be used as reservoirs for small molecule drugs or growth factors. The cytocompatibility of HA nanostructures can be improved obviously when they were produced into two-dimensional structures. The prepared multilayer structure can simulate lamellar structures of Harvard system and enhance the cytocompatibility of Ti substrate. Therefore, the method used in this work is a prospective method to improve the inherently bio-inert of Ti when used in hard tissue repairing.
Collapse
Affiliation(s)
- Yile Jia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Lu Qin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yi Gong
- Department of Hematology-Oncology, Chongqing Cancer Institute/Hospital, Chongqing, China
| | - Rui Chen
- Department of Pathology, Chongqing Cancer Institute/Hospital, Chongqing, China
| | - Yulu Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Weihu Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
16
|
Sun XY, Chen JY, Rao CY, Ouyang JM. Size-Dependent Cytotoxicity of Hydroxyapatite Crystals on Renal Epithelial Cells. Int J Nanomedicine 2020; 15:5043-5060. [PMID: 32764935 PMCID: PMC7369374 DOI: 10.2147/ijn.s232926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 06/09/2020] [Indexed: 12/05/2022] Open
Abstract
Background Hydroxyapatite (HAP) is a common component of most idiopathic calcium oxalate (CaOx) stones and is often used as a nidus to induce the formation of CaOx kidney stones. Methods This work comparatively studies the cytotoxicity of four kinds of HAP crystals with different sizes (40 nm to 2 μm), namely, HAP-40 nm, HAP-70 nm, HAP-1 μm, and HAP-2 μm, on human renal proximal tubular epithelial cells (HK-2). Results HAP crystals reduce the viability and membrane integrity of HK-2 cells in a concentration-dependent manner and consequently cause cytoskeleton damage, cell swelling, increased intracellular reactive oxygen species level, decreased mitochondrial membrane potential, increased intracellular calcium concentration, blocked cell cycle and stagnation in G0/G1 phase, and increased cell necrosis rate. HAP toxicity to HK-2 cells increases with a decrease in crystal size. Conclusion Cell damage caused by HAP crystals increases the risk of kidney stone formation.
Collapse
Affiliation(s)
- Xin-Yuan Sun
- Department of Chemistry, Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Jia-Yun Chen
- Department of Chemistry, Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Chen-Ying Rao
- Department of Chemistry, Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Jian-Ming Ouyang
- Department of Chemistry, Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, People's Republic of China
| |
Collapse
|
17
|
Simoni E, Valente F, Boge L, Eriksson M, Gentilin E, Candito M, Cazzador D, Astolfi L. Biocompatibility of glycerol monooleate nanoparticles as tested on inner ear cells. Int J Pharm 2019; 572:118788. [DOI: 10.1016/j.ijpharm.2019.118788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/13/2022]
|
18
|
Zhang K, Zhou Y, Xiao C, Zhao W, Wu H, Tang J, Li Z, Yu S, Li X, Min L, Yu Z, Wang G, Wang L, Zhang K, Yang X, Zhu X, Tu C, Zhang X. Application of hydroxyapatite nanoparticles in tumor-associated bone segmental defect. SCIENCE ADVANCES 2019; 5:eaax6946. [PMID: 31414050 PMCID: PMC6677551 DOI: 10.1126/sciadv.aax6946] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/26/2019] [Indexed: 02/05/2023]
Abstract
Hydroxyapatite (HA) has been widely applied in bone repair because of its superior biocompatibility. Recently, a proliferation-suppressive effect of HA nanoparticles (n-HA) against various cancer cells was reported. This study was aimed at assessing the translational value of n-HA both as a bone-regenerating material and as an antitumor agent. Inhibition of tumor growth, prevention of metastasis, and enhancement of the survival rate of tumor-bearing rabbits treated with n-HA were demonstrated. Activated mitochondrial-dependent apoptosis in vivo was confirmed, and we observed that a stimulated immune response was involved in the n-HA-induced antitumor effect. A porous titanium scaffold loaded with n-HA was fabricated and implanted into a critical-sized segmental bone defect in a rabbit tumor model. The n-HA-releasing scaffold not only showed a prominent effect in suppressing tumor growth and osteolytic lesion but also promoted bone regeneration. These findings provide a rationale for using n-HA in tumor-associated bone segmental defects.
Collapse
Affiliation(s)
- Kun Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Yong Zhou
- Department of Orthopaedic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Cong Xiao
- Department of Orthopaedic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Wanlu Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Hongfeng Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Jiaoqing Tang
- Department of Dermatology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zhongtao Li
- Department of Dermatology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Sen Yu
- Shaanxi Key Laboratory of Biomedical Metal Materials, Northwest Institute for Non-ferrous Metal Research, Xi’an 710016, China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Li Min
- Department of Orthopaedic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zhentao Yu
- Shaanxi Key Laboratory of Biomedical Metal Materials, Northwest Institute for Non-ferrous Metal Research, Xi’an 710016, China
| | - Gang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Lin Wang
- Department of Dermatology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Kai Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Chongqi Tu
- Department of Orthopaedic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
19
|
Wieszczycka K, Staszak K, Woźniak-Budych MJ, Jurga S. Lanthanides and tissue engineering strategies for bone regeneration. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
20
|
Lee WH, Loo CY, Rohanizadeh R. Functionalizing the surface of hydroxyapatite drug carrier with carboxylic acid groups to modulate the loading and release of curcumin nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:929-939. [DOI: 10.1016/j.msec.2019.02.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 01/28/2019] [Accepted: 02/10/2019] [Indexed: 01/22/2023]
|
21
|
Fulgione A, Ianniello F, Papaianni M, Contaldi F, Sgamma T, Giannini C, Pastore S, Velotta R, Della Ventura B, Roveri N, Lelli M, Capuano F, Capparelli R. Biomimetic hydroxyapatite nanocrystals are an active carrier for Salmonella bacteriophages. Int J Nanomedicine 2019; 14:2219-2232. [PMID: 30992664 PMCID: PMC6445186 DOI: 10.2147/ijn.s190188] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
PURPOSE The use of bacteriophages represents a valid alternative to conventional antimicrobial treatments, overcoming the widespread bacterial antibiotic resistance phenomenon. In this work, we evaluated whether biomimetic hydroxyapatite (HA) nanocrystals are able to enhance some properties of bacteriophages. The final goal of this study was to demonstrate that biomimetic HA nanocrystals can be used for bacteriophage delivery in the context of bacterial infections, and contribute - at the same time - to enhance some of the biological properties of the same bacteriophages such as stability, preservation, antimicrobial activity, and so on. MATERIALS AND METHODS Phage isolation and characterization were carried out by using Mitomycin C and following double-layer agar technique. The biomimetic HA water suspension was synthesized in order to obtain nanocrystals with plate-like morphology and nanometric dimensions. The interaction of phages with the HA was investigated by dynamic light scattering and Zeta potential analyses. The cytotoxicity and intracellular killing activities of the phage-HA complex were evaluated in human hepatocellular carcinoma HepG2 cells. The bacterial inhibition capacity of the complex was assessed on chicken minced meat samples infected with Salmonella Rissen. RESULTS Our data highlighted that the biomimetic HA nanocrystal-bacteriophage complex was more stable and more effective than phages alone in all tested experimental conditions. CONCLUSION Our results evidenced the important contribution of biomimetic HA nanocrystals: they act as an excellent carrier for bacteriophage delivery and enhance its biological characteristics. This study confirmed the significant role of the mineral HA when it is complexed with biological entities like bacteriophages, as it has been shown for molecules such as lactoferrin.
Collapse
Affiliation(s)
- Andrea Fulgione
- Department of Agriculture, University of Naples "Federico II", Portici, Naples, Italy,
| | - Flora Ianniello
- Department of Agriculture, University of Naples "Federico II", Portici, Naples, Italy,
| | - Marina Papaianni
- Department of Agriculture, University of Naples "Federico II", Portici, Naples, Italy,
| | - Felice Contaldi
- Department of Agriculture, University of Naples "Federico II", Portici, Naples, Italy,
| | - Tiziana Sgamma
- Biomolecular Technology Group, School of Allied Health Sciences, De Montfort University, Leicester, UK
| | - Cinzia Giannini
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Stella Pastore
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Raffaele Velotta
- Department of Physics "Ettore Pancini", University of Naples "Federico II", Portici, Naples, Italy
| | | | | | - Marco Lelli
- Chemical Center Srl, Granarolo dell'Emilia, Bologna, Italy
| | - Federico Capuano
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Naples, Italy,
| | - Rosanna Capparelli
- Department of Agriculture, University of Naples "Federico II", Portici, Naples, Italy,
| |
Collapse
|
22
|
Wu H, Li Z, Tang J, Yang X, Zhou Y, Guo B, Wang L, Zhu X, Tu C, Zhang X. The in vitro and in vivo anti-melanoma effects of hydroxyapatite nanoparticles: influences of material factors. Int J Nanomedicine 2019; 14:1177-1191. [PMID: 30863053 PMCID: PMC6391145 DOI: 10.2147/ijn.s184792] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background Treatment for melanoma is a challenging clinical problem, and some new strategies are worth exploring. Purpose The objective of this study was to investigate the in vitro and in vivo anti-melanoma effects of hydroxyapatite nanoparticles (HANPs) and discuss the involved material factors. Materials and methods Five types of HANPs, ie, HA-A, HA-B, HA-C, HA-D, and HA-E, were prepared by wet chemical method combining with polymer template and appropriate post-treatments. The in vitro effects of the as-prepared five HANPs on inhibiting the viability of A375 melanoma cells and inducing the apoptosis of the cells were evaluated by Cell Counting Kit-8 analysis, cell nucleus morphology observation, flow cytometer, and PCR analysis. The in vivo anti-melanoma effects of HANPs were studied in the tumor model of nude mice. Results The five HANPs had different physicochemical properties, including morphology, size, specific surface area (SSA), crystallinity, and so on. By the in vitro cell study, it was found that the material factors played important roles in the anti-melanoma effect of HANPs. Among the as-prepared five HANPs, HA-A with granular shape, smaller size, higher SSA, and lower crystallinity exhibited best effect on inhibiting the viability of A375 cells. At the concentration of 200 μg/mL, HA-A resulted in the lowest cell viability (34.90%) at day 3. All the HANPs could induce the apoptosis of A375 cells, and the relatively higher apoptosis rates of the cells were found in HA-A (20.10%) and HA-B (19.41%) at day 3. However, all the HANPs showed no inhibitory effect on the viability of the normal human epidermal fibroblasts. The preliminary in vivo evaluation showed that both HA-A and HA-C could delay the formation and growth speed of melanoma tissue significantly. Likely, HA-A exhibited better effect on inhibiting the growth of melanoma tissue than HA-C. The inhibition rate of HA-A for tumor tissue growth reached 49.1% at day 23. Conclusion The current study confirmed the anti-melanoma effect of HANPs and provided a new idea for the clinical treatment of melanoma.
Collapse
Affiliation(s)
- Hongfeng Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China,
| | - Zhongtao Li
- Department of Dermatology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jiaoqing Tang
- Department of Dermatology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China,
| | - Yong Zhou
- Department of Orthopaedics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Bo Guo
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu 610041, China,
| | - Lin Wang
- Department of Dermatology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China,
| | - Chongqi Tu
- Department of Orthopaedics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China,
| |
Collapse
|
23
|
Kalniņa D, Levina A, Pei A, Gross KA, Lay PA. Synthesis, characterization and in vitro anti-cancer activity of vanadium-doped nanocrystalline hydroxyapatite. NEW J CHEM 2019. [DOI: 10.1039/c9nj03406d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanocrystalline V(v)-doped hydroxyapatite and its reduced analogue (V(v) and V(iv) mixture) show promising in vitro cytotoxicity against cultured human bone cancer cells.
Collapse
Affiliation(s)
- Daina Kalniņa
- Faculty of Materials Science and Applied Chemistry
- Riga Technical University
- Riga LV1658
- Latvia
- School of Chemistry
| | - Aviva Levina
- School of Chemistry
- University of Sydney
- Sydney
- Australia
| | - Alexander Pei
- School of Chemistry
- University of Sydney
- Sydney
- Australia
- Exchange Student from Boston University
| | - Kārlis Agris Gross
- Faculty of Materials Science and Applied Chemistry
- Riga Technical University
- Riga LV1658
- Latvia
| | - Peter A. Lay
- School of Chemistry
- University of Sydney
- Sydney
- Australia
- Sydney Analytical
| |
Collapse
|
24
|
Yang F, Li A, Liu H, Zhang H. Gastric cancer combination therapy: synthesis of a hyaluronic acid and cisplatin containing lipid prodrug coloaded with sorafenib in a nanoparticulate system to exhibit enhanced anticancer efficacy and reduced toxicity. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3321-3333. [PMID: 30323564 PMCID: PMC6174904 DOI: 10.2147/dddt.s176879] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Purpose Gastric cancer is one of the most common human epithelial malignancies, and using nanoparticles (NPs) in the diagnosis and treatment of cancer has been extensively studied. The aim of this study was to develop hyaluronic acid (HA) containing lipid NPs coloaded with cisplatin (CDDP) and sorafenib (SRF) for the treatment of gastric cancer. Materials and methods HA and CDDP containing lipid prodrug was synthesized using polyethylene glycol (PEG) as a linker (HA-PEG-CDDP). HA-PEG-CDDP and SRF were entrapped into the lipid NPs by nanoprecipitation method (H-CS-NPs). The physicochemical and biochemical properties such as size, zeta potential, and drug release pattern were studied. In vitro viability was also evaluated with MKN28 and SGC7901 human gastric cancer cells. In vivo testing including biodistribution and accumulation in tumor tissue was applied in gastric tumor-bearing mice to confirm the inhibition of gastric cancer. Results H-CS-NP has a particle size of 173.2±5.9 nm, with a zeta potential of −21.5±3.2 mV. At day 21 of in vivo treatment, H-CS-NPs inhibited the tumor volume from 1,532.5±41.3 mm3 to 259.6±16.3 mm3 with no obvious body weight loss. In contrast, mice treated with free drugs had body weight loss from 20 to 15 g at the end of study. Conclusion The results indicate that H-CS-NPs enhanced the antitumor effect of drugs and reduced the systemic toxicity effects. It could be used as a promising nanomedicine for gastric cancer combination therapy.
Collapse
Affiliation(s)
- Feng Yang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong, People's Republic of China,
| | - Aimei Li
- Department of Anesthesiology, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong, People's Republic of China
| | - Han Liu
- Department of Gastroenterology, The First Affiliated Hospital of South China, Hengyang 421000, Hunan, People's Republic of China
| | - Hairong Zhang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong, People's Republic of China,
| |
Collapse
|
25
|
Wang H, Yu X, Su C, Shi Y, Zhao L. Chitosan nanoparticles triggered the induction of ROS-mediated cytoprotective autophagy in cancer cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:293-301. [DOI: 10.1080/21691401.2017.1423494] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hao Wang
- School of Pharmacy, Jinzhou Medical University, Jinzhou, PR China
| | - Xiwei Yu
- School of Pharmacy, Jinzhou Medical University, Jinzhou, PR China
| | - Chang Su
- School of Veterinary Medicine, Jinzhou Medical University, Jinzhou, PR China
| | - Yijie Shi
- School of Pharmacy, Jinzhou Medical University, Jinzhou, PR China
| | - Liang Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou, PR China
| |
Collapse
|
26
|
Hybrid nanofibers based on poly-caprolactone/gelatin/hydroxyapatite nanoparticles-loaded Doxycycline: Effective anti-tumoral and antibacterial activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 83:25-34. [PMID: 29208285 DOI: 10.1016/j.msec.2017.08.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/19/2017] [Accepted: 08/02/2017] [Indexed: 11/20/2022]
Abstract
Cancer is one of the leading causes of morbidity and mortality Worldwide, 19.3 million new cancer cases are expected to be identified in 2025. Among the therapeutic arsenal to cancer control one could find the Doxycycline and the nano hydroxyapatite. The Doxycycline (Dox) not only shown antibiotic effect but also exhibits a wide range of pleiotropic therapeutic properties as the control of the invasive and metastatic cancer cells characteristics. The purpose of the present study was to evaluate both cytotoxicity in vitro and antibacterial activity of electrospun Dox-loaded hybrid nanofibrous scaffolds composed by hydroxyapatite nanoparticles (nHA), poly-ε-caprolactone (PCL) and gelatin (Gel) polymers. Both nHA and Dox were dispersed into different PCL/Gel ratios (70:30, 60:40, 50:50wt%) solutions to form electrospun nanofibers. The nHA and Dox/nHA/PCL-Gel hybrid nanofibers were characterized by TEM microscopy. In vitro Dox release behavior from all of these Dox-loaded nHA/PCL-Gel nanofibers showed the same burst release profile due to the high solubility of Gel in the release medium. Antibacterial properties of nanofiber composites were evaluated using Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Porphyromonas gingivalis (P. gingivalis) bacteria. The co-delivery of nHA particles and Dox simultaneously exhibited inhibition of bacterial growth more efficiently than the delivery of either Dox or nHA at the same concentrations, indicating a synergistic effect. The results showed that cancer cell tested had different sensibility to co-delivery system. On the whole, A-431 cells were found exhibited the most pronounced synergistic effect compared to CACO-2 and 4T1 cancer cells. Based on the anticancer as well as the antimicrobial results in this study, the developed Dox/nHA/PCL-Gel composite nanofibers are suitable as a drug delivery system with potential applications in the biomedical fields.
Collapse
|
27
|
Surface grafting of Eu3+ doped luminescent hydroxyapatite nanomaterials through metal free light initiated atom transfer radical polymerization for theranostic applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:420-426. [DOI: 10.1016/j.msec.2017.03.261] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/18/2017] [Accepted: 03/20/2017] [Indexed: 12/23/2022]
|
28
|
Bio-synthesis of peppermint leaf extract polyphenols capped nano-platinum and their in-vitro cytotoxicity towards colon cancer cell lines (HCT 116). MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:1012-1016. [PMID: 28531972 DOI: 10.1016/j.msec.2017.04.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 04/01/2017] [Accepted: 04/03/2017] [Indexed: 12/11/2022]
Abstract
Bio-synthesis of Platinum nanoparticles (Pt NPs) was achieved using Mentha piperita (Peppermint) aqueous leaf extract. Further the ecofriendly synthesized Pt NPs were subjected for various characterization techniques. The characterization results inferred that the green synthesized Pt NPs were said to be in average particle size of 54.3nm. The particles are in spherical shape and it has been entrapped with secondary metabolites (Polyphenols). The polyphenols capped Pt NPs were screened for cytotoxicity against human colon cancer cell line (HCT 116). The results inferred that the ecofriendly synthesized Pt NPs decrease the viability of cancer cells at lower concentrations with IC50 value of 20μg/mL.
Collapse
|
29
|
Alshemary AZ, Engin Pazarceviren A, Tezcaner A, Evis Z. Fe3+
/SeO42−
dual doped nano hydroxyapatite: A novel material for biomedical applications. J Biomed Mater Res B Appl Biomater 2017; 106:340-352. [DOI: 10.1002/jbm.b.33838] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/01/2016] [Accepted: 12/05/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Ammar Z. Alshemary
- Department of Biomedical Engineering; Faculty of Engineering, Karabuk University; 78050 Karabuk Turkey
| | | | - Aysen Tezcaner
- Department of Engineering Sciences; Middle East Technical University; Ankara 06800 Turkey
| | - Zafer Evis
- Department of Engineering Sciences; Middle East Technical University; Ankara 06800 Turkey
| |
Collapse
|
30
|
Vázquez-Hernández F, Mendoza-Acevedo S, Mendoza-Barrera CO, Mendoza-Álvarez J, Luna-Arias JP. Antibody-coupled hydroxyapatite nanoparticles as efficient tools for labeling intracellular proteins. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:909-918. [DOI: 10.1016/j.msec.2016.10.082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/17/2016] [Accepted: 10/30/2016] [Indexed: 10/20/2022]
|
31
|
Biodegradable and Biocompatible Systems Based on Hydroxyapatite Nanoparticles. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7010060] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Zhang H, Qing F, Zhao H, Fan H, Liu M, Zhang X. Cellular internalization of rod-like nano hydroxyapatite particles and their size and dose-dependent effects on pre-osteoblasts. J Mater Chem B 2017; 5:1205-1217. [DOI: 10.1039/c6tb01401a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigated the size/dose effects of n-HA on pre-osteoblasts, tracked the n-HA migration under TEM, and quantified extracellular and intracellular [Ca2+].
Collapse
Affiliation(s)
- Huaifa Zhang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
- Faculty of Dentistry
| | - Fangzhu Qing
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Huan Zhao
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Ming Liu
- Analytical & Testing Center
- Sichuan University
- Chengdu 610064
- China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|
33
|
Manna A, Pramanik S, Tripathy A, Moradi A, Radzi Z, Pingguan-Murphy B, Hasnan N, Abu Osman NA. Development of biocompatible hydroxyapatite–poly(ethylene glycol) core–shell nanoparticles as an improved drug carrier: structural and electrical characterizations. RSC Adv 2016. [DOI: 10.1039/c6ra21210g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A model of a controlled drug release mechanism of a dielectric core–shell composite carrier.
Collapse
Affiliation(s)
- Ayan Manna
- Centre for Applied Biomechanics
- Department of Biomedical Engineering
- Faculty of Engineering
- University of Malaya
- Kuala Lumpur – 50603
| | - Sumit Pramanik
- Centre for Applied Biomechanics
- Department of Biomedical Engineering
- Faculty of Engineering
- University of Malaya
- Kuala Lumpur – 50603
| | - Ashis Tripathy
- Centre for Applied Biomechanics
- Department of Biomedical Engineering
- Faculty of Engineering
- University of Malaya
- Kuala Lumpur – 50603
| | - Ali Moradi
- Centre for Applied Biomechanics
- Department of Biomedical Engineering
- Faculty of Engineering
- University of Malaya
- Kuala Lumpur – 50603
| | - Zamri Radzi
- Department of Paediatric Dentistry & Orthodontics
- Faculty of Dentistry
- University of Malaya
- Kuala Lumpur – 50603
- Malaysia
| | - Belinda Pingguan-Murphy
- Centre for Applied Biomechanics
- Department of Biomedical Engineering
- Faculty of Engineering
- University of Malaya
- Kuala Lumpur – 50603
| | - Nazirah Hasnan
- Department of Rehabilitation Medicine
- Faculty of Medicine
- University of Malaya
- Kuala Lumpur – 50603
- Malaysia
| | - Noor Azuan Abu Osman
- Centre for Applied Biomechanics
- Department of Biomedical Engineering
- Faculty of Engineering
- University of Malaya
- Kuala Lumpur – 50603
| |
Collapse
|