1
|
Lavric R, Vreme C, Busuioc C, Isopencu GO, Nicoara AI, Oprea OC, Banciu DD, Constantinoiu I, Musat AMR. The Effect of Silver and Samarium on the Properties of Bioglass Coatings Produced by Pulsed Laser Deposition and Spin Coating. J Funct Biomater 2023; 14:560. [PMID: 38132814 PMCID: PMC10744176 DOI: 10.3390/jfb14120560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
The current study reports the use of silver (Ag) and samarium (Sm) as dopants to improve the properties of standard bioglass in terms of biological performance. This experiment considers thin films of doped bioglass obtained by pulsed laser deposition (PLD) and spin coating (SC). For both methods, some parameters were gradually varied, as the main objective was to produce a bioglass that could be used in biomedical fields. In order to study the morphology, the phase composition and other properties, the samples obtained were subjected to multiple analyses, such as thermal analysis, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Fourier-transform infrared (FT-IR), Raman spectroscopy, and x-ray diffraction (XRD). Furthermore, the in vitro bioactivity of the samples, as assessed through simulated body fluid (SBF) immersion, as well as immunocytochemistry and evaluation of actin filaments, assessed through fluorescence microscopy, are reported. The results confirmed the formation of the designed vitreous target employed as the source of material in the PLD experiments only at sintering temperatures below 800 °C; this vitreous nature was preserved in the grown film as well. The presence of Ag and Ce dopants in the parent glassy matrix was validated for all stages, from powder, to target, to PLD/SC-derived coatings. Additionally, it was demonstrated that the surface topography of the layers can be adjusted by using substrates with different roughness or by modulating the processing parameters, such as substrate temperature and working pressure in PLD, rotation speed, and number of layers in SC. The developed material was found to be highly bioactive after 28 days of immersion in SBF, but it was also found to be a potential candidate for inhibiting the growth of Gram-negative bacteria and a suitable support for cell growth and proliferation.
Collapse
Affiliation(s)
- Roxana Lavric
- Department of Bioengineering and Biotechnology, Faculty of Medical Engineering, National University of Science and Technology POLITEHNICA Bucharest, RO-060042 Bucharest, Romania; (R.L.)
| | - Cornelia Vreme
- Department of Bioengineering and Biotechnology, Faculty of Medical Engineering, National University of Science and Technology POLITEHNICA Bucharest, RO-060042 Bucharest, Romania; (R.L.)
| | - Cristina Busuioc
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, RO-060042 Bucharest, Romania
| | - Gabriela-Olimpia Isopencu
- Department of Chemical and Biochemical Engineering, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, RO-060042 Bucharest, Romania;
| | - Adrian-Ionut Nicoara
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, RO-060042 Bucharest, Romania
| | - Ovidiu-Cristian Oprea
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, RO-060042 Bucharest, Romania;
| | - Daniel-Dumitru Banciu
- Department of Bioengineering and Biotechnology, Faculty of Medical Engineering, National University of Science and Technology POLITEHNICA Bucharest, RO-060042 Bucharest, Romania; (R.L.)
| | - Izabela Constantinoiu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, RO-060042 Bucharest, Romania
- Department of Lasers, National Institute for Laser, Plasma and Radiation Physics, RO-077125 Magurele, Romania
| | - Ana-Maria-Raluca Musat
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, RO-060042 Bucharest, Romania
| |
Collapse
|
2
|
Chen X, Sun L, Wang H, Cao S, Shang T, Yan H, Lin Q. Nano-SiO 2 reinforced alginate-chitosan-gelatin nanocomposite hydrogels with improved physicochemical properties and biological activity. Colloids Surf B Biointerfaces 2023; 228:113413. [PMID: 37343505 DOI: 10.1016/j.colsurfb.2023.113413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
Alginate (Alg) hydrogels possess desirable advantages for application in tissue engineering; however, they are limited by their weak mechanical properties, poor chronical stability in phosphate buffered saline, and absence of mammalian cell recognition sites, severely restricting their biomedical applications. To overcome these limitations, we integrated Alg hydrogels with nano-silica (SiO2) to produce nano-SiO2 reinforced Alg-chitosan-gelatin nanocomposite hydrogels (Alg/SiO2-CHI-GA NCH) for biomedical purposes, utilizing Chitosan (CHI) and gelatin (GA) in an alternate electrostatic adsorption. Specifically, we investigated the regulatory and promotional effects of the nano-SiO2 on the morphological structure, mechanical properties, thermal stability, rheological properties, swelling, biodegradability, biomineralization and cytocompatibility of the resultant Alg/SiO2-CHI-GA NCH. The experimental findings demonstrate that the constructed Alg/SiO2-CHI-GA NCH exhibited uniform morphology and a regular structure. Upon freeze-drying, the internal cross-sections of the NCH exhibited a honeycomb porous structure. Furthermore, the physicochemical properties and biological activities of the prepared Alg/SiO2-CHI-GA NCH were regulated to some extent by nano-SiO2 content. Notably, nano-SiO2 inclusion enhanced the attachment and viability of MG63 and MC3T3-E1 cells and induced three-dimensional cell growth in ALG/SiO2-CHI-GA NCH. Among the fabricated NCH, Alg/SiO2-CHI-GA NCH with 0.5% and 1.0% (w/v) nano-SiO2 exhibited significant proliferative activity, which is attributable to their high porosity and uniform cell adhesion. Furthermore, the alkaline phosphatase activity in the cells gradually increased with increasing of nano-SiO2 amount, indicating the favorable effect of nano-SiO2 on the osteogenic differentiation of MG63 and MC3T3-E1 cells. Our study findings provide a comprehensive foundation for the structural- and property-related limitations of Alg hydrogels in biomedicine, thereby expanding their potential applications in tissue engineering.
Collapse
Affiliation(s)
- Xiuqiong Chen
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Lili Sun
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Hongcai Wang
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Shanshan Cao
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Ting Shang
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Huiqiong Yan
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China.
| | - Qiang Lin
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| |
Collapse
|
3
|
Özel C, Çevlik CB, Özarslan AC, Emir C, Elalmis YB, Yucel S. Evaluation of biocomposite putty with strontium and zinc co-doped 45S5 bioactive glass and sodium hyaluronate. Int J Biol Macromol 2023; 242:124901. [PMID: 37210057 DOI: 10.1016/j.ijbiomac.2023.124901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
The application of powder or granule formed bioactive glasses in the defect area with the help of a liquid carrier to fill the defects is a subject of interest and is still open to development. In this study, it was aimed to prepare biocomposites of bioactive glasses incorporating different co-dopants with a carrier biopolymer and to create a fluidic material (Sr and Zn co-doped 45S5 bioactive glasses‑sodium hyaluronate). All biocomposite samples were pseudoplastic fluid type, which may be suitable for defect filling and had excellent bioactivity behaviors confirmed by FTIR, SEM-EDS and XRD. Biocomposites with Sr and Zn co-doped bioactive glass had higher bioactivity considering the crystallinity of hydroxyapatite formations compared to biocomposite with undoped bioactive glasses. Biocomposites with high bioactive glass content had hydroxyapatite formations with higher crystallinity compared to biocomposites with low bioactive glass. Furthermore, all biocomposite samples showed non-cytotoxic effect on the L929 cells up to a certain concentration. However, biocomposites with undoped bioactive glass showed cytotoxic effects at lower concentrations compared to biocomposites with co-doped bioactive glass. Thus, biocomposite putties utilizing Sr and Zn co-doped bioactive glasses may be advantageous for orthopedic applications due to their specified rheological, bioactivity, and biocompatibility properties.
Collapse
Affiliation(s)
- Cem Özel
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34220 Esenler, Istanbul, Turkey; Health Biotechnology Joint Research and Application Center of Excellence, 34220 Esenler, Istanbul, Turkey.
| | - Cem Batuhan Çevlik
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34220 Esenler, Istanbul, Turkey
| | - Ali Can Özarslan
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34220 Esenler, Istanbul, Turkey; Health Biotechnology Joint Research and Application Center of Excellence, 34220 Esenler, Istanbul, Turkey
| | - Ceren Emir
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34220 Esenler, Istanbul, Turkey; Health Biotechnology Joint Research and Application Center of Excellence, 34220 Esenler, Istanbul, Turkey; Alanya Alaaddin Keykubat University, Faculty of Rafet Kayis Engineering, Genetic and Bioengineering Department, Antalya, Turkey
| | - Yeliz Basaran Elalmis
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34220 Esenler, Istanbul, Turkey; Health Biotechnology Joint Research and Application Center of Excellence, 34220 Esenler, Istanbul, Turkey
| | - Sevil Yucel
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34220 Esenler, Istanbul, Turkey; Health Biotechnology Joint Research and Application Center of Excellence, 34220 Esenler, Istanbul, Turkey
| |
Collapse
|
4
|
Ciftci F. Release kinetics modelling and in vivo-vitro, shelf-life study of resveratrol added composite transdermal scaffolds. Int J Biol Macromol 2023; 235:123769. [PMID: 36812968 DOI: 10.1016/j.ijbiomac.2023.123769] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
In this article, the suitability of composite transdermal biomaterial for wound dressing applications is discussed. Bioactive, antioxidant Fucoidan and Chitosan biomaterials were doped into polyvinyl alcohol/β-tricalcium phosphate based polymeric hydrogels loaded with Resveratrol, which has theranostic properties, and biomembrane design with suitable cell regeneration properties was aimed. In accordance with this purpose, tissue profile analysis (TPA) was performed for the bioadhesion properties of composite polymeric biomembranes. Fourier Transform Infrared Spectrometry (FT-IR), Thermogravimetric Analysis (TGA) and Scanning Electron Microscopy (SEM-EDS) analyses were performed for morphological and structural analyses of biomembrane structures. In vitro Franz diffusion mathematical modelling of composite membrane structures, biocompatibility (MTT test) and in vivo rat tests were performed. TPA analysis of resveratrol loaded biomembrane scaffold design; compressibility; 13.4 ± 1.9(g.s), hardness; 16.8 ± 1(g), adhesiveness; -11 ± 2.0(g.s), elasticity; 0.61 ± 0.07, cohesiveness; 0.84 ± 0.04 were found. Proliferation of the membrane scaffold was 189.83 % at 24 h and 209.12 % at 72 h. In the in vivo rat test; at the end of 28th day, it was found that biomembrane_3 provided 98.75 ± 0.12 % wound shrinkage. The shelf-life of RES in the transdermal membrane scaffold, which was determined as Zero order according to Fick's law in in vitro Franz diffusion mathematical modelling, was found to be approximately 35 days by Minitab statistical analysis. The importance of this study is that the innovative and novel transdermal biomaterial supports tissue cell regeneration and cell proliferation in theranostic applications as a wound dressing.
Collapse
Affiliation(s)
- Fatih Ciftci
- Department of Biomedical Engineering, Fatih Sultan Mehmet Vakif University, Istanbul, Turkey; Department of Technology Transfer Office, Fatih Sultan Mehmet Vakif University, Istanbul, Turkey.
| |
Collapse
|
5
|
Li S, Cui Y, Liu H, Tian Y, Wang G, Fan Y, Wang J, Wu D, Wang Y. Application of bioactive metal ions in the treatment of bone defects. J Mater Chem B 2022; 10:9369-9388. [PMID: 36378123 DOI: 10.1039/d2tb01684b] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The treatment of bone defects is an important problem in clinical practice. The rapid development of bone tissue engineering (BTE) may provide a new method for bone defect treatment. Metal ions have been widely studied in BTE and demonstrated a significant effect in promoting bone tissue growth. Different metal ions can be used to treat bone defects according to specific conditions, including promoting osteogenic activity, inhibiting osteoclast activity, promoting vascular growth, and exerting certain antibacterial effects. Multiple studies have confirmed that metal ions-modified composite scaffolds can effectively promote bone defect healing. By studying current extensive research on metal ions in the treatment of bone defects, this paper reviews the mechanism of metal ions in promoting bone tissue growth, analyzes the loading mode of metal ions, and lists some specific applications of metal ions in different types of bone defects. Finally, this paper summarizes the advantages and disadvantages of metal ions and analyzes the future research trend of metal ions in BTE. This article can provide some new strategies and methods for future research and applications of metal ions in the treatment of bone defects.
Collapse
Affiliation(s)
- Shaorong Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Yutao Cui
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Yuhang Tian
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Gan Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Yi Fan
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Jingwei Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Dankai Wu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Yanbing Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| |
Collapse
|
6
|
Su S, Chen W, Zheng M, Lu G, Tang W, Huang H, Qu D. Facile Fabrication of 3D-Printed Porous Ti6Al4V Scaffolds with a Sr-CaP Coating for Bone Regeneration. ACS OMEGA 2022; 7:8391-8402. [PMID: 35309469 PMCID: PMC8928158 DOI: 10.1021/acsomega.1c05908] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/10/2022] [Indexed: 05/12/2023]
Abstract
To improve osseointegration caused by the stress-shielding effect and the inert nature of titanium-based alloys, in this work, we successfully constructed a strontium calcium phosphate (Sr-CaP) coating on three-dimensional (3D)-printed Ti6Al4V scaffolds to address this issue. The energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) results indicated that the coatings with and without Sr doping mainly consisted of CaHPO4. The bonding strength of Sr doping coating met the required ISO 13 779-4-2018 standard (≥15 MPa). The in vitro results suggested that the Sr-CaP-modified Ti6Al4V scaffolds were found to effectively promote mice bone-marrow stem cell (mBMSC) adhesion, spreading, and osteogenesis. The in vivo experiments also showed that the Sr-CaP-modified Ti6Al4V scaffolds could significantly improve bone regeneration and osseointegration. More importantly, Sr-doped CaP-coated Ti6Al4V scaffolds were found to accelerate bone healing in comparison to CaP-coated Ti6Al4V scaffolds. The Sr-CaP-modified Ti6Al4V scaffolds are considered a promising strategy to develop bioactive surfaces for enhancing the osseointegration between the implant and bone tissue.
Collapse
Affiliation(s)
- Shenghui Su
- Division
of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Weidong Chen
- Division
of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Minghui Zheng
- Division
of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
- Department
of Orthopaedic Surgery, Zengcheng Branch of Nanfang Hospital, Southern Medical University, 511338 Guangzhou, China
| | - Guozan Lu
- Guangzhou
Huatai 3D Material Manufacture Ltd., Co., 511300 Guangzhou, China
| | - Wei Tang
- Department
of Anatomy, College of Basic Medicine, Dalian
Medical University, Dalian 116044, China
| | - Haihong Huang
- Division
of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Dongbin Qu
- Division
of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
- Department
of Orthopaedic Surgery, Zengcheng Branch of Nanfang Hospital, Southern Medical University, 511338 Guangzhou, China
| |
Collapse
|
7
|
Gholivand K, Alavinasab Ardebili SA, Mohammadpour M, Eshaghi Malekshah R, Hasannia S, Onagh B. Preparation and examination of a scaffold based on hydroxylated polyphosphazene for tissue engineering: In vitro and in vivo studies. J Appl Polym Sci 2022. [DOI: 10.1002/app.52179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Khodayar Gholivand
- Department of Chemistry, Faculty of Sciences Tarbiat Modares University Tehran Iran
| | | | - Mahnaz Mohammadpour
- Department of Chemistry, Faculty of Sciences Tarbiat Modares University Tehran Iran
| | | | - Sadegh Hasannia
- Department of Biochemistry, Biological Science Tarbiat Modares University Tehran Iran
| | - Bahman Onagh
- Department of Biochemistry, Biological Science Tarbiat Modares University Tehran Iran
| |
Collapse
|
8
|
Alcala-Orozco CR, Mutreja I, Cui X, Hooper GJ, Lim KS, Woodfield TBF. Hybrid biofabrication of 3D osteoconductive constructs comprising Mg-based nanocomposites and cell-laden bioinks for bone repair. Bone 2022; 154:116198. [PMID: 34534709 DOI: 10.1016/j.bone.2021.116198] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 11/02/2022]
Abstract
Tissue engineering approaches for bone repair have rapidly evolved due to the development of novel biofabrication technologies, providing an opportunity to fabricate anatomically-accurate living implants with precise placement of specific cell types. However, limited availability of biomaterial inks, that can be 3D-printed with high resolution, while providing high structural support and the potential to direct cell differentiation and maturation towards the osteogenic phenotype, remains an ongoing challenge. Aiming towards a multifunctional biomaterial ink with high physical stability and biological functionality, this work describes the development of a nanocomposite biomaterial ink (Mg-PCL) comprising of magnesium hydroxide nanoparticles (Mg) and polycaprolactone (PCL) thermoplastic for 3D printing of strong and bioactive bone regenerative scaffolds. We characterised the Mg nanoparticle system and systematically investigated the cytotoxic and osteogenic effects of Mg supplementation to human mesenchymal stromal cells (hMSCs) 2D-cultures. Next, we prepared Mg-PCL biomaterial ink using a solvent casting method, and studied the effect of Mg over mechanical properties, printability and scaffold degradation. Furthermore, we delivered MSCs within Mg-PCL scaffolds using a gelatin-methacryloyl (GelMA) matrix, and evaluated the effect of Mg over cell viability and osteogenic differentiation. Nanocomposite Mg-PCL could be printed with high fidelity at 20 wt% of Mg content, and generated a mechanical reinforcement between 30%-400% depending on the construct internal geometry. We show that Mg-PCL degrades faster than standard PCL in an accelerated-degradation assay, which has positive implications towards in vivo implant degradation and bone regeneration. Mg-PCL did not affect MSCs viability, but enhanced osteogenic differentiation and bone-specific matrix deposition, as demonstrated by higher ALP/DNA levels and Alizarin Red calcium staining. Finally, we present proof of concept of Mg-PCL being utilised in combination with a bone-specific bioink (Sr-GelMA) in a coordinated-extrusion bioprinting strategy for fabrication of hybrid constructs with high stability and synergistic biological functionality. Mg-PCL further enhanced the osteogenic differentiation of encapsulated MSCs and supported bone ECM deposition within the bioink component of the hybrid construct, evidenced by mineralised nodule formation, osteocalcin (OCN) and collagen type-I (Col I) expression within the bioink filaments. This study demonstrated that magnesium-based nanocomposite bioink material optimised for extrusion-based 3D printing of bone regenerative scaffolds provide enhanced mechanical stability and bone-related bioactivity with promising potential for skeletal tissue regeneration.
Collapse
Affiliation(s)
- Cesar R Alcala-Orozco
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, New Zealand; Light-Activated Biomaterials (LAB) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Isha Mutreja
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Xiaolin Cui
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Gary J Hooper
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, New Zealand; Centre of Research Excellence in Medical Technologies (MedTech CoRE), Auckland, New Zealand
| | - Khoon S Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, New Zealand; Light-Activated Biomaterials (LAB) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, New Zealand; Centre of Research Excellence in Medical Technologies (MedTech CoRE), Auckland, New Zealand.
| | - Tim B F Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, New Zealand; Centre of Research Excellence in Medical Technologies (MedTech CoRE), Auckland, New Zealand.
| |
Collapse
|
9
|
Zhao R, Shi L, Gu L, Qin X, Song Z, Fan X, Zhao P, Li C, Zheng H, Li Z, Wang Q. Evaluation of bioactive glass scaffolds incorporating SrO or ZnO for bone repair: In vitro bioactivity and antibacterial activity. J Appl Biomater Funct Mater 2021; 19:22808000211040910. [PMID: 34465222 DOI: 10.1177/22808000211040910] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A series of bioactive glass scaffolds doped with SrO or ZnO (0, 5, and 10 mol%) were synthesized by the foam replica and melting method. The thermodynamic evolution, phase composition, microstructure, ion release, in vitro bioactivity, and oxygen density of the scaffolds were characterized. The proliferation of murine long bone osteocyte Y4 cells was studied by cell culture. The survival rate of the BGs evaluated the antibacterial activity and Escherichia coli strains in co-culture. The results indicated that the process window decreases with the increase of dopants. All the samples have a pore structure size of 200-400 μm. When the scaffolds were immersed in simulated body fluid for 28 days, hydroxyapatite formation was not affected, but the degradation process was retarded. The glass network packing and ionic radii variations of the substitution ions control surface degradation, glass dissolution, and ion release. MTT results revealed that 5Sr-BG had a significant effect on promoting cell proliferation and none of the BGs were cytotoxicity. Sr-BGs and Zn-BGs exhibited significantly inhibited growth against E. coli bacterial strains. Generally, these results showed the 5Sr-BG scaffold with high vitro bioactivity, cell proliferation, and antibacterial property is an important candidate material for bone tissue regeneration and repair.
Collapse
Affiliation(s)
- Rui Zhao
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lifen Shi
- State Key Laboratory of Advanced Technology for Float Glass, Bengbu, China.,(CNBM) Bengbu Design & Research Institute for Glass Industry Co., Ltd, Bengbu, China
| | - Lin Gu
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xusheng Qin
- (CNBM) Bengbu Design & Research Institute for Glass Industry Co., Ltd, Bengbu, China
| | - Zaizhi Song
- (CNBM) Bengbu Design & Research Institute for Glass Industry Co., Ltd, Bengbu, China
| | - Xiaoyun Fan
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Ping Zhao
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Changqing Li
- Silica-Based Materials Laboratory of Anhui Province, Bengbu, China
| | - Hailun Zheng
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhijun Li
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Qizhi Wang
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
10
|
Iskandar L, DiSilvio L, Acheson J, Deb S. Dual Network Composites of Poly(vinyl alcohol)-Calcium Metaphosphate/Alginate with Osteogenic Ions for Bone Tissue Engineering in Oral and Maxillofacial Surgery. Bioengineering (Basel) 2021; 8:bioengineering8080107. [PMID: 34436110 PMCID: PMC8389339 DOI: 10.3390/bioengineering8080107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/03/2022] Open
Abstract
Despite considerable advances in biomaterials-based bone tissue engineering technologies, autografts remain the gold standard for rehabilitating critical-sized bone defects in the oral and maxillofacial (OMF) region. A majority of advanced synthetic bone substitutes (SBS’s) have not transcended the pre-clinical stage due to inferior clinical performance and translational barriers, which include low scalability, high cost, regulatory restrictions, limited advanced facilities and human resources. The aim of this study is to develop clinically viable alternatives to address the challenges of bone tissue regeneration in the OMF region by developing ‘dual network composites’ (DNC’s) of calcium metaphosphate (CMP)—poly(vinyl alcohol) (PVA)/alginate with osteogenic ions: calcium, zinc and strontium. To fabricate DNC’s, single network composites of PVA/CMP with 10% (w/v) gelatine particles as porogen were developed using two freeze–thawing cycles and subsequently interpenetrated by guluronate-dominant sodium alginate and chelated with calcium, zinc or strontium ions. Physicochemical, compressive, water uptake, thermal, morphological and in vitro biological properties of DNC’s were characterised. The results demonstrated elastic 3D porous scaffolds resembling a ‘spongy bone’ with fluid absorbing capacity, easily sculptable to fit anatomically complex bone defects, biocompatible and osteoconductive in vitro, thus yielding potentially clinically viable for SBS alternatives in OMF surgery.
Collapse
Affiliation(s)
- Lilis Iskandar
- Centre for Oral, Clinical & Translational Sciences, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, Floor 17, Tower Wing, Guy’s Hospital, London SE1 9RT, UK; (L.I.); (L.D.)
| | - Lucy DiSilvio
- Centre for Oral, Clinical & Translational Sciences, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, Floor 17, Tower Wing, Guy’s Hospital, London SE1 9RT, UK; (L.I.); (L.D.)
| | | | - Sanjukta Deb
- Centre for Oral, Clinical & Translational Sciences, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, Floor 17, Tower Wing, Guy’s Hospital, London SE1 9RT, UK; (L.I.); (L.D.)
- Correspondence: author: ; Tel.: +44-0207-188-0143
| |
Collapse
|
11
|
Gupta S, Majumdar S, Krishnamurthy S. Bioactive glass: A multifunctional delivery system. J Control Release 2021; 335:481-497. [PMID: 34087250 DOI: 10.1016/j.jconrel.2021.05.043] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/18/2022]
Abstract
Bioactive glasses (BAGs) were invented five decades ago and have been widely used clinically in orthopedic and stomatology. However, in the past two decades, BAGs have been explored immensely by several researchers worldwide as a multifunctional delivery system for a multitude of therapeutics ranging from metal ions to small molecules (e.g., drugs) and macromolecules (e.g., DNA). The impetus for devising a BAG-based delivery system in the 21st century is based upon the facilitative properties it offers for entrapment of a wide range of therapeutic molecules and the tailorable controlled release kinetics to the target tissue site along with the biological activity of the ionic dissolution products in several pathological conditions such as osteoporosis, cancer, infection, and inflammation. This review comprises two parts: the first part discusses the need for a new delivery system and how the journey from melt quench progressed towards template-based sol-gel mesoporous. In the second part, we have comprehended the scientific advancements made so far, emphasizing BAGs as a delivery system ranging from therapeutic ions to phytopharmaceuticals. We have also highlighted a few loopholes that have prevented bench-to-bedside clinical translation of a plethora of elucidative researches done so far.
Collapse
Affiliation(s)
- Smriti Gupta
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Shreyasi Majumdar
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Sairam Krishnamurthy
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India.
| |
Collapse
|
12
|
Shafiei N, Nasrollahzadeh M, Iravani S. Green Synthesis of Silica and Silicon Nanoparticles and Their Biomedical and Catalytic Applications. COMMENT INORG CHEM 2021. [DOI: 10.1080/02603594.2021.1904912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nasrin Shafiei
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran
| | | | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
13
|
Miola M, Massera J, Cochis A, Kumar A, Rimondini L, Vernè E. Tellurium: A new active element for innovative multifunctional bioactive glasses. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111957. [PMID: 33812585 DOI: 10.1016/j.msec.2021.111957] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/06/2020] [Accepted: 02/07/2021] [Indexed: 12/28/2022]
Abstract
Bioactive glasses have been widely investigated for their ability to release ions with therapeutic effect. In this paper, a silica based bioactive glass was doped with a low amount of tellurium dioxide (1 and 5 mol%) to confer antibacterial and antioxidant properties. The obtained glasses were characterized in terms of morphology, composition, structure, characteristic temperatures and in vitro bioactivity. Moreover, comprehensive analyses were carried out to estimate the cytocompatibility, the antibacterial and antioxidant properties of Te-doped glasses. The performed characterizations demonstrated that the Te insertion did not interfere with the amorphous nature of the glass, the substitution of SiO2 with TeO2 led to a slight decrease in Tg and a TeO2 amount higher than 1 mol% can induce a change in the primary crystal field. In vitro bioactivity test demonstrated the Te-doped glass ability to induce the precipitation of hydroxyapatite. Finally, the biological characterization showed a strong antibacterial and antioxidant effects of Te-containing glasses in comparison with the control glass, demonstrating that Te is a promising element to enhance the biological response of biomaterials.
Collapse
Affiliation(s)
- Marta Miola
- Department of Applied Science and Technology, Politecnico di Torino, corso Duca degli Abruzzi 24, 10129 Torino, TO, Italy; PolitoBioMED Lab, Politecnico di Torino, Via Piercarlo Boggio 59, 10138 Torino, TO, Italy.
| | - Jonathan Massera
- Faculty of Medicine and Health Technology, Laboratory of Biomaterials and Tissue Engineering, Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland
| | - Andrea Cochis
- Department of Health Sciences, Università del Piemonte Orientale UPO, Via Solaroli 17, 28100 Novara, NO, Italy; Interdisciplinary Research Center of Autoimmune Diseases, Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Corso Trieste 15A, 28100 Novara, NO, Italy
| | - Ajay Kumar
- Department of Health Sciences, Università del Piemonte Orientale UPO, Via Solaroli 17, 28100 Novara, NO, Italy; Interdisciplinary Research Center of Autoimmune Diseases, Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Corso Trieste 15A, 28100 Novara, NO, Italy
| | - Lia Rimondini
- Department of Health Sciences, Università del Piemonte Orientale UPO, Via Solaroli 17, 28100 Novara, NO, Italy; Interdisciplinary Research Center of Autoimmune Diseases, Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Corso Trieste 15A, 28100 Novara, NO, Italy
| | - Enrica Vernè
- Department of Applied Science and Technology, Politecnico di Torino, corso Duca degli Abruzzi 24, 10129 Torino, TO, Italy; PolitoBioMED Lab, Politecnico di Torino, Via Piercarlo Boggio 59, 10138 Torino, TO, Italy
| |
Collapse
|
14
|
Zheng T, Huang Y, Zhang X, Cai Q, Deng X, Yang X. Mimicking the electrophysiological microenvironment of bone tissue using electroactive materials to promote its regeneration. J Mater Chem B 2020; 8:10221-10256. [PMID: 33084727 DOI: 10.1039/d0tb01601b] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The process of bone tissue repair and regeneration is complex and requires a variety of physiological signals, including biochemical, electrical and mechanical signals, which collaborate to ensure functional recovery. The inherent piezoelectric properties of bone tissues can convert mechanical stimulation into electrical effects, which play significant roles in bone maturation, remodeling and reconstruction. Electroactive materials, including conductive materials, piezoelectric materials and electret materials, can simulate the physiological and electrical microenvironment of bone tissue, thereby promoting bone regeneration and reconstruction. In this paper, the structures and performances of different types of electroactive materials and their applications in the field of bone repair and regeneration are reviewed, particularly by providing the results from in vivo evaluations using various animal models. Their advantages and disadvantages as bone repair materials are discussed, and the methods for tuning their performances are also described, with the aim of providing an up-to-date account of the proposed topics.
Collapse
Affiliation(s)
- Tianyi Zheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Yiqian Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| |
Collapse
|
15
|
Chetan, Vijayalakshmi U. Structural phase formation and in vitro bioactivity evaluations of strontium phosphosilicate for orthopedic applications. J Biomed Mater Res B Appl Biomater 2020; 108:3286-3301. [DOI: 10.1002/jbm.b.34665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/10/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Chetan
- Department of Chemistry, School of Advanced Sciences Vellore Institute of Technology Vellore Tamil Nadu India
| | - Uthirapathy Vijayalakshmi
- Department of Chemistry, School of Advanced Sciences Vellore Institute of Technology Vellore Tamil Nadu India
| |
Collapse
|
16
|
Alcala-Orozco CR, Mutreja I, Cui X, Kumar D, Hooper GJ, Lim KS, Woodfield TB. Design and characterisation of multi-functional strontium-gelatin nanocomposite bioinks with improved print fidelity and osteogenic capacity. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.bprint.2019.e00073] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Shaltooki M, Dini G, Mehdikhani M. Fabrication of chitosan-coated porous polycaprolactone/strontium-substituted bioactive glass nanocomposite scaffold for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110138. [PMID: 31546409 DOI: 10.1016/j.msec.2019.110138] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/24/2019] [Accepted: 08/25/2019] [Indexed: 11/25/2022]
Abstract
In the present study, porous (about 70 vol%) nanocomposite scaffolds made of polycaprolactone (PCL) and different amounts (0 to 15 wt%) of 45S bioactive glass (BG) nanoparticles (with a particle size of about 40 nm) containing 7 wt% strontium (Sr) were fabricated by solvent casting technique for bone tissue engineering. Then, a selected optimum scaffold was coated with a thin layer of chitosan containing 15 wt% Sr-substituted BG nanoparticles. Several techniques such as X-ray fluorescence spectroscopy (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), dynamic light scattering (DLS), Fourier-transform infrared spectroscopy (FTIR), tensile test, and water contact angle measurement were used to characterize the fabricated samples. In vitro experiments including degradation, bioactivity, and biocompatibility (i.e., cytotoxicity, alkaline phosphate activity, and cell adhesion) tests of the fabricated scaffold were performed. The biomedical behavior of the fabricated PCL-based composite scaffold was interpreted by considering the presence of the porosity, Sr-substituted BG nanoparticles, and the chitosan coating. In conclusion, the fabricated chitosan-coated porous PCL/BG nanocomposite containing 15 wt% BG nanoparticles could be utilized as a good candidate for bone tissue engineering.
Collapse
Affiliation(s)
- M Shaltooki
- Department of Nanotechnology Engineering, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441, Iran
| | - G Dini
- Department of Nanotechnology Engineering, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441, Iran.
| | - M Mehdikhani
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan 81746-73441, Iran
| |
Collapse
|
18
|
Terzopoulou Z, Baciu D, Gounari E, Steriotis T, Charalambopoulou G, Tzetzis D, Bikiaris D. Composite Membranes of Poly(ε-caprolactone) with Bisphosphonate-Loaded Bioactive Glasses for Potential Bone Tissue Engineering Applications. Molecules 2019; 24:E3067. [PMID: 31450742 PMCID: PMC6749304 DOI: 10.3390/molecules24173067] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/16/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
Poly(ε-caprolactone) (PCL) is a bioresorbable synthetic polyester with numerous biomedical applications. PCL membranes show great potential in guided tissue regeneration because they are biocompatible, occlusive and space maintaining, but lack osteoconductivity. Therefore, two different types of mesoporous bioactive glasses (SiO2-CaO-P2O5 and SiO2-SrO-P2O5) were synthesized and incorporated in PCL thin membranes by spin coating. To enhance the osteogenic effect of resulting membranes, the bioglasses were loaded with the bisphosphonate drug ibandronate prior to their incorporation in the polymeric matrix. The effect of the composition of the bioglasses as well as the presence of absorbed ibandronate on the physicochemical, cell attachment and differentiation properties of the PCL membranes was evaluated. Both fillers led to a decrease of the crystallinity of PCL, along with an increase in its hydrophilicity and a noticeable increase in its bioactivity. Bioactivity was further increased in the presence of a Sr substituted bioglass loaded with ibandronate. The membranes exhibited excellent biocompatibility upon estimation of their cytotoxicity on Wharton's Jelly Mesenchymal Stromal Cells (WJ-SCs), while they presented higher osteogenic potential in comparison with neat PCL after WJ-SCs induced differentiation towards bone cells, which was enhanced by a possible synergistic effect of Sr and ibandronate.
Collapse
Affiliation(s)
- Zoi Terzopoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Central Macedonia, Greece.
| | - Diana Baciu
- National Center for Scientific Research "Demokritos", GR15341 Athens, Ag. Paraskevi Attikis, Greece
| | - Eleni Gounari
- Biohellenika Biotechnology Company, Leoforos Georgikis Scholis 65, GR57001 Thessaloniki, Central Macedonia, Greece
| | - Theodore Steriotis
- National Center for Scientific Research "Demokritos", GR15341 Athens, Ag. Paraskevi Attikis, Greece
| | - Georgia Charalambopoulou
- National Center for Scientific Research "Demokritos", GR15341 Athens, Ag. Paraskevi Attikis, Greece
| | - Dimitrios Tzetzis
- School of Science and Technology, International Hellenic University, GR57001 Thermi, Central Macedonia, Greece
| | - Dimitrios Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Central Macedonia, Greece
| |
Collapse
|
19
|
Kargozar S, Montazerian M, Fiume E, Baino F. Multiple and Promising Applications of Strontium (Sr)-Containing Bioactive Glasses in Bone Tissue Engineering. Front Bioeng Biotechnol 2019; 7:161. [PMID: 31334228 PMCID: PMC6625228 DOI: 10.3389/fbioe.2019.00161] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/20/2019] [Indexed: 12/22/2022] Open
Abstract
Improving and accelerating bone repair still are partially unmet needs in bone regenerative therapies. In this regard, strontium (Sr)-containing bioactive glasses (BGs) are highly-promising materials to tackle this challenge. The positive impacts of Sr on the osteogenesis makes it routinely used in the form of strontium ranelate (SR) in the clinical setting, especially for patients suffering from osteoporosis. Therefore, a large number of silicate-, borate-, and phosphate-based BGs doped with Sr and produced in different shapes have been developed and characterized, in order to be used in the most advanced therapeutic strategies designed for the management of bone defects and injuries. Although the influence of Sr incorporation in the glass is debated regarding the obtained physicochemical and mechanical properties, the biological improvements have been found to be substantial both in vitro and in vivo. In the present study, we provide a comprehensive overview of Sr-containing glasses along with the current state of their clinical use. For this purpose, different types of Sr-doped BG systems are described, including composites, coatings and porous scaffolds, and their applications are discussed in the light of existing experimental data along with the significant challenges ahead.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maziar Montazerian
- Center for Research, Technology and Education in Vitreous Materials, Federal University of São Carlos, São Carlos, Brazil
| | - Elisa Fiume
- Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Politecnico di Torino, Turin, Italy
| | - Francesco Baino
- Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Italy
| |
Collapse
|
20
|
Polysiloxanes as polymer matrices in biomedical engineering: their interesting properties as the reason for the use in medical sciences. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02869-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Goodarzi H, Hashemi-Najafabadi S, Baheiraei N, Bagheri F. Preparation and Characterization of Nanocomposite Scaffolds (Collagen/β-TCP/SrO) for Bone Tissue Engineering. Tissue Eng Regen Med 2019; 16:237-251. [PMID: 31205853 PMCID: PMC6542929 DOI: 10.1007/s13770-019-00184-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/27/2019] [Accepted: 01/29/2019] [Indexed: 02/07/2023] Open
Abstract
Background Nowadays, production of nanocomposite scaffolds based on natural biopolymer, bioceramic, and metal ions is a growing field of research due to the potential for bone tissue engineering applications. Methods In this study, a nanocomposite scaffold for bone tissue engineering was successfully prepared using collagen (COL), beta-tricalcium phosphate (β-TCP) and strontium oxide (SrO). A composition of β-TCP (4.9 g) was prepared by doping with SrO (0.05 g). Biocompatible porous nanocomposite scaffolds were prepared by freeze-drying in different formulations [COL, COL/β-TCP (1:2 w/w), and COL/β-TCP-Sr (1:2 w/w)] to be used as a provisional matrix or scaffold for bone tissue engineering. The nanoparticles were characterized by X-ray diffraction, Fourier transforms infrared spectroscopy and energy dispersive spectroscopy. Moreover, the prepared scaffolds were characterized by physicochemical properties, such as porosity, swelling ratio, biodegradation, mechanical properties, and biomineralization. Results All the scaffolds had a microporous structure with high porosity (~ 95-99%) and appropriate pore size (100-200 μm). COL/β-TCP-Sr scaffolds had the compressive modulus (213.44 ± 0.47 kPa) higher than that of COL/β-TCP (33.14 ± 1.77 kPa). In vitro cytocompatibility, cell attachment and alkaline phosphatase (ALP) activity studies performed using rat bone marrow mesenchymal stem cells. Addition of β-TCP-Sr to collagen scaffolds increased ALP activity by 1.33-1.79 and 2.92-4.57 folds after 7 and 14 days of culture, respectively. Conclusion In summary, it was found that the incorporation of Sr into the collagen-β-TCP scaffolds has a great potential for bone tissue engineering applications.
Collapse
Affiliation(s)
- Hamid Goodarzi
- Department of Biomedical Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Jalal ale Ahmad Highway, P.O. Box 14115-114, Tehran, Iran
| | - Sameereh Hashemi-Najafabadi
- Department of Biomedical Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Jalal ale Ahmad Highway, P.O. Box 14115-114, Tehran, Iran
| | - Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal ale Ahmad Highway, P.O. Box 14115-331, Tehran, Iran
| | - Fatemeh Bagheri
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Jalal ale Ahmad Highway, P.O. Box 14115-114, Tehran, Iran
| |
Collapse
|
22
|
Moghanian A, Firoozi S, Tahriri M, Sedghi A. A comparative study on the in vitro formation of hydroxyapatite, cytotoxicity and antibacterial activity of 58S bioactive glass substituted by Li and Sr. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:349-360. [PMID: 30033264 DOI: 10.1016/j.msec.2018.05.058] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/09/2018] [Accepted: 05/17/2018] [Indexed: 01/10/2023]
Abstract
Lithium and strontium up to 10 mol% have been substituted for calcium in 58S bioactive glasses in order to enhance specific biological properties such as proliferation, alkaline phosphatase (ALP) activity of cells as well as antibacterial activity. In-vitro formation of hydroxyapatite was studied using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), inductively coupled plasma atomic emission spectrometry (ICP-AES) and scanning electron microscopy (SEM). Substitution of either Li or Sr for Ca in the composition had a retarding effect on the bioactivity while Li decreased and Sr increased the rate of ion release in the simulated body fluid solution. The dissolution rate showed to be inversely proportional to oxygen density of the bioactive glasses. The proposed mechanisms for the lowered bioactivity are a lower supersaturation degree for nucleation of apatite in Li substituted bioactive glasses and blocking of the active growth sites of calcium phosphate by Sr2+ in Sr substituted bioactive glasses. The proliferation rate and alkaline phosphate activity of osteoblast cell line MC3T3-E1 treated with Li and Sr bioactive glasses were studied. 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and alkaline phosphate assay showed that all synthesized bioactive glasses with exception of 58S with 10 mol% SrO, exhibited statistically significant increase in both cell proliferation and alkaline phosphatase activity. Finally, 58S bioactive glass with 5 mol% Li2O substitution for CaO was considered as a potential biomaterial in bone repair/regeneration therapies with enhanced biocompatibility, and alkaline phosphate activity, with a negligible loss in the bioactivity compared to the 58S bioglass. At the same time this composition had the highest antibacterial activity against methicillin-resistant Staphylococcus aureus bacteria among all synthesized Li and Sr substituted bioactive glasses.
Collapse
Affiliation(s)
- Amirhossein Moghanian
- Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, 424 Hafez Ave., Tehran 15875-4413, Iran; Department of Materials Engineering, Imam Khomeini International University, Qazvin 34149-16818, Iran.
| | - Sadegh Firoozi
- Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, 424 Hafez Ave., Tehran 15875-4413, Iran
| | | | - Arman Sedghi
- Department of Materials Engineering, Imam Khomeini International University, Qazvin 34149-16818, Iran
| |
Collapse
|
23
|
Albert K, Huang XC, Hsu HY. Bio-templated silica composites for next-generation biomedical applications. Adv Colloid Interface Sci 2017; 249:272-289. [PMID: 28499603 DOI: 10.1016/j.cis.2017.04.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/13/2017] [Accepted: 04/21/2017] [Indexed: 11/28/2022]
Abstract
Silica-based materials have extensive biomedical applications owing to their unique physical, chemical, and biological properties. Recently, increasing studies have examined the mechanisms involved in biosilicification to develop novel, fine-tunable, eco-friendly materials and/or technologies. In this review, we focus on recent developments in bio-templated silica synthesis and relevant applications in drug delivery systems, tissue engineering, and biosensing.
Collapse
Affiliation(s)
- Karunya Albert
- Institute of Molecular Science, National Chiao-Tung University, No. 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
| | - Xin-Chun Huang
- Department of Applied Chemistry, National Chiao-Tung University, No. 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
| | - Hsin-Yun Hsu
- Institute of Molecular Science, National Chiao-Tung University, No. 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan; Department of Applied Chemistry, National Chiao-Tung University, No. 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan.
| |
Collapse
|
24
|
Ding Y, Su Y, Lv Z, Sun H, Bi X, Lu L, Zhou H, You Z, Wang Y, Ruan J, Gu P, Fan X. Poly (fumaroyl bioxirane) maleate: A potential functional scaffold for bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:249-259. [PMID: 28482524 DOI: 10.1016/j.msec.2017.02.164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/24/2017] [Accepted: 02/28/2017] [Indexed: 12/14/2022]
Abstract
Proper scaffolds combined with mesenchymal stem cells (MSCs) represent a promising strategy for repairing bone defects. In a previous study, poly (fumaroyl bioxirane) maleate (PFM), a newly developed functional polymer with numerous functional groups, exhibited excellent biocompatibility and enhanced the alkaline phosphatase (ALP) activity of osteoblasts in vitro. Here, to provide further and comprehensive insight into the application of PFM in bone tissue engineering, we investigated the osteoinductive potential of PFM cultured with rat adipose-derived mesenchymal stem cells (rADSCs). The results showed that PFM resulted in greater proliferation of rADSCs and that the PFM substrate had stronger osteoinductivity than PLGA and the control, as indicated by the significant upregulation of osteogenesis-related genes, proteins and calcium mineralization in vitro. Next, PFM was combined with rADSCs to repair a critical-sized calvarial defect in rats. Compared to the PLGA scaffold, the PFM scaffold significantly promoted new bone formation and exhibited excellent effects in repairing rat calvarial defects. In conclusion, PFM possesses strong osteoinductivity, which could markedly enhance bone regeneration, suggesting that PFM could serve as a promising and effective optimization method for traditional scaffolds in bone regeneration.
Collapse
Affiliation(s)
- Yi Ding
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, People's Republic of China
| | - Yun Su
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, People's Republic of China
| | - Ziyin Lv
- Biomaterials and Tissue Engineering Laboratory, College of Chemistry & Chemical Engineering and Biotechnology, Donghua University, Shanghai, People's Republic of China
| | - Hao Sun
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, People's Republic of China
| | - Xiaoping Bi
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, People's Republic of China
| | - Linna Lu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, People's Republic of China
| | - Huifang Zhou
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, People's Republic of China
| | - Zhengwei You
- Biomaterials and Tissue Engineering Laboratory, College of Chemistry & Chemical Engineering and Biotechnology, Donghua University, Shanghai, People's Republic of China
| | - Yadong Wang
- Departments of Bioengineering, Chemical Engineering, Surgery, and the McGowan Institute, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15261, USA
| | - Jing Ruan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, People's Republic of China.
| | - Ping Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, People's Republic of China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, People's Republic of China.
| |
Collapse
|