1
|
Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, Wang K, Xu J, Cheng Y, Gao X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct Target Ther 2024; 9:200. [PMID: 39128942 PMCID: PMC11323968 DOI: 10.1038/s41392-024-01889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 06/02/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a significant risk to human health. Nanomedicine is a new multidisciplinary field that is garnering a lot of interest and investigation. Nanomedicine shows great potential for cancer diagnosis and treatment. Specifically engineered nanoparticles can be employed as contrast agents in cancer diagnostics to enable high sensitivity and high-resolution tumor detection by imaging examinations. Novel approaches for tumor labeling and detection are also made possible by the use of nanoprobes and nanobiosensors. The achievement of targeted medication delivery in cancer therapy can be accomplished through the rational design and manufacture of nanodrug carriers. Nanoparticles have the capability to effectively transport medications or gene fragments to tumor tissues via passive or active targeting processes, thus enhancing treatment outcomes while minimizing harm to healthy tissues. Simultaneously, nanoparticles can be employed in the context of radiation sensitization and photothermal therapy to enhance the therapeutic efficacy of malignant tumors. This review presents a literature overview and summary of how nanotechnology is used in the diagnosis and treatment of malignant tumors. According to oncological diseases originating from different systems of the body and combining the pathophysiological features of cancers at different sites, we review the most recent developments in nanotechnology applications. Finally, we briefly discuss the prospects and challenges of nanotechnology in cancer.
Collapse
Affiliation(s)
- Bilan Wang
- Department of Pharmacy, Evidence-based Pharmacy Center, Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Shiqi Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yan Teng
- Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P.R. China
| | - Junli Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Haoyuan Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yezhen Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kaiyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
2
|
Wang Y, Yang F, Yang M, Wang S, He H, Hong M, Wang G, Li S, Liu H, Wang Y. Construction of Dome-Shaped 3D Corneal Epithelial Tissue Models Based on Eyeball-Shaped Gel Microspheres. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31597-31609. [PMID: 38850560 DOI: 10.1021/acsami.4c05697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2024]
Abstract
By overcoming interspecies differences and mimicking the in vivo microenvironment, three-dimensional (3D) in vitro corneal models have become a significant novel tool in contemporary ophthalmic disease research. However, existing 3D corneal models struggle to replicate the actual human corneal environment, especially the dome-shaped physiological structure with adjustable curvature. Addressing these challenges, this study introduces a straightforward method for fabricating collagen/chitosan-alginate eyeball-shaped gel microspheres with a Janus structure via a two-phase aqueous system, used subsequently to construct in vitro 3D corneal epithelial tissue models. By adjusting the diameter ratio of collagen/chitosan to alginate droplets, we can create eyeball-shaped gel microspheres with varying curvatures. Human corneal epithelial cells were seeded on the surfaces of these microspheres, leading to the formation of in vitro 3D corneal epithelial tissues characterized by dome-like multilayers and tight junctions. Additionally, the model demonstrated responsiveness to UVB exposure through the secretion of reactive oxygen species (ROS) and proinflammatory factors. Therefore, we believe that in vitro 3D corneal epithelial tissue models with dome-shaped structures hold significant potential for advancing ophthalmic research.
Collapse
Affiliation(s)
- Yilan Wang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Feng Yang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Menghan Yang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Siping Wang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Huatao He
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Meiying Hong
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Guanxiong Wang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Suiyan Li
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Hong Liu
- Department of General Surgery, Wuxi No. 5 People's Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214061, China
| | - Yaolei Wang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| |
Collapse
|
3
|
Chen Z, Ding W, Yang X, Lu T, Liu Y. Isoliquiritigenin, a potential therapeutic agent for treatment of inflammation-associated diseases. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117059. [PMID: 37604329 DOI: 10.1016/j.jep.2023.117059] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Licorice is a medicinal herb with a 2000-year history of applications in traditional Chinese medicine. Isoliquiritigenin (ISL) is a bioactive chalcone compound isolated from licorice. It has attracted increasing attention in recent years due to its excellent anti-inflammatory activity. AIM OF THE STUDY This study is to provide a comprehensive summary of the anti-inflammatory activity of ISL and the underlying molecular mechanisms, and discuss new insights for its potential clinical applications as an anti-inflammation agent. MATERIALS AND METHODS We examined literatures published in the past twenty years from PubMed, Research Gate, Web of Science, Google Scholar, and SciFinder, with single or combined key words of "isoliquiritigenin", "inflammation", and "anti-inflammatory". RESULTS ISL elicits its anti-inflammatory activity by mediating various cellular processes. It inhibits the upstream of the nuclear factor kappa B (NF-κB) pathway and activates the nuclear factor erythroid related factor 2 (Nrf2) pathway. In addition, it suppresses the NOD-like receptor protein 3 (NLRP3) pathway and restrains the mitogen-activated protein kinase (MAPK) pathway. CONCLUSIONS Current studies indicate a great therapeutical potential of ISL as a drug candidate for treatment of inflammation-associated diseases. However, the pharmacokinetics, biosafety, and bioavailability of ISL remain to be further investigated.
Collapse
Affiliation(s)
- Ziyi Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Wenwen Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoxue Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Tiangong Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
4
|
Tsung TH, Tsai YC, Lee HP, Chen YH, Lu DW. Biodegradable Polymer-Based Drug-Delivery Systems for Ocular Diseases. Int J Mol Sci 2023; 24:12976. [PMID: 37629157 PMCID: PMC10455181 DOI: 10.3390/ijms241612976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Ocular drug delivery is a challenging field due to the unique anatomical and physiological barriers of the eye. Biodegradable polymers have emerged as promising tools for efficient and controlled drug delivery in ocular diseases. This review provides an overview of biodegradable polymer-based drug-delivery systems for ocular diseases with emphasis on the potential for biodegradable polymers to overcome the limitations of conventional methods, allowing for sustained drug release, improved bioavailability, and targeted therapy. Natural and synthetic polymers are both discussed, highlighting their biodegradability and biocompatibility. Various formulation strategies, such as nanoparticles, hydrogels, and microemulsions, among others, are investigated, detailing preparation methods, drug encapsulation, and clinical applications. The focus is on anterior and posterior segment drug delivery, covering glaucoma, corneal disorders, ocular inflammation, retinal diseases, age-related macular degeneration, and diabetic retinopathy. Safety considerations, such as biocompatibility evaluations, in vivo toxicity studies, and clinical safety, are addressed. Future perspectives encompass advancements, regulatory considerations, and clinical translation challenges. In conclusion, biodegradable polymers offer potential for efficient and targeted ocular drug delivery, improving therapeutic outcomes while reducing side effects. Further research is needed to optimize formulation strategies and address regulatory requirements for successful clinical implementation.
Collapse
Affiliation(s)
- Ta-Hsin Tsung
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (T.-H.T.); (Y.-C.T.); (H.-P.L.); (Y.-H.C.)
| | - Yu-Chien Tsai
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (T.-H.T.); (Y.-C.T.); (H.-P.L.); (Y.-H.C.)
- Department of Ophthalmology, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan
| | - Hsin-Pei Lee
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (T.-H.T.); (Y.-C.T.); (H.-P.L.); (Y.-H.C.)
| | - Yi-Hao Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (T.-H.T.); (Y.-C.T.); (H.-P.L.); (Y.-H.C.)
| | - Da-Wen Lu
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (T.-H.T.); (Y.-C.T.); (H.-P.L.); (Y.-H.C.)
| |
Collapse
|
5
|
Srivastava V, Chary PS, Rajana N, Pardhi ER, Singh V, Khatri D, Singh SB, Mehra NK. Complex ophthalmic formulation technologies: Advancement and future perspectives. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
6
|
Polymer-based biomaterials for pharmaceutical and biomedical applications: a focus on topical drug administration. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
7
|
Perez-Pacheco CG, Fernandes NAR, Camilli AC, Ferrarezi DP, Silva AF, Zunareli MC, Amantino CF, Primo FL, Guimarães-Stabilli MR, Junior CR. Local administration of curcumin-loaded nanoparticles enhances periodontal repair in vivo. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:311-321. [PMID: 36326894 DOI: 10.1007/s00210-022-02310-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
Abstract
The aim was to assess the influence of local application of curcumin-loaded nanoparticles on an experimental model of periodontal repair. Periodontitis was induced by ligatures on both lower first molars of rats. After 15 days, ligatures were removed ("treatment") and animals were randomly allocated to three experimental groups (n = 8/group): (i) 0.05 mg/ml curcumin-loaded nanoparticles, (ii) empty nanoparticles (vehicle control), and (iii) sterile saline (negative control). Experimental treatments were administered locally on days 0, 3, 5, 7, 9, and 11 after ligature removal. Animals were euthanized at 7 and 14 days. Bone repair was assessed by microcomputer tomography (µCT). Histological sections were stained with hematoxylin/eosin (H/E), Picrosirius Red, and Masson's trichrome. Expression of Runx-2 was studied by immunohistochemistry. Gene expression of Itgam, Arg1, and Inos was assessed by RT-qPCR. At 7 days, there was increased gene expression of Itgam and Arg1 and of the relative expression of Arg1/Inos in curcumin-treated animals, but no difference in any other outcomes. At 14 days, curcumin-loaded nanoparticles significantly increased bone repair and collagen content, as well as the number of osteocytes, percentage of extracellular matrix, and expression of Runx2. The results demonstrate that local administration of curcumin-loaded nanoparticles enhanced tissue repair in an experimental model of periodontal repair. Nanoparticle-encapsulated curcumin enhances early post-treatment repair of periodontal tissues.
Collapse
Affiliation(s)
- Cindy Grace Perez-Pacheco
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University (UNESP), Rua Humaitá, 1680 - Centro, Araraquara, SP, 14801-903, Brazil.,Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Natalie Aparecida Rodrigues Fernandes
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University (UNESP), Rua Humaitá, 1680 - Centro, Araraquara, SP, 14801-903, Brazil
| | - Angelo Constantino Camilli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University (UNESP), Rua Humaitá, 1680 - Centro, Araraquara, SP, 14801-903, Brazil
| | - Danilo Paschoal Ferrarezi
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University (UNESP), Rua Humaitá, 1680 - Centro, Araraquara, SP, 14801-903, Brazil
| | - Amanda Favoreto Silva
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University (UNESP), Rua Humaitá, 1680 - Centro, Araraquara, SP, 14801-903, Brazil
| | - Mayara Cristina Zunareli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University (UNESP), Rua Humaitá, 1680 - Centro, Araraquara, SP, 14801-903, Brazil
| | - Camila Fernanda Amantino
- Department of Bioprocess and Biotechnology, School of Pharmaceutical Sciences at Araraquara, Sao Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Fernando Lucas Primo
- Department of Bioprocess and Biotechnology, School of Pharmaceutical Sciences at Araraquara, Sao Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Morgana Rodrigues Guimarães-Stabilli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University (UNESP), Rua Humaitá, 1680 - Centro, Araraquara, SP, 14801-903, Brazil
| | - Carlos Rossa Junior
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University (UNESP), Rua Humaitá, 1680 - Centro, Araraquara, SP, 14801-903, Brazil.
| |
Collapse
|
8
|
Singh A, Boregowda SS, Moin A, Abu Lila AS, Aldawsari MF, Khafagy ES, Alotaibi HF, Jayaramu RA. Biosynthesis of Silver Nanoparticles Using Commiphora mukul Extract: Evaluation of Anti-Arthritic Activity in Adjuvant-Induced Arthritis Rat Model. Pharmaceutics 2022; 14:pharmaceutics14112318. [PMID: 36365137 PMCID: PMC9693186 DOI: 10.3390/pharmaceutics14112318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Rheumatoid arthritis (RA) is a major global public health challenge, and novel therapies are required to combat it. Silver nanoparticles (AgNPs) have been employed as delivery vehicles of anti-inflammatory drugs for RA therapy, and it has been recently realized that AgNPs have anti-inflammatory action on their own. However, their conventional synthesis processes might result in cytotoxicity and environmental hazards. Instead, the use of natural products as a reducing and stabilizing agent in the biosynthesis of silver nanoparticles has arisen as an option to decrease the cytotoxic and environmental concerns associated with chemical synthesis of AgNPs. In this study, we challenged the efficacy of Commiphora mukul (guggul) aqueous extract as a reducing and/or capping agent for the biosynthesis of AgNPs. Guggul-mediated biosynthesized silver nanoparticles (G-AgNPs) were characterized via UV-vis spectroscopy, dynamic light scattering, and scanning electron microscopy. In addition, their anti-arthritic potential was evaluated in an adjuvant-induced arthritis (AIA) model. The fabricated NPs showed an absorption peak at 412 nm, corresponding to the typical surface plasmon resonance band of AgNPs. The synthesized G-AgNPs were nearly spherical, with a particle size of 337.6 ± 12.1 nm and a negative surface charge (−18.9 ± 1.8 mV). In AIA rat model, synthesized G-AgNPs exerted a potent anti-inflammatory action, as manifested by a remarkable reduction in paw volume (>40%) along with elicitation of a minimal arthritic score, compared to control rats. In addition, when compared to arthritic rats, treatment with G-AgNPs efficiently restored the activity of antioxidant enzyme, superoxide dismutase, and catalase, indicating the efficiency of synthesized G-AgNPs in alleviating the oxidative stress associated with RA. Finally, histological examination revealed comparatively lower inflammatory cells infiltration in ankle joint tissue upon treatment with G-AgNPs. Collectively, biosynthesized G-AgNPs might represent a plausible therapeutic option for the management of RA.
Collapse
Affiliation(s)
- Anupama Singh
- Department of Pharmaceutics, Acharya & BM Reddy College of Pharmacy, Bengaluru 560090, India
| | | | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | - Amr Selim Abu Lila
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mohammed F. Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Hadil Faris Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Rajamma Abburu Jayaramu
- Department of Pharmacognosy, KLE College of Pharmacy, Bengaluru 560010, India
- Correspondence:
| |
Collapse
|
9
|
Chen Y, Sun W, Tang H, Li Y, Li C, Wang L, Chen J, Lin W, Li S, Fan Z, Cheng Y, Chen C. Interactions Between Immunomodulatory Biomaterials and Immune Microenvironment: Cues for Immunomodulation Strategies in Tissue Repair. Front Bioeng Biotechnol 2022; 10:820940. [PMID: 35646833 PMCID: PMC9140325 DOI: 10.3389/fbioe.2022.820940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
The foreign body response (FBR) caused by biomaterials can essentially be understood as the interaction between the immune microenvironment and biomaterials, which has severely impeded the application of biomaterials in tissue repair. This concrete interaction occurs via cells and bioactive substances, such as proteins and nucleic acids. These cellular and molecular interactions provide important cues for determining which element to incorporate into immunomodulatory biomaterials (IMBs), and IMBs can thus be endowed with the ability to modulate the FBR and repair damaged tissue. In terms of cellular, IMBs are modified to modulate functions of immune cells, such as macrophages and mast cells. In terms of bioactive substances, proteins and nucleic acids are delivered to influence the immune microenvironment. Meanwhile, IMBs are designed with high affinity for spatial targets and the ability to self-adapt over time, which allows for more efficient and intelligent tissue repair. Hence, IMB may achieve the perfect functional integration in the host, representing a breakthrough in tissue repair and regeneration medicine.
Collapse
Affiliation(s)
- Yi Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Weiyan Sun
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Hai Tang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Yingze Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
- Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chen Li
- School of Materials Science and Engineering, Tongji University, Shanghai, China
| | - Long Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Jiafei Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Weikang Lin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Shenghui Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Ziwen Fan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Yu Cheng
- Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| |
Collapse
|
10
|
Kuskov A, Nikitovic D, Berdiaki A, Shtilman M, Tsatsakis A. Amphiphilic Poly- N-vinylpyrrolidone Nanoparticles as Carriers for Nonsteroidal, Anti-Inflammatory Drugs: Pharmacokinetic, Anti-Inflammatory, and Ulcerogenic Activity Study. Pharmaceutics 2022; 14:pharmaceutics14050925. [PMID: 35631510 PMCID: PMC9147221 DOI: 10.3390/pharmaceutics14050925] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/01/2023] Open
Abstract
Nanoparticles are increasingly utilized as drug delivery agents. Previously, we have developed a drug delivery system based on amphiphilic derivatives of poly-N-vinylpyrrolidone (PVP-OD4000) with excellent biocompatibility. In the current study, we assessed the pharmacokinetics, anti-inflammatory profile, and ulcerogenic potential of indomethacin (IMC)-loaded PVP-OD4000 nanoparticles compared to the free drug. Wistar male rats were utilized for a pharmacokinetics study and an anti-inflammatory study. Loaded IMC exhibited a slower elimination rate (p < 0.05) and a higher blood plasma concentration at 8 and 24 h after intraperitoneal injection compared with free IMC. In addition, decreased uptake of loaded IMC in the liver and kidney compared to free IMC (p < 0.05) was detected. Furthermore, PVP-OD4000 nanoparticles loaded with IMC showed an enhanced anti-inflammatory effect compared to free IMC (p < 0.05) in carrageenan-induced and complete Freund’s adjuvant-induced−(CFA) sub-chronic and chronic paw edema treatment (p < 0.01; p < 0.01). Notably, upon oral administration of loaded IMC, animals had a significantly lower ulcer score and Paul’s Index (3.9) compared to the free drug (p < 0.05). The obtained results suggest that IMC loaded to PVP nanoparticles exhibit superior anti-inflammatory activity in vivo and a safe gastrointestinal profile and pose a therapeutic alternative for the currently available NSAIDs’ administration.
Collapse
Affiliation(s)
- Andrey Kuskov
- Department of Technology of Chemical Pharmaceutical and Cosmetic Substances, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia;
- Department of Biomaterials, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia;
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, Medical School, Voutes Campus, University of Crete, 71003 Heraklion, Greece;
- Correspondence:
| | - Aikaterini Berdiaki
- Laboratory of Histology-Embryology, Medical School, Voutes Campus, University of Crete, 71003 Heraklion, Greece;
| | - Mikhail Shtilman
- Department of Biomaterials, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia;
| | - Aristidis Tsatsakis
- Center of Toxicology Science & Research, Division of Morphology, Medical School, Voutes Campus, University of Crete, 71003 Heraklion, Greece;
| |
Collapse
|
11
|
Ivanova NM, Filippova EO, Tverdokhlebov SI, Levkovich NV, Apel PY. Preparation, Structure, and Properties of Track-Etched Membranes Based on Polylactic Acid. MEMBRANES AND MEMBRANE TECHNOLOGIES 2021. [DOI: 10.1134/s2517751621050073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Cazorla-Luna R, Martín-Illana A, Notario-Pérez F, Ruiz-Caro R, Veiga MD. Naturally Occurring Polyelectrolytes and Their Use for the Development of Complex-Based Mucoadhesive Drug Delivery Systems: An Overview. Polymers (Basel) 2021; 13:2241. [PMID: 34301004 PMCID: PMC8309414 DOI: 10.3390/polym13142241] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 12/17/2022] Open
Abstract
Biopolymers have several advantages for the development of drug delivery systems, since they are biocompatible, biodegradable and easy to obtain from renewable resources. However, their most notable advantage may be their ability to adhere to biological tissues. Many of these biopolymers have ionized forms, known as polyelectrolytes. When combined, polyelectrolytes with opposite charges spontaneously form polyelectrolyte complexes or multilayers, which have great functional versatility. Although only one natural polycation-chitosan has been widely explored until now, it has been combined with many natural polyanions such as pectin, alginate and xanthan gum, among others. These polyelectrolyte complexes have been used to develop multiple mucoadhesive dosage forms such as hydrogels, tablets, microparticles, and films, which have demonstrated extraordinary potential to administer drugs by the ocular, nasal, buccal, oral, and vaginal routes, improving both local and systemic treatments. The advantages observed for these formulations include the increased bioavailability or residence time of the formulation in the administration zone, and the avoidance of invasive administration routes, leading to greater therapeutic compliance.
Collapse
Affiliation(s)
| | | | | | | | - María-Dolores Veiga
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (R.C.-L.); (A.M.-I.); (F.N.-P.); (R.R.-C.)
| |
Collapse
|
13
|
García-Estrada P, García-Bon MA, López-Naranjo EJ, Basaldúa-Pérez DN, Santos A, Navarro-Partida J. Polymeric Implants for the Treatment of Intraocular Eye Diseases: Trends in Biodegradable and Non-Biodegradable Materials. Pharmaceutics 2021; 13:701. [PMID: 34065798 PMCID: PMC8151640 DOI: 10.3390/pharmaceutics13050701] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/15/2022] Open
Abstract
Intraocular/Intravitreal implants constitute a relatively new method to treat eye diseases successfully due to the possibility of releasing drugs in a controlled and prolonged way. This particularity has made this kind of method preferred over other methods such as intravitreal injections or eye drops. However, there are some risks and complications associated with the use of eye implants, the body response being the most important. Therefore, material selection is a crucial factor to be considered for patient care since implant acceptance is closely related to the physical and chemical properties of the material from which the device is made. In this regard, there are two major categories of materials used in the development of eye implants: non-biodegradables and biodegradables. Although non-biodegradable implants are able to work as drug reservoirs, their surgical requirements make them uncomfortable and invasive for the patient and may put the eyeball at risk. Therefore, it would be expected that the human body responds better when treated with biodegradable implants due to their inherent nature and fewer surgical concerns. Thus, this review provides a summary and discussion of the most common non-biodegradable and biodegradable materials employed for the development of experimental and commercially available ocular delivery implants.
Collapse
Affiliation(s)
- Paulina García-Estrada
- Departamento de Ingenieria de Proyectos-CUCEI, Universidad de Guadalajara, C.P. 45157 Zapopan, Mexico; (P.G.-E.); (M.A.G.-B.); (E.J.L.-N.); (D.N.B.-P.)
| | - Miguel A. García-Bon
- Departamento de Ingenieria de Proyectos-CUCEI, Universidad de Guadalajara, C.P. 45157 Zapopan, Mexico; (P.G.-E.); (M.A.G.-B.); (E.J.L.-N.); (D.N.B.-P.)
| | - Edgar J. López-Naranjo
- Departamento de Ingenieria de Proyectos-CUCEI, Universidad de Guadalajara, C.P. 45157 Zapopan, Mexico; (P.G.-E.); (M.A.G.-B.); (E.J.L.-N.); (D.N.B.-P.)
| | - Dulce N. Basaldúa-Pérez
- Departamento de Ingenieria de Proyectos-CUCEI, Universidad de Guadalajara, C.P. 45157 Zapopan, Mexico; (P.G.-E.); (M.A.G.-B.); (E.J.L.-N.); (D.N.B.-P.)
| | - Arturo Santos
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, C.P. 45138 Zapopan, Mexico;
| | - Jose Navarro-Partida
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, C.P. 45138 Zapopan, Mexico;
| |
Collapse
|
14
|
Samborska K, Boostani S, Geranpour M, Hosseini H, Dima C, Khoshnoudi-Nia S, Rostamabadi H, Falsafi SR, Shaddel R, Akbari-Alavijeh S, Jafari SM. Green biopolymers from by-products as wall materials for spray drying microencapsulation of phytochemicals. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Luo Y, Yang L, Feng P, Qiu H, Wu X, Lu S, Zhou M, Xu L, Zhu Y. Pranoprofen Nanoparticles With Poly(L- Lactide)-b- Poly( Ethylene Glycol)- b-Poly(L- Lactide) as the Matrix Toward Improving Ocular Anti-inflammation. Front Bioeng Biotechnol 2020; 8:581621. [PMID: 33224933 PMCID: PMC7674403 DOI: 10.3389/fbioe.2020.581621] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/07/2020] [Indexed: 12/28/2022] Open
Abstract
Nanotechnology using biodegradable polymer carriers with good biocompatibility and bioabsorbability has been studied and applied extensively in drug delivery systems and biomedical engineering. In this work, the triblocked oligomer poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide) (PLEL) with the molecular weight of 2.08 KDa was first synthesized. Its chemistry was characterized by hydrogen nuclear magnetic resonance (1H-NMR) spectrum and Fourier transform infrared (FTIR) spectroscopy. Subsequently, the nanoparticles (NPs) of PLEL and pranoprofen (PF)-loaded PLEL were prepared with the average particle size of (151.7 ± 5.87) nm using the method of emulsion solvent evaporation. The formula and drug releasing profile were characterized by a transmission electron microscope (TEM), dynamic light scattering (DLS), and ultraviolet spectrophotometer (US). In vitro cytotoxicity assays and in vivo ophthalmic tests were performed to measure the safety and efficacy of the formulations. The results showed that PF NPs relieved the cytotoxicity of pure PF and eliminated ophthalmic irritation. The drug encapsulated in the nanoparticles displayed long-lasting release and good anti-inflammation efficiency in animal eyes. Therefore, we concluded that the present formula (PF NPs) could provide sustained drug release with good treatment effect on eye inflammation, and is promising for its use in ophthalmology in the future.
Collapse
Affiliation(s)
- Yang Luo
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| | - Lu Yang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| | - Peipei Feng
- School of Medicine, Ningbo University, Ningbo, China
| | - Haofeng Qiu
- School of Medicine, Ningbo University, Ningbo, China
| | - Xujin Wu
- School of Medicine, Ningbo University, Ningbo, China
| | - Shuwei Lu
- School of Medicine, Ningbo University, Ningbo, China
| | - Mi Zhou
- School of Medicine, Ningbo University, Ningbo, China
| | - Long Xu
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Yabin Zhu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| |
Collapse
|
16
|
Zhou YJ, Li LS, Sun JL, Guan K, Wei JF. 1H NMR-based metabolomic study of metabolic profiling for pollinosis. World Allergy Organ J 2019; 12:100005. [PMID: 30937130 PMCID: PMC6439407 DOI: 10.1016/j.waojou.2018.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/13/2018] [Accepted: 11/28/2018] [Indexed: 01/07/2023] Open
Abstract
Background Allergic rhinitis is the main symptom of pollinosis, relieved by non-specific treatment universally. This study aimed to find the changes of serum metabolites between the seizure and remission periods of pollinosis and provide assistance in the diagnosis and/or therapy. Methods Metabonomics based on 1H nuclear magnetic resonance (NMR) was used to study the 37 serum samples of pollinosis patients. Results We believed that the decreased levels of isoleutine, leutine, valine, 3-hydroxybutyric acid, allo-threonine, alanine, methionine, glutamine, lysine, glycine, l-tyrosine, histidine, phenylalanine, lactate, acetate, O-acetylcholine, creatine and creatinine and the increased level of N-acetylglutamine at the seizure stage were statistically significant. Conclusions Pollinosis could change the metabolic profiles of energy, amino acid and lipid in patients, which might be the diagnosis and/or prognosis markers for hay fever patients.
Collapse
Key Words
- Amino acid
- Energy
- FIDs, free induction decay
- Lipid metabolism
- Metabonomics
- NMR, nuclear magnetic resonance
- OPLS-DA, orthogonal partial least squares discriminant analysis
- OSC-PLS-DA, orthogonal signal correction-partial least squares discriminant analysis
- PBS, phosphate buffer solution
- PCA, principle component analysis
- Pollinosis
- SD, standard deviation
- SIT, allergen-specific immunotherapy
- SLE, systemic lupus erythematosus
- TCA, tricarboxylic acid cycle
- TSP, 3-trimethylsilyl-propionic acid
Collapse
Affiliation(s)
- Yan-Jun Zhou
- Department of Allergy, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan Wangfujing Dongcheng District, Dongcheng, Beijing, 100730, PR China.,Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, PR China
| | - Li-Sha Li
- Department of Allergy, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan Wangfujing Dongcheng District, Dongcheng, Beijing, 100730, PR China.,Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Beijing 100730, PR China
| | - Jin-Lu Sun
- Department of Allergy, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan Wangfujing Dongcheng District, Dongcheng, Beijing, 100730, PR China.,Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Beijing 100730, PR China
| | - Kai Guan
- Department of Allergy, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan Wangfujing Dongcheng District, Dongcheng, Beijing, 100730, PR China.,Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Beijing 100730, PR China
| | - Ji-Fu Wei
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, PR China
| |
Collapse
|
17
|
Core-Shell Arginine-Containing Chitosan Microparticles for Enhanced Transcorneal Permeation of Drugs. J Pharm Sci 2019; 108:960-969. [DOI: 10.1016/j.xphs.2018.09.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/14/2018] [Accepted: 09/28/2018] [Indexed: 12/19/2022]
|
18
|
Polymer-based carriers for ophthalmic drug delivery. J Control Release 2018; 285:106-141. [DOI: 10.1016/j.jconrel.2018.06.031] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/23/2018] [Accepted: 06/25/2018] [Indexed: 12/22/2022]
|
19
|
Cañadas-Enrich C, Abrego G, Alvarado HL, Calpena-Campmany AC, Boix-Montañes A. Pranoprofen quantification in ex vivo corneal and scleral permeation samples: Analytical validation. J Pharm Biomed Anal 2018; 160:109-118. [PMID: 30077069 DOI: 10.1016/j.jpba.2018.07.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/09/2018] [Accepted: 07/12/2018] [Indexed: 12/12/2022]
Abstract
The investigation of the ocular permeability and/or distribution of pranoprofen (PF), a non-steroidal antiinflamatory drug, demands for the selective analysis of its transit through specific ocular membranes. Therefore, customised ex vivo permeation experiments through external ocular tissues (cornea and sclera) have been validated for this drug in addition to its HPLC-UV quantification following standard bioanalytical guidelines. Chromatographic conditions consist of an isocratic system to elute the drug with a C18 column with UV detection at 245 nm. Precision, expressed as the relative standard deviation (% RSD), ranged between 4.89 and 0.79% (intra-day) and between 9.02 and 2.14% (interday). Accuracy ranged between 5.15 and -1.92% in intra-day experiments and between 6.25 and -4.89% in inter-day experiments. Drug recovery from tissue samples was reproducible around 90% and considered satisfactory to adequately assess drug levels in target tissues. Results indicate that the procedure is valid for the quantitation of PF in those ophthalmic samples in the range of 6.5 μg/mL to 100 μg/ml. As a proof of concept, PF permeation profiles through porcine cornea and sclera with vertical diffusion cells have been generated and analyzed. Pilot experiments demonstrate its applicability to investigate permeation levels of PF from 22.31 μg/cm2 (about a 20% of the dose) until 500 μg/cm2 if required. Additionally, real tissue-retention samples were also generated to verify the goodness of this experimental setup.
Collapse
Affiliation(s)
- C Cañadas-Enrich
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain.
| | - G Abrego
- Department of Chemical and Instrumental Analysis, Faculty of Chemistry and Pharmacy, University of El Salvador, Ciudad Universitaria, San Salvador, El Salvador.
| | - H L Alvarado
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain.
| | - A C Calpena-Campmany
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain.
| | - A Boix-Montañes
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain.
| |
Collapse
|
20
|
Chitosan- g -poly( N -isopropylacrylamide) copolymers as delivery carriers for intracameral pilocarpine administration. Eur J Pharm Biopharm 2017; 113:140-148. [DOI: 10.1016/j.ejpb.2016.11.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 11/27/2016] [Accepted: 11/30/2016] [Indexed: 12/26/2022]
|
21
|
Li Z, Liu X, Chen X, Chua MX, Wu YL. Targeted delivery of Bcl-2 conversion gene by MPEG-PCL-PEI-FA cationic copolymer to combat therapeutic resistant cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:66-72. [PMID: 28482577 DOI: 10.1016/j.msec.2017.02.163] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 02/13/2017] [Accepted: 02/28/2017] [Indexed: 12/11/2022]
Abstract
Deregulation of anti-apoptosis Bcl-2 protein expression was a key feature in human cancers with therapeutic resistance. Nuclear receptor Nur77 could induce the conformation change of Bcl-2 protein and converted it into an apoptosis inducer by "enemy to friend" strategy. However, the safe and effective delivery of this gene to combat therapeutic resistant cancer remained largely unexplored. In this report, we designed an amphiphilic cationic MPEG-PCL-PEI-FA copolymer, comprising biocompatible and hydrophilic methoxy-poly(ethylene glycol) (MPEG), biodegradable and hydrophobic poly(ε-caprolactone) (PCL), cationic poly(ethylene imine) (PEI) segments, and folic acid (FA) as targeting group, as a high efficient Nur77 gene carrier to folate receptor (FR) highly expressed and therapeutic resistant HeLa/Bcl-2 cancer cells. Interestingly, due to the incorporation of PCL and PEG segments, this MPEG-PCL-PEI-FA copolymer showed less toxicity but better gene transfection efficiency than non-viral gene carrier gold standard PEI (25kDa). This might be due to the formation of micelles to stabilize polyplex for enhanced gene transfection ability. More importantly, MPEG-PCL-PEI-FA copolymer exhibited excellent growth inhibition ability on therapeutic resistant HeLa/Bcl-2 cancer cells, which was FR overexpressed HeLa cervical cancer cells with high expression of Bcl-2 protein, thanks to its FA induced targeting ability, high gene transfection efficiency, and low cytotoxicity. This work signifies the first time that cationic amphiphilic MPEG-PCL-PEI-FA copolymers could be utilized for the gene delivery to therapeutic resistant cancer cells with high expression of anti-apoptosis Bcl-2 protein and the positive results are encouraging for the further design of polymeric platforms for combating drug resistant tumors.
Collapse
Affiliation(s)
- Zibiao Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore..
| | - Xuan Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Xiaohong Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Ming Xuan Chua
- Department of Chemical & Bimolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|