1
|
Sudarsan S, Trofimov E, Franklin D, Venthan SM, Guhanathan S, Mavinkere Rangappa S, Siengchin S. Thermal, morphology and bacterial analysis of pH-responsive sodium carboxyl methylcellulose/ fumaric acid/ acrylamide nanocomposite hydrogels: Synthesis and characterization. Heliyon 2023; 9:e20939. [PMID: 37954319 PMCID: PMC10637903 DOI: 10.1016/j.heliyon.2023.e20939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
In this present investigation, sodium carboxymethyl cellulose grafted with Fumaric acid/Acrylamide (CMC/FA/AAm=CFA) hydrogel and their silver nanocomposite hydrogels (CFA-Ag x, x = 5, 10 and 20) were developed by simple, cost effective and ecofriendly greener method. Mint leaf extract was used as an efficient natural reducing agent due to presence of active and antioxidant potential of polyphenol and flavonoid components. Swelling equilibrium of CFA hydrogel showed Seq% 3000 both in pH medium and distilled water. CFA (90:10) hydrogel has been produced greater than Seq% 6000. The synthesized CFA (90:10)-Ag-5, CFA (90:10)-Ag-10 and CFA (90:10)-Ag-20 nanocomposite hydrogels have been observed lower Seq% 2000-3000 than the CFA hydrogel. The homogeneous distribution of AgNPs throughout the CFA hydrogel and nanocomposites has been explored by SEM analysis. The interaction of network heteroatoms with AgNPs has been strongly revealed by the FTIR spectra and XRD analysis. The thermal stability of CFA (90:10)-Ag-5, 10, and 20 nanocomposite hydrogels have showed greater stability than CFA hydrogel which is confirmed by TGA/DSC thermogram analysis. The TEM analysis was used to explore a uniform distribution of spherical AgNPs (10 nm-50 nm) embedded on the CFA composite hydrogel. The CFA (90:10)-Ag-20 nanocomposite hydrogel has showed good antibacterial activity beside E. coli (Gram positive) and S. aureus (Gram negative) pathogens. Based on the antibacterial activity and swelling properties of CFA-Ag nanocomposite hydrogels have the ability to accelerate the antibacterial activity and are potential candidates for medical and environmental applications.
Collapse
Affiliation(s)
| | | | - D.S. Franklin
- Department of Chemistry, Muthurangam Govt. Arts College (Autonomous), Vellore, 632002, Tamilnadu, India
| | - Selvam Mullai Venthan
- Department of Mathematics, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Bangaluru, India
| | - Selvam Guhanathan
- Department of Chemistry, Muthurangam Govt. Arts College (Autonomous), Vellore, 632002, Tamilnadu, India
| | - Sanjay Mavinkere Rangappa
- Natural Composites Research Group Lab. Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok, Thailand
| | - Suchart Siengchin
- Natural Composites Research Group Lab. Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok, Thailand
| |
Collapse
|
2
|
Ciftbudak S, Orakdogen N. Correlation between effective charge density and crosslinking efficiency of dicarboxylic acid containing highly anionic networks. POLYMER 2023. [DOI: 10.1016/j.polymer.2022.125612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
3
|
Zhou Y, Zhong R, Wang Z. A polymerizable difunctional photoinitiator featuring a bio-based group and its photoinitiating properties. JOURNAL OF CHEMICAL RESEARCH 2022. [DOI: 10.1177/17475198221136063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A polymerizable difunctional photoinitiator 2-methylene-succinic acid bis-{2-[4-(2-hydroxy-2-methylpropionyl)phenoxy]ethyl} ester (IAHHMP) based on the commercial photoinitiator 2-hydroxy-1-[4-(2-hydroxyethoxy)phenyl]-2-methylpropanone (HHMP) and a biorenewable itaconic acid is synthesized by esterification. The structure is confirmed by ultraviolet spectroscopy, Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy (1H NMR, 13C NMR) and thermogravimetric analysis. The photopolymerization behaviour of the photoinitiator is investigated using photo-differential scanning calorimetry and compared with that of two commercial photoinitiators, HHMP (or photoinitiator 2959) and 1-hydroxycyclohexyl phenyl ketone (or photoinitiator 184). The results show that IAHHMP has a strong UV absorption capacity at 245~300 nm and can initiate polymerization of monomers containing a double bond. The relative migration of IAHHMP is less than that of the systems containing an HHMP or 1-hydroxycyclohexyl phenyl ketone photoinitiator. Therefore, IAHHMP is expected to have potential applications in more environmentally friendly materials, such as in food and medical packaging.
Collapse
Affiliation(s)
- Yanfang Zhou
- Department of Materials Chemistry, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, P.R. China
| | - Rong Zhong
- Department of Materials Chemistry, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, P.R. China
| | - Zhengjie Wang
- Department of Materials Chemistry, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, P.R. China
| |
Collapse
|
4
|
Dutta G, Manickam S, Sugumaran A. Stimuli-Responsive Hybrid Metal Nanocomposite - A Promising Technology for Effective Anticancer Therapy. Int J Pharm 2022; 624:121966. [PMID: 35764265 DOI: 10.1016/j.ijpharm.2022.121966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/19/2022]
Abstract
Cancer is one of the most challenging, life-threatening illnesses to cure, with over 10 million new cases diagnosed each year globally. Improved diagnostic cum treatment with common side-effects are warranting for successful therapy. Nanomaterials are recognized to improve early diagnosis, imaging, and treatment. Recently, multifunctional nanocomposites attracted considerable interest due to their low-cost production, and ideal thermal and chemical stability, and will be beneficial in future diagnostics and customized treatment capacity. Stimuli-Responsive Hybrid Metal Nanocomposites (SRHMNs) based nanocomposite materials pose the on/off delivery of bioactive compounds such as medications, genes, RNA, and DNA to specific tissue or organs and reduce toxicity. They simultaneously serve as sophisticated imaging and diagnostic tools when certain stimuli (e.g., temperature, pH, redox, ultrasound, or enzymes) activate the nanocomposite, resulting in the imaging-guided transport of the payload at defined sites. This review in detail addresses the recent advancements in the design and mechanism of internal breakdown processes of the functional moiety from stimuli-responsive systems in response to a range of stimuli coupled with metal nanoparticles. Also, it provides a thorough understanding of SRHMNs, enabling non-invasive interventional therapy by resolving several difficulties in cancer theranostics.
Collapse
Affiliation(s)
- Gouranga Dutta
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Jalan Tungku Link Gadong, BE1410, Brunei Darussalam
| | - Abimanyu Sugumaran
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, India.
| |
Collapse
|
5
|
Ajaz N, Khan IU, Asghar S, Khalid SH, Irfan M, Asif M, Chatha SAS. Assessing the pH responsive and mucoadhesive behavior of dexamethasone sodium phosphate loaded itaconic acid-grafted-poly(acrylamide)/carbopol semi-interpenetrating networks. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02643-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Selvi M, Chitra G, Sudarsan S, Franklin DS, Guhanathan S. Novel pH-tunable nontoxic hydrogels of pyrrole-2-carboxylic acid and ethylenediamine derivatives: synthesis and characterization. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1793200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- M.S. Selvi
- PG & Research Department of Chemistry, Muthurangam Government Arts College (Autonomous), Vellore, India
| | - G. Chitra
- Department of Chemistry, Bangalore College of Engineering and Technology, Bangalore, India
| | - S. Sudarsan
- Department of Chemistry, C. Abdul Hakeem College of Engineering and Technology, Melvisharam, India
| | - D. S. Franklin
- Chemistry Facilitator, GeeKay World School, Ranipet, India
| | - S. Guhanathan
- PG & Research Department of Chemistry, Muthurangam Government Arts College (Autonomous), Vellore, India
| |
Collapse
|
7
|
Fan K, Zhou G, Zhang J, Yang H, Hu J, Hou Z. pH-sensitive microfiltration membrane prepared from polyethersulfone grafted with poly(itaconic acid) synthesized by simultaneous irradiation in homogeneous phase. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 78:602-610. [PMID: 30208001 DOI: 10.2166/wst.2018.330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Poly(itaconic acid) (PIA) was grafted onto polyethersulfone (PES) by homogeneously phased γ-ray irradiation. Kinetic polymerization observed was studied by analyzing the effect of irradiation dosages and monomer concentrations. Then, a pH-sensitive microfiltration (MF) membrane was prepared from these PES-g-PIA polymers with different degrees of grafting under phase inversion method. Finally, the contact angles, morphologies, pore sizes, deionized water permeability and filtration performance for aqueous polyethylene glycols solution of the MF membranes were studied. The results show that grafting PIA groups onto PES molecular chains endowed the MF membranes with effective pH-sensitive properties.
Collapse
Affiliation(s)
- Kai Fan
- School of Architecture and Materials, Chongqing College of Electronic Engineering, Chongqing 401331, China; Division of Interfacial Water, CAS, Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China E-mail:
| | - Guoqing Zhou
- School of Architecture and Materials, Chongqing College of Electronic Engineering, Chongqing 401331, China
| | - Jinjin Zhang
- Division of Interfacial Water, CAS, Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China E-mail:
| | - Haijun Yang
- Division of Interfacial Water, CAS, Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China E-mail:
| | - Jun Hu
- Division of Interfacial Water, CAS, Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China E-mail:
| | - Zhengchi Hou
- Division of Interfacial Water, CAS, Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China E-mail:
| |
Collapse
|
8
|
Design and fabrication of a triple-responsive chitosan-based hydrogel with excellent mechanical properties for controlled drug delivery. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1568-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
9
|
Ganguly S, Maity PP, Mondal S, Das P, Bhawal P, Dhara S, Das NC. Polysaccharide and poly(methacrylic acid) based biodegradable elastomeric biocompatible semi-IPN hydrogel for controlled drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:34-51. [PMID: 30184759 DOI: 10.1016/j.msec.2018.06.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 05/21/2018] [Accepted: 06/14/2018] [Indexed: 01/10/2023]
Abstract
Nanoparticles embedded semi-interpenetrating (semi-IPNs) polymeric hydrogels with enhanced mechanical toughness and biocompatibility could have splendid biomedical acceptance. Here we propose poly(methacrylic acid) grafted polysaccharide based semi-IPNs filled with nanoclay via in situ Michael type reaction associated with covalent crosslinking with N,N-methylenebisacrylamide (MBA). The effect of nanoclay in the semi-IPN hydrogel has been investigated which showed significant improvement of mechanical robustness. Meanwhile, the hydrogels showed reversible ductility up to 70% in response to cyclic loading-unloading cycle which is an obvious phenomenon of rubber-like elasticity. The synthesized semi-IPN hydrogel show biodegradability and non-cytotoxic nature against human cells. The live-dead assay showed that the prepared hydrogel is a viable platform for cell growth without causing severe cell death. The in vitro drug release study in psychological pH (pH = 7.4) reveals that the controlled drug release phenomena can be tuned by simulating the environment pH. Such features in a single hydrogel assembly can propose this as high performance; biodegradable and non-cytotoxic 3D scaffold based promising biomaterial for tissue engineering.
Collapse
Affiliation(s)
- Sayan Ganguly
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721301, India
| | - Priti Prasanna Maity
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721301, India
| | - Subhadip Mondal
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721301, India
| | - Poushali Das
- School of Nanoscience and Technology, Indian Institute of Technology, Kharagpur 721301, India
| | - Poushali Bhawal
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721301, India
| | - Santanu Dhara
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721301, India
| | - Narayan Ch Das
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721301, India.
| |
Collapse
|
10
|
Sakthivel M, Franklin D, Sudarsan S, Chitra G, Sridharan T, Guhanathan S. Investigation on pH/salt-responsive multifunctional itaconic acid based polymeric biocompatible, antimicrobial and biodegradable hydrogels. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2017.10.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Maity J, Ray SK. Competitive Removal of Cu(II) and Cd(II) from Water Using a Biocomposite Hydrogel. J Phys Chem B 2017; 121:10988-11001. [DOI: 10.1021/acs.jpcb.7b08796] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jayabrata Maity
- Department of Polymer Science
and Technology, University of Calcutta, 92, A.P.C. Road, Kolkata-700009, India
| | - Samit Kumar Ray
- Department of Polymer Science
and Technology, University of Calcutta, 92, A.P.C. Road, Kolkata-700009, India
| |
Collapse
|
12
|
Ag-loaded thermo-sensitive composite microgels for enhanced catalytic reduction of methylene blue. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s41204-017-0026-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|