1
|
Kyser AJ, Fotouh B, Harris V, Patel R, Maners C, Frieboes HB. Electrospun nanofibers: Focus on local therapeutic delivery targeting infectious disease. J Drug Deliv Sci Technol 2025; 104:106520. [PMID: 39802685 PMCID: PMC11720493 DOI: 10.1016/j.jddst.2024.106520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Whether it be due to genetic variances, lack of patient adherence, or sub-optimal drug metabolism, the risk of antibiotic resistance from medications administered systemically continues to pose significant challenges to fighting infectious diseases. Ideally, infections would be treated locally for maximal efficacy while minimizing off-target effects. The electrospinning of biomaterials has recently facilitated the creation of electrospun nanofibers as an alternative delivery vehicle for local treatment. This review describes electrospun nanofiber applications to locally target various infectious diseases. Electrospinning is first reviewed as a method to fabricate nanofiber platforms with advantageous properties for developing drug delivery systems. The emergence of artificial intelligence to facilitate the development of nanofiber formulations and the evaluation of operating parameters to customize therapeutic behavior are described. A range of biomaterials utilized for electrospinning nanofibers is summarized in the context of properties suitable for drug delivery, particularly to treat infectious diseases. The current body of literature for electrospun nanofiber applications to tackle infectious diseases, including sexually transmitted infections, oral infections, and Staphylococcus Aureus infections is described. We anticipate that the advantages of electrospun nanofibers to facilitate targeted application while minimizing antibiotic resistance will substantially expand their clinical use in coming years.
Collapse
Affiliation(s)
- Anthony J. Kyser
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY, 40202
| | - Bassam Fotouh
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY, 40202
| | - Victoria Harris
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY, 40202
| | - Rudra Patel
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY, 40202
| | - Caden Maners
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY, 40202
| | - Hermann B. Frieboes
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY, 40202
- Center for Predictive Medicine, University of Louisville, Louisville, KY, 40202
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202
- UofL Health – Brown Cancer Center, University of Louisville, KY, 40202
| |
Collapse
|
2
|
Minooei F, Kanukunta AR, Mahmoud MY, Gilbert NM, Lewis WG, Lewis AL, Frieboes HB, Steinbach-Rankins JM. Mesh and layered electrospun fiber architectures as vehicles for Lactobacillus acidophilus and Lactobacillus crispatus intended for vaginal delivery. BIOMATERIALS ADVANCES 2023; 154:213614. [PMID: 37659215 PMCID: PMC10873095 DOI: 10.1016/j.bioadv.2023.213614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
Bacterial vaginosis (BV) is a recurrent condition that affects millions of women worldwide. The use of probiotics is a promising alternative or an adjunct to traditional antibiotics for BV prevention and treatment. However, current administration regimens often require daily administration, thus contributing to low user adherence and recurrence. Here, electrospun fibers were designed to separately incorporate and sustain two lactic acid producing model organisms, Lactobacillus crispatus (L. crispatus) and Lactobacillus acidophilus (L. acidophilus). Fibers were made of polyethylene oxide and polylactic-co-glycolic acid in two different architectures, one with distinct layers and the other with co-spun components. Degradation of mesh and layered fibers was evaluated via mass loss and scanning electron microscopy. The results show that after 48 h and 6 days, cultures of mesh and layered fibers yielded as much as 108 and 109 CFU probiotic/mg fiber in total, respectively, with corresponding daily recovery on the order of 108 CFU/(mg·day). In addition, cultures of the fibers yielded lactic acid and caused a significant reduction in pH, indicating a high level of metabolic activity. The formulations did not affect vaginal keratinocyte viability or cell membrane integrity in vitro. Finally, mesh and layered probiotic fiber dosage forms demonstrated inhibition of Gardnerella, one of the most prevalent and abundant bacteria associated with BV, respectively resulting in 8- and 6.5-log decreases in Gardnerella viability in vitro after 24 h. This study provides initial proof of concept that mesh and layered electrospun fiber architectures developed as dissolving films may offer a viable alternative to daily probiotic administration.
Collapse
Affiliation(s)
- Farnaz Minooei
- Department of Chemical Engineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA.
| | - Abhinav R Kanukunta
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA.
| | - Mohamed Y Mahmoud
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - Nicole M Gilbert
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Warren G Lewis
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA; Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA
| | - Amanda L Lewis
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA; Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA.
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Center for Predictive Medicine, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; UofL Health - Brown Cancer Center, University of Louisville, KY 40202, USA.
| | - Jill M Steinbach-Rankins
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Center for Predictive Medicine, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
3
|
Celebioglu A, Uyar T. Green Synthesis of Polycyclodextrin/Drug Inclusion Complex Nanofibrous Hydrogels: pH-Dependent Release of Acyclovir. ACS APPLIED BIO MATERIALS 2023; 6:3798-3809. [PMID: 37602902 DOI: 10.1021/acsabm.3c00446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
The development of an approach or a material for wound healing treatments has drawn a lot of attention for decades and has been an important portion of the research in the medical industry. Especially, there is growing interest and demand for the generation of wound care products using eco-friendly conditions. Electrospinning is one of these methods that enables the production of nanofibrous materials with attractive properties for wound healing under mild conditions and by using sustainable sources. In this study, starch-derived cyclodextrin (hydroxypropyl-β-cyclodextrin (HPβCD)) was used both for forming an inclusion complex (IC) with acyclovir, a well-known antiviral drug, and for electrospinning of free-standing nanofibers. The nanofibers were produced in an aqueous system, without using a carrier polymer matrix and toxic solvent/chemical. The ultimate HPβCD/acyclovir-IC nanofibers were thermally cross-linked by using citric acid, listed in the generally regarded as safe (GRAS) category by the US Food and Drug Administration (FDA). The cross-linked HPβCD/acyclovir-IC nanofibers displayed stability in aqueous medium. The hydrogel-forming feature of nanofibers was confirmed with their high swelling profile in water in the range of ∼610-810%. Cellulose acetate (CA)/acyclovir nanofibers were also produced as the control sample. Due to inclusion complexation with HPβCD, the solubility of acyclovir was improved, so cross-linked HPβCD/acyclovir-IC nanofibrous hydrogels displayed a better release performance compared to CA/acyclovir nanofibers. Here, a pH-dependent release profile was obtained (pH 5.4 and pH 7.4) besides their attractive swelling features. Therefore, the cross-linked HPβCD/acyclovir-IC nanofibrous hydrogel can be a promising candidate as a wound healing dressing for the administration of antiviral drugs by holding the unique properties of CD and electrospun nanofibers.
Collapse
Affiliation(s)
- Asli Celebioglu
- Fiber Science Program, Department of Human Centered Design College of Human Ecology, Cornell University, Ithaca, New York 14853, United States
| | - Tamer Uyar
- Fiber Science Program, Department of Human Centered Design College of Human Ecology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
4
|
Minooei F, Gilbert NM, Zhang L, Sarah NeCamp M, Mahmoud MY, Kyser AJ, Tyo KM, Watson WH, Patwardhan R, Lewis WG, Frieboes HB, Lewis AL, Steinbach-Rankins JM. Rapid-dissolving electrospun nanofibers for intra-vaginal antibiotic or probiotic delivery. Eur J Pharm Biopharm 2023; 190:81-93. [PMID: 37479065 PMCID: PMC10530173 DOI: 10.1016/j.ejpb.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
The emergence of probiotics as an alternative and adjunct to antibiotic treatment for microbiological disturbances of the female genitourinary system requires innovative delivery platforms for vaginal applications. This study developed a new, rapid-dissolving form using electrospun polyethylene oxide (PEO) fibers for delivery of antibiotic metronidazole or probiotic Lactobacillus acidophilus, and performed evaluation in vitro and in vivo. Fibers did not generate overt pathophysiology or encourage Gardnerella growth in a mouse vaginal colonization model, inducing no alterations in vaginal mucosa at 24 hr post-administration. PEO-fibers incorporating metronidazole (100 µg MET/mg polymer) effectively prevented and treated Gardnerella infections (∼3- and 2.5-log reduction, respectively, 24 hr post treatment) when administered vaginally. Incorporation of live Lactobacillus acidophilus (107 CFU/mL) demonstrated viable probiotic delivery in vitro by PEO and polyvinyl alcohol (PVA) fibers to inhibit Gardnerella (108 CFU/mL) in bacterial co-cultures (9.9- and 7.0-log reduction, respectively, 24 hr post-inoculation), and in the presence of vaginal epithelial cells (6.9- and 8.0-log reduction, respectively, 16 hr post-inoculation). Administration of Lactobacillus acidophilus in PEO-fibers achieved vaginal colonization in mice similar to colonization observed with free Lactobacillus. acidophilus. These experiments provide proof-of-concept for rapid-dissolving electrospun fibers as a successful platform for intra-vaginal antibiotic or probiotic delivery.
Collapse
Affiliation(s)
- Farnaz Minooei
- Department of Chemical Engineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA
| | - Nicole M Gilbert
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Longyun Zhang
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA
| | - Mary Sarah NeCamp
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA
| | - Mohamed Y Mahmoud
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Anthony J Kyser
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA
| | - Kevin M Tyo
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Walter H Watson
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, School of Medicine, University of Louisville, KY 40202, USA
| | - Ruta Patwardhan
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA
| | - Warren G Lewis
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA USA; Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA USA
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Center for Predictive Medicine, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA; UofL Health - Brown Cancer Center, University of Louisville, KY, 40202, USA.
| | - Amanda L Lewis
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA USA; Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA USA
| | - Jill M Steinbach-Rankins
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Center for Predictive Medicine, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA; Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
5
|
Hadinejad F, Morad H, Jahanshahi M, Zarrabi A, Pazoki-Toroudi H, Mostafavi E. A Novel Vision of Reinforcing Nanofibrous Masks with Metal Nanoparticles: Antiviral Mechanisms Investigation. ADVANCED FIBER MATERIALS 2023; 5:1-45. [PMID: 37361103 PMCID: PMC10088653 DOI: 10.1007/s42765-023-00275-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/13/2023] [Indexed: 06/28/2023]
Abstract
Prevention of spreading viral respiratory disease, especially in case of a pandemic such as coronavirus disease of 2019 (COVID-19), has been proved impossible without considering obligatory face mask-wearing protocols for both healthy and contaminated populations. The widespread application of face masks for long hours and almost everywhere increases the risks of bacterial growth in the warm and humid environment inside the mask. On the other hand, in the absence of antiviral agents on the surface of the mask, the virus may have a chance to stay alive and be carried to different places or even put the wearers at risk of contamination when touching or disposing the masks. In this article, the antiviral activity and mechanism of action of some of the potent metal and metal oxide nanoparticles in the role of promising virucidal agents have been reviewed, and incorporation of them in an electrospun nanofibrous structure has been considered an applicable method for the fabrication of innovative respiratory protecting materials with upgraded safety levels. Graphical Abstract
Collapse
Affiliation(s)
- Farinaz Hadinejad
- Nanotechnology Research Institute, Faculty of Chemical Engineering, Babol Noushirvani University of Technology, Babol, 4714873113 Iran
| | - Hamed Morad
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, 1475886973 Iran
- Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, 4691710001 Iran
| | - Mohsen Jahanshahi
- Nanotechnology Research Institute, Faculty of Chemical Engineering, Babol Noushirvani University of Technology, Babol, 4714873113 Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396 Turkey
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, 1449614535 Iran
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, 1449614535 Iran
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305 USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305 USA
| |
Collapse
|
6
|
Overview of Antimicrobial Biodegradable Polyester-Based Formulations. Int J Mol Sci 2023; 24:ijms24032945. [PMID: 36769266 PMCID: PMC9917530 DOI: 10.3390/ijms24032945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 02/05/2023] Open
Abstract
As the clinical complications induced by microbial infections are known to have life-threatening side effects, conventional anti-infective therapy is necessary, but not sufficient to overcome these issues. Some of their limitations are connected to drug-related inefficiency or resistance and pathogen-related adaptive modifications. Therefore, there is an urgent need for advanced antimicrobials and antimicrobial devices. A challenging, yet successful route has been the development of new biostatic or biocide agents and biomaterials by considering the indisputable advantages of biopolymers. Polymers are attractive materials due to their physical and chemical properties, such as compositional and structural versatility, tunable reactivity, solubility and degradability, and mechanical and chemical tunability, together with their intrinsic biocompatibility and bioactivity, thus enabling the fabrication of effective pharmacologically active antimicrobial formulations. Besides representing protective or potentiating carriers for conventional drugs, biopolymers possess an impressive ability for conjugation or functionalization. These aspects are key for avoiding malicious side effects or providing targeted and triggered drug delivery (specific and selective cellular targeting), and generally to define their pharmacological efficacy. Moreover, biopolymers can be processed in different forms (particles, fibers, films, membranes, or scaffolds), which prove excellent candidates for modern anti-infective applications. This review contains an overview of antimicrobial polyester-based formulations, centered around the effect of the dimensionality over the properties of the material and the effect of the production route or post-processing actions.
Collapse
|
7
|
Szymańska E, Wojasiński M, Dąbrowska J, Krzyżowska M, Nowicka M, Ciach T, Winnicka K. Chitosan-poly(ethylene oxide) nanofibrous mat as a vaginal platform for tenofovir disoproxyl fumarate - The effect of vaginal pH on drug carrier performance. Int J Biol Macromol 2022; 222:856-867. [PMID: 36174868 DOI: 10.1016/j.ijbiomac.2022.09.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/31/2022] [Accepted: 09/22/2022] [Indexed: 12/01/2022]
Abstract
In the present work, a solution blow spun nanofibrous mat comprised of chitosan (CS) and poly(ethylene oxide) (PEO) was obtained as vaginal platform for tenofovir disoproxil fumarate (TDF) to prevent sexually transmitted infections. Apart from physicochemical and mechanical analysis, the specific steps involved studies on nanofibrous mat mucoadhesive and swelling characteristics upon pH fluctuations over the physiological range. Physicochemical analysis showed uniform drug distribution within the CS/PEO mat volume and pointed toward physical interactions between the drug and polymers. TDF-loaded CS/PEO nanofibrous mat was shown potentially safe when evaluated by the MTT metabolic activity and JC-1 assays in human vaginal epithelial cells VK2-E6/E7. In vitro antiviral studies indicated inhibition efficacy of TDF-CS/PEO nanofibrous mat toward HSV-2 virus and proved the SBS process does not change the microbicidal activity of drug molecule. Fluctuations in the physiological vaginal pH range of 3.8 to 5.0 substantially affected mucoadhesive and swelling behavior of chitosan which in turn impacted drug dissolution rate from polymer carrier. The rate of permeation and accumulation of TDF in vaginal tissue differed in response to vaginal pH. Faster drug permeation assessed at pH 5.0 suggests that an increase in vaginal pH could improve TDF bioavailability at earlier time points.
Collapse
Affiliation(s)
- Emilia Szymańska
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland.
| | - Michał Wojasiński
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland.
| | - Justyna Dąbrowska
- Adamed Pharma S.A., Preformulation Department R&D, Pieńków 149, 05-152 Czosnów, Poland.
| | | | - Magdalena Nowicka
- Clinic of Surgery and Aesthetic Medicine Noviline, Fabryczna 4, 15-483 Białystok, Poland.
| | - Tomasz Ciach
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland; Centre for Advanced Materials and Technologies (CEZAMAT), Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland.
| | - Katarzyna Winnicka
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland.
| |
Collapse
|
8
|
Cazorla-Luna R, Ruiz-Caro R, Veiga MD, Malcolm RK, Lamprou DA. Recent advances in electrospun nanofiber vaginal formulations for women's sexual and reproductive health. Int J Pharm 2021; 607:121040. [PMID: 34450222 DOI: 10.1016/j.ijpharm.2021.121040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 12/22/2022]
Abstract
Electrospinning is an innovative technique that allows production of nanofibers and microfibers by applying a high voltage to polymer solutions of melts. The properties of these fibers - which include high surface area, high drug loading capacity, and ability to be manufactured from mucoadhesive polymers - may be particularly useful in a myriad of drug delivery and tissue engineering applications. The last decade has witnessed a surge of interest in the application of electrospinning technology for the fabrication of vaginal drug delivery systems for the treatment and prevention of diseases associated with women's sexual and reproductive health, including sexually transmitted infections (e.g. infection with human immunodeficiency virus and herpes simplex virus) vaginitis, preterm birth, contraception, multipurpose prevention technology strategies, cervicovaginal cancer, and general maintenance of vaginal health. Due to their excellent mechanical properties, electrospun scaffolds are also being investigated as next-generation materials in the surgical treatment of pelvic organ prolapse. In this article, we review the latest advances in the field.
Collapse
Affiliation(s)
- Raúl Cazorla-Luna
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Roberto Ruiz-Caro
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María-Dolores Veiga
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - R Karl Malcolm
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
9
|
Chandrashekhar P, Minooei F, Arreguin W, Masigol M, Steinbach-Rankins JM. Perspectives on Existing and Novel Alternative Intravaginal Probiotic Delivery Methods in the Context of Bacterial Vaginosis Infection. AAPS J 2021; 23:66. [PMID: 33973067 PMCID: PMC8356663 DOI: 10.1208/s12248-021-00602-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/27/2021] [Indexed: 12/17/2022] Open
Abstract
Bacterial vaginosis (BV) is one of the most common vaginal infections that affects hundreds of millions of women of reproductive age, worldwide. Traditional treatment strategies, such as oral and topical antibiotics, have shown efficacy against BV, but frequent recurrence of infection and the development of antibiotic-resistant bacteria remain as significant challenges. Alternatively, recent progress in understanding immune, microbiological, and metabolic interactions in the vaginal microbiota has prompted the consideration of administering probiotic organisms to restore and maintain vaginal health within the context of BV prevention and treatment. Given this, the objective of this review is to discuss existing and potential alternative approaches to deliver, and to potentially sustain the delivery of probiotics, to prevent and/or treat BV infections. First, a brief overview is provided regarding the probiotic species and combinatorial probiotic strategies that have shown promise in the treatment of BV and in restoring female reproductive health. Additionally, the advantages and challenges associated with current oral and intravaginal probiotic delivery platforms are discussed. Lastly, we present emerging and promising alternative dosage forms, such as electrospun fibers and 3D bioprinted scaffolds, that may be adapted as new strategies to intravaginally deliver probiotic organisms. Graphical abstract.
Collapse
Affiliation(s)
| | - Farnaz Minooei
- Department of Chemical Engineering, University of Louisville Speed School of Engineering, Louisville, Kentucky, USA
- Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Wenndy Arreguin
- Department of Bioengineering, University of Louisville Speed School of Engineering, 505 S. Hancock St., Room 623, Louisville, Kentucky, 40202, USA
| | - Mohammadali Masigol
- Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Bioengineering, University of Louisville Speed School of Engineering, 505 S. Hancock St., Room 623, Louisville, Kentucky, 40202, USA
| | - Jill M Steinbach-Rankins
- Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, USA.
- Department of Bioengineering, University of Louisville Speed School of Engineering, 505 S. Hancock St., Room 623, Louisville, Kentucky, 40202, USA.
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA.
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA.
| |
Collapse
|
10
|
Minooei F, Fried JR, Fuqua JL, Palmer KE, Steinbach-Rankins JM. In vitro Study on Synergistic Interactions Between Free and Encapsulated Q-Griffithsin and Antiretrovirals Against HIV-1 Infection. Int J Nanomedicine 2021; 16:1189-1206. [PMID: 33623382 PMCID: PMC7894819 DOI: 10.2147/ijn.s287310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/19/2020] [Indexed: 12/31/2022] Open
Abstract
Introduction Human immunodeficiency virus (HIV) remains a persistent global challenge, impacting 38 million people worldwide. Antiretrovirals (ARVs) including tenofovir (TFV), raltegravir (RAL), and dapivirine (DAP) have been developed to prevent and treat HIV-1 via different mechanisms of action. In parallel, a promising biological candidate, griffithsin (GRFT), has demonstrated outstanding preclinical safety and potency against HIV-1. While ARV co-administration has been shown to enhance virus inhibition, synergistic interactions between ARVs and the oxidation-resistant variant of GRFT (Q-GRFT) have not yet been explored. Here, we co-administered Q-GRFT with TFV, RAL, and DAP, in free and encapsulated forms, to identify unique protein-drug synergies. Methods Nanoparticles (NPs) were synthesized using a single or double-emulsion technique and release from each formulation was assessed in simulated vaginal fluid. Next, each ARV, in free and encapsulated forms, was co-administered with Q-GRFT or Q-GRFT NPs to evaluate the impact of co-administration in HIV-1 pseudovirus assays, and the combination indices were calculated to identify synergistic interactions. Using the most synergistic formulations, we investigated the effect of agent incorporation in NP-fiber composites on release properties. Finally, NP safety was assessed in vitro using MTT assay. Results All active agents were encapsulated in NPs with desirable encapsulation efficiency (15–100%), providing ~20% release over 2 weeks. The co-administration of free Q-GRFT with each free ARV resulted in strong synergistic interactions, relative to each agent alone. Similarly, Q-GRFT NP and ARV NP co-administration resulted in synergy across all formulations, with the most potent interactions between encapsulated Q-GRFT and DAP. Furthermore, the incorporation of Q-GRFT and DAP in NP-fiber composites resulted in burst release of DAP and Q-GRFT with a second phase of Q-GRFT release. Finally, all NP formulations exhibited safety in vitro. Conclusions This work suggests that Q-GRFT and ARV co-administration in free or encapsulated forms may improve efficacy in achieving prophylaxis.
Collapse
Affiliation(s)
- Farnaz Minooei
- Department of Chemical Engineering, University of Louisville Speed School of Engineering, Louisville, KY, USA
| | - Joel R Fried
- Department of Chemical Engineering, University of Louisville Speed School of Engineering, Louisville, KY, USA
| | - Joshua L Fuqua
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY, USA.,Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.,Center for Predictive Medicine, University of Louisville, Louisville, KY, USA
| | - Kenneth E Palmer
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.,Center for Predictive Medicine, University of Louisville, Louisville, KY, USA.,Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Jill M Steinbach-Rankins
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY, USA.,Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.,Center for Predictive Medicine, University of Louisville, Louisville, KY, USA.,Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
11
|
Celebioglu A, Uyar T. Electrospun formulation of acyclovir/cyclodextrin nanofibers for fast-dissolving antiviral drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 118:111514. [DOI: 10.1016/j.msec.2020.111514] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/24/2020] [Accepted: 09/04/2020] [Indexed: 01/14/2023]
|
12
|
Kłysik K, Pietraszek A, Karewicz A, Nowakowska M. Acyclovir in the Treatment of Herpes Viruses – A Review. Curr Med Chem 2020. [DOI: 10.2174/0929867325666180309105519] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background:
Herpes Simplex (HSV) viruses are widely spread, highly contagious
human pathogens. The statistics indicate that 50-90% of adults worldwide are seropositive for
these viruses, mainly HSV-1 and HSV-2. The primary infection results in the appearance of
watery blisters (cold sores) on the skin, lips, tongue, buccal mucosa or genitals. The ocular
infection is the major cause of corneal blindness in the Western World. Once the HSV virus
enters human body, it cannot be completely eradicated because HSV viruses are able to
change into their latent form which can survive the treatment. The viron resides in trigeminal
ganglia of the host, who becomes vulnerable to the reoccurrence of the disease during the
whole lifespan. The neurotropic and neuro-invasive properties of HSV are responsible for
neurodegenerative illnesses, such as Alzheimer's disease. Acyclovir and its analogues, being
the inhibitors of the viral DNA replication, are the only approved medicines for HSV infection
therapies.
Objective:
The current paper presents the up-to-date overview of the important pharmacological
features of acyclovir, its analogues and their delivery systems including the mechanism of
action, routes of administration, absorption and metabolism, as well as side effects of the therapy.
Conclusion:
Acyclovir remains the gold standard in the treatment of herpes virus infections,
mainly due to the emerging of the new delivery systems improving considerably its bioavailability.
The analogues of acyclovir, especially their esters, characterized by significantly
higher bioavailability and safety, may gradually replace acyclovir in selected applications.
Collapse
Affiliation(s)
- Katarzyna Kłysik
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Aneta Pietraszek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Anna Karewicz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Maria Nowakowska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| |
Collapse
|
13
|
Chen L, Liang J. An overview of functional nanoparticles as novel emerging antiviral therapeutic agents. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110924. [PMID: 32409074 PMCID: PMC7195146 DOI: 10.1016/j.msec.2020.110924] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/23/2020] [Accepted: 03/31/2020] [Indexed: 01/04/2023]
Abstract
Research on highly effective antiviral drugs is essential for preventing the spread of infections and reducing losses. Recently, many functional nanoparticles have been shown to possess remarkable antiviral ability, such as quantum dots, gold and silver nanoparticles, nanoclusters, carbon dots, graphene oxide, silicon materials, polymers and dendrimers. Despite their difference in antiviral mechanism and inhibition efficacy, these functional nanoparticles-based structures have unique features as potential antiviral candidates. In this topical review, we highlight the antiviral efficacy and mechanism of these nanoparticles. Specifically, we introduce various methods for analyzing the viricidal activity of functional nanoparticles and the latest advances in antiviral functional nanoparticles. Furthermore, we systematically describe the advantages and disadvantages of these functional nanoparticles in viricidal applications. Finally, we discuss the challenges and prospects of antiviral nanostructures. This topic review covers 132 papers and will enrich our knowledge about the antiviral efficacy and mechanism of various functional nanoparticles.
Collapse
Affiliation(s)
- Lu Chen
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jiangong Liang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
14
|
Rapid-Release Griffithsin Fibers for Dual Prevention of HSV-2 and HIV-1 Infections. Antimicrob Agents Chemother 2020; 64:AAC.02139-19. [PMID: 32229493 DOI: 10.1128/aac.02139-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/21/2020] [Indexed: 12/18/2022] Open
Abstract
The biologic griffithsin (GRFT) has recently emerged as a candidate to safely prevent sexually transmitted infections (STIs), including human immunodeficiency virus type 1 (HIV-1) and herpes simplex virus 2 (HSV-2). However, to date, there are few delivery platforms that are available to effectively deliver biologics to the female reproductive tract (FRT). The goal of this work was to evaluate rapid-release polyethylene oxide (PEO), polyvinyl alcohol (PVA), and polyvinylpyrrolidone (PVP) fibers that incorporate GRFT in in vitro (HIV-1 and HSV-2) and in vivo (HSV-2) infection models. GRFT loading was determined via enzyme-linked immunosorbent assay (ELISA), and the bioactivity of GRFT fibers was assessed using in vitro HIV-1 pseudovirus and HSV-2 plaque assays. Afterwards, the efficacy of GRFT fibers was assessed in a murine model of lethal HSV-2 infection. Finally, murine reproductive tracts and vaginal lavage samples were evaluated for histology and cytokine expression, 24 and 72 h after fiber administration, to determine safety. All rapid-release formulations achieved high levels of GRFT incorporation and were completely efficacious against in vitro HIV-1 and HSV-2 infections. Importantly, all rapid-release GRFT fibers provided potent protection in a murine model of HSV-2 infection. Moreover, histology and cytokine levels, evaluated from collected murine reproductive tissues and vaginal lavage samples treated with blank fibers, showed no increased cytokine production or histological aberrations, demonstrating the preliminary safety of rapid-release GRFT fibers in vaginal tissue.
Collapse
|
15
|
Tyo KM, Lasnik AB, Zhang L, Mahmoud M, Jenson AB, Fuqua JL, Palmer KE, Steinbach-Rankins JM. Sustained-release Griffithsin nanoparticle-fiber composites against HIV-1 and HSV-2 infections. J Control Release 2020; 321:84-99. [PMID: 32035194 DOI: 10.1016/j.jconrel.2020.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023]
Abstract
Human immunodeficiency virus (HIV-1) and herpes simplex virus 2 (HSV-2) affect hundreds of millions of people worldwide. The antiviral lectin, Griffithsin (GRFT), has been shown to be both safe and efficacious against HSV-2 and HIV-1 infections in vivo. The goal of this work was to develop a multilayered nanoparticle (NP)-electrospun fiber (EF) composite to provide sustained-release of GRFT, and to examine its safety and efficacy in a murine model of lethal HSV-2 infection. Composites were fabricated from polycaprolactone (PCL) fibers surrounding polyethylene oxide (PEO) fibers that incorporated methoxy poly(ethylene glycol)-b-poly(lactide-co-glycolide) (mPEG-PLGA) GRFT NPs. GRFT loading and release were determined via ELISA, showing that NP-EF composites achieved high GRFT loading, and provided sustained-release of GRFT for up to 90 d. The in vitro efficacy of GRFT NP-EFs was assessed using HIV-1 pseudovirus assays, demonstrating complete in vitro protection against HIV-1 infection. Additionally, sustained-release NP-EFs, administered 24 h prior to infection, prevented against a lethal dose of HSV-2 infection in a murine model. In parallel, histology and cytokine expression from murine reproductive tracts and vaginal lavages collected 24 and 72 h post-administration were similar to untreated mice, suggesting that NP-EF composites may be a promising and safe sustained-delivery platform to prevent HSV-2 infection. Future work will evaluate the ability to provide prolonged protection against multiple virus challenges, and different administration times with respect to infection.
Collapse
Affiliation(s)
- Kevin M Tyo
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, United States; Center for Predictive Medicine, Louisville, KY, United States
| | - Amanda B Lasnik
- Center for Predictive Medicine, Louisville, KY, United States
| | - Longyun Zhang
- Center for Predictive Medicine, Louisville, KY, United States; Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY, United States
| | - Mohamed Mahmoud
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, United States; Center for Predictive Medicine, Louisville, KY, United States
| | - Alfred B Jenson
- James Graham Brown Cancer Center, University of Louisville School of Medicine, University of Louisville, Louisville, KY, United States
| | - Joshua L Fuqua
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, United States; Center for Predictive Medicine, Louisville, KY, United States
| | - Kenneth E Palmer
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, United States; Center for Predictive Medicine, Louisville, KY, United States; James Graham Brown Cancer Center, University of Louisville School of Medicine, University of Louisville, Louisville, KY, United States; Department of Microbiology and Immunology, School of Medicine, University of Louisville, KY, United States
| | - Jill M Steinbach-Rankins
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, United States; Center for Predictive Medicine, Louisville, KY, United States; James Graham Brown Cancer Center, University of Louisville School of Medicine, University of Louisville, Louisville, KY, United States; Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY, United States; Department of Microbiology and Immunology, School of Medicine, University of Louisville, KY, United States.
| |
Collapse
|
16
|
Role of nanofibers on MSCs fate: Influence of fiber morphologies, compositions and external stimuli. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 107:110218. [DOI: 10.1016/j.msec.2019.110218] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 09/04/2019] [Accepted: 09/16/2019] [Indexed: 01/09/2023]
|
17
|
Sims LB, Tyo KM, Stocke S, Mahmoud MY, Ramasubramanian A, Steinbach-Rankins JM. Surface-Modified Melphalan Nanoparticles for Intravitreal Chemotherapy of Retinoblastoma. Invest Ophthalmol Vis Sci 2019; 60:1696-1705. [PMID: 31009525 DOI: 10.1167/iovs.18-26251] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The goal of this work was to design and assess the ability of unmodified and surface-modified poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) to enhance cell association, provide efficacy in retinoblastoma cells, and overcome current administration challenges, including hydrolysis and precipitation, of intravitreal administration. Methods A single emulsion method was used to encapsulate Coumarin 6, to enable NP visualization via fluorescence microscopy. Melphalan NPs were synthesized using an adapted double-emulsion method to reduce melphalan loss during fabrication. Melphalan loading and release were quantified against a free melphalan standard. The cellular association and internalization of unmodified and surface-modified NPs were determined using flow cytometry, and the efficacy of melphalan NPs was quantified in retinoblastoma cells. Results The highest cell association was observed with TET1 and MPG-NPs after 24 hours administration; however, a significant fraction of NPs were associated with the cell surface, instead of undergoing internalization. MPG-NPs fabricated with the low saturation process were most efficacious, while all surface-modified NPs improved efficacy relative to unmodified NPs when formulated using the highly saturated process. Similar effects were observed as a function of NP dose, with TET1 and MPG-NPs particularly efficacious. Conclusions Surface-modified NPs achieved enhanced association and efficacy in retinoblastoma cells relative to unmodified NPs, with MPG and surface-modified NPs exhibiting the strongest efficacy relative to other NP groups. In future work we seek to assess the ability of these NPs to improve transport in the vitreous, where we expect a more dramatic impact on efficacy as a function of surface modification.
Collapse
Affiliation(s)
- Lee B Sims
- Department of Bioengineering, University of Louisville, Louisville, Kentucky, United States
| | - Kevin M Tyo
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, United States.,Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, United States
| | - Sanaya Stocke
- Department of Bioengineering, University of Louisville, Louisville, Kentucky, United States
| | - Mohamed Y Mahmoud
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, United States.,Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, United States
| | - Aparna Ramasubramanian
- Department of Ophthalmology, University of Louisville, Louisville, Kentucky, United States
| | - Jill M Steinbach-Rankins
- Department of Bioengineering, University of Louisville, Louisville, Kentucky, United States.,Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, United States.,Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, United States.,Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, United States
| |
Collapse
|
18
|
Effect on in-vitro release of individual and dual contraceptive drug loading from gelatin electrospun fibers. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.03.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
19
|
Tyo KM, Minooei F, Curry KC, NeCamp SM, Graves DL, Fried JR, Steinbach-Rankins JM. Relating Advanced Electrospun Fiber Architectures to the Temporal Release of Active Agents to Meet the Needs of Next-Generation Intravaginal Delivery Applications. Pharmaceutics 2019; 11:E160. [PMID: 30987206 PMCID: PMC6523330 DOI: 10.3390/pharmaceutics11040160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/28/2019] [Accepted: 03/30/2019] [Indexed: 02/07/2023] Open
Abstract
Electrospun fibers have emerged as a relatively new delivery platform to improve active agent retention and delivery for intravaginal applications. While uniaxial fibers have been explored in a variety of applications including intravaginal delivery, the consideration of more advanced fiber architectures may offer new options to improve delivery to the female reproductive tract. In this review, we summarize the advancements of electrospun coaxial, multilayered, and nanoparticle-fiber architectures utilized in other applications and discuss how different material combinations within these architectures provide varied durations of release, here categorized as either transient (within 24 h), short-term (24 h to one week), or sustained (beyond one week). We seek to systematically relate material type and fiber architecture to active agent release kinetics. Last, we explore how lessons derived from these architectures may be applied to address the needs of future intravaginal delivery platforms for a given prophylactic or therapeutic application. The overall goal of this review is to provide a summary of different fiber architectures that have been useful for active agent delivery and to provide guidelines for the development of new formulations that exhibit release kinetics relevant to the time frames and the diversity of active agents needed in next-generation multipurpose applications.
Collapse
Affiliation(s)
- Kevin M Tyo
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA.
- Center for Predictive Medicine, Louisville, KY 40202, USA.
| | - Farnaz Minooei
- Department of Chemical Engineering, University of Louisville, Louisville, KY 40292, USA.
| | - Keegan C Curry
- Department of Biology, University of Louisville, Louisville, KY 40292, USA.
| | - Sarah M NeCamp
- Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY 40292, USA.
| | - Danielle L Graves
- Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY 40292, USA.
| | - Joel R Fried
- Department of Chemical Engineering, University of Louisville, Louisville, KY 40292, USA.
| | - Jill M Steinbach-Rankins
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA.
- Center for Predictive Medicine, Louisville, KY 40202, USA.
- Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY 40292, USA.
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
20
|
Rasouli R, Barhoum A, Bechelany M, Dufresne A. Nanofibers for Biomedical and Healthcare Applications. Macromol Biosci 2018; 19:e1800256. [DOI: 10.1002/mabi.201800256] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/30/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Rahimeh Rasouli
- Department of Medical NanotechnologyTehran University of Medical Sciences—International Campus 14177‐43373 Tehran Iran
| | - Ahmed Barhoum
- Faculty of ScienceChemistry DepartmentHelwan University 11795 Helwan Cairo Egypt
- Institut Européen des Membranes (IEM UMR 5635)ENSCMCNRSUniversity of Montpellier 34090 Montpellier France
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM UMR 5635)ENSCMCNRSUniversity of Montpellier 34090 Montpellier France
| | - Alain Dufresne
- LGP2, Grenoble INP, CNRSUniversité Grenoble Alpes F‐38000 Grenoble France
| |
Collapse
|
21
|
Blakney AK, Jiang Y, Woodrow KA. Application of electrospun fibers for female reproductive health. Drug Deliv Transl Res 2018; 7:796-804. [PMID: 28497376 DOI: 10.1007/s13346-017-0386-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here, we present the current challenges in women's reproductive health and the current state-of-the-art treatment and prevention options for STI prevention, contraception, and treatment of infections. We discuss how the versatile platform of electrospun fibers can be applied to each challenge, and postulate at how these technologies could be improved. The void of approved electrospun fiber-based products yields the potential to apply this useful technology to a number of medical applications, many of which are relevant to women's reproductive health. Given the ability to tune drug delivery characteristics and three-dimensional geometry, there are many opportunities to pursue new product designs and routes of administration for electrospun fibers. For each application, we provide an overview of the versatility of electrospun fibers as a novel dosage form and summarize their advantages in clinical applications. We also provide a perspective on why electrospun fibers are well-suited for a variety of applications within women's reproductive health and identify areas that could greatly benefit from innovations with electrospun fiber-based approaches.
Collapse
Affiliation(s)
- Anna K Blakney
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Yonghou Jiang
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
22
|
Tyo KM, Duan J, Kollipara P, Dela Cerna MVC, Lee D, Palmer KE, Steinbach-Rankins JM. pH-responsive delivery of Griffithsin from electrospun fibers. Eur J Pharm Biopharm 2018; 138:64-74. [PMID: 29698714 DOI: 10.1016/j.ejpb.2018.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/05/2018] [Accepted: 04/15/2018] [Indexed: 10/17/2022]
Abstract
Human immunodeficiency virus (HIV-1) affects over 36 million people globally. Current prevention strategies utilize antiretrovirals that have demonstrated protection, but result in antiviral resistance, adverse toxicity, and require frequent administration. A novel biologic, griffithsin (GRFT), has demonstrated outstanding safety and efficacy against laboratory and primary HIV isolates and against intravaginal murine herpes simplex virus 2 (HSV-2) challenge, making it a promising microbicide candidate. However, transient activity and instability remain concerns surrounding biologic delivery, particularly in the harsh environment of the female reproductive tract (FRT). Recently, electrospun fibers (EFs) have demonstrated promise for intravaginal delivery, with the potential to conserve active agent until release is needed. The goal of this study was to fabricate and characterize pH-responsive fibers comprised of poly(lactic-co-glycolic acid) (PLGA) or methoxypolyethylene glycol-b-PLGA (mPEG-PLGA) with varying ratios of poly(n-butyl acrylate-co-acrylic acid) (PBA-co-PAA), to selectively release GRFT under pH-conditions that mimic semen introduction. Fibers comprised of mPEG-PLGA:PBA-co-PAA (90:10 w/w) demonstrated high GRFT loading that was maintained within simulated vaginal fluid (SVF), and pH-dependent release upon exposure to buffered and SVF:simulated semen solutions. Moreover, GRFT fibers demonstrated potent in vitro efficacy against HIV-1 and safety in vaginal epithelial cells, suggesting their future potential for efficacious biologic delivery to the FRT.
Collapse
Affiliation(s)
- Kevin M Tyo
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, United States; Center for Predictive Medicine, Louisville, KY, United States
| | - Jinghua Duan
- Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY, United States; Center for Predictive Medicine, Louisville, KY, United States
| | - Pravallika Kollipara
- Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY, United States
| | - Mark Vincent C Dela Cerna
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Donghan Lee
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Kenneth E Palmer
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, United States; Center for Predictive Medicine, Louisville, KY, United States
| | - Jill M Steinbach-Rankins
- Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY, United States; Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, United States; Department of Microbiology and Immunology, School of Medicine, University of Louisville, KY, United States; Center for Predictive Medicine, Louisville, KY, United States.
| |
Collapse
|
23
|
Halwes ME, Tyo KM, Steinbach-Rankins JM, Frieboes HB. Computational Modeling of Antiviral Drug Diffusion from Poly(lactic- co-glycolic-acid) Fibers and Multicompartment Pharmacokinetics for Application to the Female Reproductive Tract. Mol Pharm 2018; 15:1534-1547. [PMID: 29481088 DOI: 10.1021/acs.molpharmaceut.7b01089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The need for more versatile technologies to deliver antiviral agents to the female reproductive tract (FRT) has spurred the development of on-demand and sustained-release platforms. Electrospun fibers (EFs), in particular, have recently been applied to FRT delivery, resulting in an alternative dosage form with the potential to provide protection and therapeutic effect against a variety of infection types. However, a multitude of fabrication parameters, as well as the resulting complexities of solvent-drug, drug-polymer, and solvent-polymer interactions, are known to significantly impact the loading and release of incorporated agents. Numerous processing parameters, in addition to their combined interactions, can hinder the iterative development of fiber formulations to achieve optimal release for particular durations, doses, and polymer-drug types. The experimental effort to design and develop EFs could benefit from mathematical analysis and computational simulation that predictively evaluate combinations of parameters to meet product design needs. Here, existing modeling efforts are leveraged to develop a simulation platform that correlates and predicts the delivery of relevant small molecule antivirals from EFs that have been recently applied to target sexually transmitted infections (STIs). A pair of mathematical models is coupled to simulate the release of two structurally similar small molecule antiretroviral reverse transcriptase inhibitors, Tenofovir (TFV) and Tenofovir disoproxil fumarate (TDF), from poly(lactic- co-glycolic acid) (PLGA) EFs, and to evaluate how changes in the system parameters affect the distribution of encapsulated agent in a three-compartment model of the vaginal epithelium. The results indicate that factors such as fiber diameter, mesh thickness, antiviral diffusivity, and fiber geometry can be simulated to create an accurate model that distinguishes the different release patterns of TFV and TDF from EFs, and that enables detailed evaluation of the associated pharmacokinetics. This simulation platform offers a basis with which to further study EF parameters and their effect on antiviral release and pharmacokinetics in the FRT.
Collapse
Affiliation(s)
- Michael E Halwes
- Department of Bioengineering , University of Louisville , Louisville , Kentucky 40292 , United States
| | | | - Jill M Steinbach-Rankins
- Department of Bioengineering , University of Louisville , Louisville , Kentucky 40292 , United States
| | - Hermann B Frieboes
- Department of Bioengineering , University of Louisville , Louisville , Kentucky 40292 , United States
| |
Collapse
|
24
|
Vuong HR, Tyo KM, Steinbach-Rankins JM. Fabrication and Characterization of Griffithsin-modified Fiber Scaffolds for Prevention of Sexually Transmitted Infections. J Vis Exp 2017. [PMID: 29155732 DOI: 10.3791/56492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Electrospun fibers (EFs) have been widely used in a variety of therapeutic applications; however, they have only recently been applied as a technology to prevent and treat sexually transmitted infections (STIs). Moreover, many EF technologies focus on encapsulating the active agent, relative to utilizing the surface to impart biofunctionality. Here we describe a method to fabricate and surface-modify poly(lactic-co-glycolic) acid (PLGA) electrospun fibers, with the potent antiviral lectin Griffithsin (GRFT). PLGA is an FDA-approved polymer that has been widely used in drug delivery due to its outstanding chemical and biocompatible properties. GRFT is a natural, potent, and safe lectin that possesses broad activity against numerous viruses including human immunodeficiency virus type 1 (HIV-1). When combined, GRFT-modified fibers have demonstrated potent inactivation of HIV-1 in vitro. This manuscript describes the methods to fabricate and characterize GRFT-modified EFs. First, PLGA is electrospun to create a fiber scaffold. Fibers are subsequently surface-modified with GRFT using 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS)chemistry. Scanning electron microscopy (SEM) was used to assess the size and morphology of surface-modified formulations. Additionally, a gp120 or hemagglutinin (HA)-based ELISA may be used to quantify the amount of GRFT conjugated to, as well as GRFT desorption from the fiber surface. This protocol can be more widely applied to fabricate fibers that are surface-modified with a variety of different proteins.
Collapse
Affiliation(s)
- Hung R Vuong
- Department of Chemistry, University of Louisville
| | - Kevin M Tyo
- Department of Pharmacology and Toxicology, University of Louisville; Center for Predictive Medicine, University of Louisville
| | - Jill M Steinbach-Rankins
- Department of Pharmacology and Toxicology, University of Louisville; Center for Predictive Medicine, University of Louisville; Department of Microbiology and Immunology, University of Louisville; Department of Bioengineering, University of Louisville;
| |
Collapse
|
25
|
Tyo KM, Vuong HR, Malik DA, Sims LB, Alatassi H, Duan J, Watson WH, Steinbach-Rankins JM. Multipurpose tenofovir disoproxil fumarate electrospun fibers for the prevention of HIV-1 and HSV-2 infections in vitro. Int J Pharm 2017; 531:118-133. [PMID: 28797967 DOI: 10.1016/j.ijpharm.2017.08.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/27/2017] [Accepted: 08/02/2017] [Indexed: 12/31/2022]
Abstract
Sexually transmitted infections affect hundreds of millions of people worldwide. Both human immunodeficiency virus (HIV-1 and -2) and herpes simplex virus-2 (HSV-2) remain incurable, urging the development of new prevention strategies. While current prophylactic technologies are dependent on strict user adherence to achieve efficacy, there is a dearth of delivery vehicles that provide discreet and convenient administration, combined with prolonged-delivery of active agents. To address these needs, we created electrospun fibers (EFs) comprised of FDA-approved polymers, poly(lactic-co-glycolic acid) (PLGA) and poly(DL-lactide-co-ε-caprolactone) (PLCL), to provide sustained-release and in vitro protection against HIV-1 and HSV-2. PLGA and PLCL EFs, incorporating the antiretroviral, tenofovir disoproxil fumarate (TDF), exhibited sustained-release for up to 4 weeks, and provided complete in vitro protection against HSV-2 and HIV-1 for 24h and 1 wk, respectively, based on the doses tested. In vitro cell culture and EpiVaginal tissue tests confirmed the safety of fibers in vaginal and cervical cells, highlighting the potential of PLGA and PLCL EFs as multipurpose next-generation drug delivery vehicles.
Collapse
Affiliation(s)
- Kevin M Tyo
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, United States; Center for Predictive Medicine, Louisville, KY, United States
| | - Hung R Vuong
- Department of Biochemistry, School of Medicine, University of Louisville, KY, United States
| | - Danial A Malik
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, United States
| | - Lee B Sims
- Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY, United States
| | - Houda Alatassi
- Department of Pathology, University of Louisville, Louisville, KY, United States
| | - Jinghua Duan
- Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY, United States; Center for Predictive Medicine, Louisville, KY, United States
| | - Walter H Watson
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, United States; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, School of Medicine, University of Louisville, KY, United States
| | - Jill M Steinbach-Rankins
- Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY, United States; Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, United States; Department of Microbiology and Immunology, School of Medicine, University of Louisville, KY, United States; Center for Predictive Medicine, Louisville, KY, United States.
| |
Collapse
|