1
|
Ganesh PS, Govindasamy M, Kim SY, Choi DS, Ko HU, Alshgari RA, Huang CH. Synergetic effects of Mo 2C sphere/SCN nanocatalysts interface for nanomolar detection of uric acid and folic acid in presence of interferences. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114694. [PMID: 36857924 DOI: 10.1016/j.ecoenv.2023.114694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/08/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Till to date, the application of sulfur-doped graphitic carbon nitride supported transition metal carbide interface for electrochemical sensor fabrication was less explored. In this work, we designed a simple synthesis of molybdenum carbide sphere embedded sulfur doped graphitic carbon nitride (Mo2C/SCN) catalyst for the nanomolar electrochemical sensor application. The synthesized Mo2C/SCN nanocatalyst was systematically characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM) with elemental mapping. The SEM images show that the porous SCN network adhered uniformly on Mo2C, causing a loss of crystallinity in the diffractogram. The corresponding elemental mapping of Mo2C/SCN shows distinct peaks for carbon (41.47%), nitrogen (32.54%), sulfur (1.37%), and molybdenum (24.62%) with no additional impurity peaks, reflecting the successful synthesis. Later, the glassy carbon electrode (GCE) was modified by Mo2C/SCN nanocatalyst for simultaneous sensing of uric acid (UA) and folic acid (FA). The fabricated Mo2C/SCN/GCE is capable of simultaneous and interference free electrochemical detection of UA and FA in a binary mixture. The limit of detection (LOD) calculated at Mo2C/SCN/GCE for UA and FA was 21.5 nM (0.09 - 47.0 μM) and 14.7 nM (0.09 - 167.25 μM) respectively by differential pulse voltammetric (DPV) technique. The presence of interferons has no significant effect on the sensor's performance, making it suitable for real sample analysis. The present method can be extended to fabricate an electrochemical sensor for various molecules.
Collapse
Affiliation(s)
- Pattan-Siddappa Ganesh
- Interaction Laboratory, Future Convergence Engineering, Advanced Technology Research Center, Korea University of Technology and Education, Cheonan-si 31253, Chungcheongnam-do, Republic of Korea
| | - Mani Govindasamy
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan; Full-time faculty, International PhD Program in Innovative Technology of Biomedical Engineering and Medical Devices, Ming Chi University of Technology, New Taipei City, 243303, Taiwan; Department of Research and Innovation, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - Sang-Youn Kim
- Interaction Laboratory, Future Convergence Engineering, Advanced Technology Research Center, Korea University of Technology and Education, Cheonan-si 31253, Chungcheongnam-do, Republic of Korea.
| | - Dong-Soo Choi
- Smart Interface and Extended Reality Laboratory, Department of Computer Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Hyun-U Ko
- Interaction Laboratory, Future Convergence Engineering, Advanced Technology Research Center, Korea University of Technology and Education, Cheonan-si 31253, Chungcheongnam-do, Republic of Korea
| | | | - Chi-Hsien Huang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan.
| |
Collapse
|
2
|
In situ electrodeposition of bismuth oxide nanowires @MWNT on the carbon fiber microelectrode for the sensitively electrochemical detection of folic acid. Talanta 2023; 253:123944. [PMID: 36201956 DOI: 10.1016/j.talanta.2022.123944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/25/2022] [Accepted: 09/14/2022] [Indexed: 12/13/2022]
Abstract
A microminiaturized electrochemical device, BiO@CNW/CFE was fabricated based on the in situ co-electrodeposition of bismuth oxide nanowires (BiNWs) and multi-walled carbon nanotubes (MWNTs) on the surface of carbon fiber electrode (CFE). The nanostructure of BiNWs could bind MWNTs on the surface of CFE during the precipitation of bismuth at the potential of -1.1 V. The vimineous nanostructure of BiO@CNW improved the surface area and electrochemical activity of the microelectrode. With the low background noise, folic acid (FA) can be detected sensitively by BiO@CNW/CFE based on the electrochemical reduction via the method of square wave voltammetry. The linear range of FA in sodium acetate-acetic acid buffer was achieved in the range of 5.00 nM-200 nM, the detection limit was estimated to be 0.63 nM. The recoveries of FA in human serum and artificial cerebral spinal fluid were between 99% and 103%, which indicates BiO@CNW/CFE was a reliable sensor for the detection of FA in biological samples.
Collapse
|
3
|
Meenakshi S, Anitta S, Sivakumar A, Martin Britto Dhas S, Sekar C. Shock waves exposed α-Fe2O3 nanoparticles for electrochemical sensing of riboflavin, uric acid and folic acid. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Terán-Alcocer Á, Bravo-Plascencia F, Cevallos-Morillo C, Palma-Cando A. Electrochemical Sensors Based on Conducting Polymers for the Aqueous Detection of Biologically Relevant Molecules. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:252. [PMID: 33478121 PMCID: PMC7835872 DOI: 10.3390/nano11010252] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022]
Abstract
Electrochemical sensors appear as low-cost, rapid, easy to use, and in situ devices for determination of diverse analytes in a liquid solution. In that context, conducting polymers are much-explored sensor building materials because of their semiconductivity, structural versatility, multiple synthetic pathways, and stability in environmental conditions. In this state-of-the-art review, synthetic processes, morphological characterization, and nanostructure formation are analyzed for relevant literature about electrochemical sensors based on conducting polymers for the determination of molecules that (i) have a fundamental role in the human body function regulation, and (ii) are considered as water emergent pollutants. Special focus is put on the different types of micro- and nanostructures generated for the polymer itself or the combination with different materials in a composite, and how the rough morphology of the conducting polymers based electrochemical sensors affect their limit of detection. Polypyrroles, polyanilines, and polythiophenes appear as the most recurrent conducting polymers for the construction of electrochemical sensors. These conducting polymers are usually built starting from bifunctional precursor monomers resulting in linear and branched polymer structures; however, opportunities for sensitivity enhancement in electrochemical sensors have been recently reported by using conjugated microporous polymers synthesized from multifunctional monomers.
Collapse
Affiliation(s)
- Álvaro Terán-Alcocer
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, 100119 Urcuquí, Ecuador; (Á.T.-A.); (F.B.-P.)
| | - Francisco Bravo-Plascencia
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, 100119 Urcuquí, Ecuador; (Á.T.-A.); (F.B.-P.)
| | - Carlos Cevallos-Morillo
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Francisco Viteri s/n y Gato Sobral, 170129 Quito, Ecuador;
| | - Alex Palma-Cando
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, 100119 Urcuquí, Ecuador; (Á.T.-A.); (F.B.-P.)
| |
Collapse
|
5
|
Ye H, Song L, Zhang F, Li J, Su Z, Zhang Y. Highly Sensitive Electrochemical Detection of Folic Acid by Using a Hollow Carbon Nanospheres@molybdenum Disulfide Modified Electrode. ANAL SCI 2020; 37:575-580. [PMID: 33012758 DOI: 10.2116/analsci.20p297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
As a nutrient in body functions, folic acid (FA) plays a very important role for human health, and thus developing a highly sensitive method for its determination is of great significance. In the present work, carbon hollow nanospheres decorated with molybdenum disulfide nanosheets (CHN@MoS2) nanomaterials were produced through a simple method and adopted to modify a glassy carbon electrode for assembling a highly sensitive electrochemical sensor of FA. After characterizing the prepared nanomaterials using scanning-/transmission-electron microscopy and Raman spectra, as well as optimizing various testing conditions, including the pH value of the buffer solution, the accumulation time and amount of nanomaterials on electrode surface, and the electrochemical determination of FA was carried out using a CHN@MoS2 electrode. Owing to the coordinative advantages from CHN and MoS2, the results show that CHN@MoS2 exhibits excellent sensing responses for FA, and it has a wide linear range from 0.08 to 10.0 μM coupled with a low detection limit of 0.02 μM. Finally, the proposed method for FA detection was successfully applied in human urine analysis. The obtained results are satisfactory, revealing that the developed method based on CHN@MoS2 nanomaterials has important applications for FA determination.
Collapse
Affiliation(s)
- Huiming Ye
- Department of Clinical Laboratory, Women and Children's Hospital, School of Medicine, Xiamen University
| | - Liang Song
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences.,Department of Translational Medicine, Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences
| | - Fuhui Zhang
- Department of Clinical Laboratory, Women and Children's Hospital, School of Medicine, Xiamen University
| | - Juan Li
- Department of Clinical Laboratory, Women and Children's Hospital, School of Medicine, Xiamen University
| | - Zhiying Su
- Department of Obstetrics and gynecology, Women and Children's Hospital, School of Medicine, Xiamen University
| | - Yun Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences.,Department of Translational Medicine, Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences.,University of Chinese Academy of Sciences
| |
Collapse
|
6
|
Winiarski JP, Rampanelli R, Bassani JC, Mezalira DZ, Jost CL. Multi-walled carbon nanotubes/nickel hydroxide composite applied as electrochemical sensor for folic acid (vitamin B9) in food samples. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103511] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
7
|
Zhang C, Du X. Electrochemical Sensors Based on Carbon Nanomaterial Used in Diagnosing Metabolic Disease. Front Chem 2020; 8:651. [PMID: 32850664 PMCID: PMC7432198 DOI: 10.3389/fchem.2020.00651] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolic diseases have become common diseases with the improvement of living standards because of changed dietary habits and living habits, which seriously affect health. Currently, related biomarkers have been widely used as important indicators for clinical diagnosis, treatment, and prognosis of metabolic diseases. Among all detection methods for biomarkers of metabolic diseases, electrochemical sensor technology has the advantages of simplicity, real-time analysis, and low cost. Carbon nanomaterials were preeminent materials for fabricating electrochemical sensors in order to enhance the performance. In this paper, we summarize the research progress in the past 3 years of electrochemical sensors based on carbon nanomaterials in detecting markers of metabolic diseases, which include carbon nanotubes, graphene, carbon quantum dots, fullerene, and carbon nitride. Additionally, we discuss the future prospects for this field.
Collapse
Affiliation(s)
- Congcong Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xin Du
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
8
|
Thiol functionalized carbon ceramic electrode modified with multi-walled carbon nanotubes and gold nanoparticles for simultaneous determination of purine derivatives. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110568. [DOI: 10.1016/j.msec.2019.110568] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/03/2019] [Accepted: 12/17/2019] [Indexed: 01/07/2023]
|
9
|
Wang Q, Si H, Zhang L, Li L, Wang X, Wang S. A fast and facile electrochemical method for the simultaneous detection of epinephrine, uric acid and folic acid based on ZrO 2/ZnO nanocomposites as sensing material. Anal Chim Acta 2020; 1104:69-77. [PMID: 32106959 DOI: 10.1016/j.aca.2020.01.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/30/2019] [Accepted: 01/07/2020] [Indexed: 12/31/2022]
Abstract
A novel electrochemical sensor based on ZrO2 and ZnO hybrid nanocomposites was developed for simultaneous determination of epinephrine (EA), uric acid (UA) and folic acid (FA) with the highly selective and ultrasensitive. The nanocomposites have been synthesized by chemical precipitation and thermal calcine method with economical, eco-friendly and practical nature. Their structure and electrochemical properties were investigated by X-ray diffraction (XRD), X-ray photo electron spectroscopy (XPS), scanning electron microscopy (SEM) and electrochemical techniques. The results reveal that the ZrO2/ZnO nanocomposites can possesses highly exposed catalytic sites, favorable conductivity, and the sensor excellent signal response for EP, UA and FA under the optimal condition. The electrochemical sensing platform has a low detection limit of 0.039 μM, 0.29 μM and 0.037 μM and a wide detection range of 0.8-420 μM, 10-2400 μM and 2-480 μM, respectively. It was also tested with a human blood serum sample at physiological pH with recovery 97.3-103.8% and relation standard deviation less than 5%. It indicates that the electrochemical sensors has a hopeful capacity of extensive applications in bioanalysis and diseases diagnosis.
Collapse
Affiliation(s)
- Qiwen Wang
- Faculty of Chemistry, Northeast Normal University, Renmin Street 5268, Changchun, 130024, PR China
| | - Haipei Si
- Faculty of Chemistry, Northeast Normal University, Renmin Street 5268, Changchun, 130024, PR China
| | - Lihui Zhang
- Faculty of Chemistry, Northeast Normal University, Renmin Street 5268, Changchun, 130024, PR China
| | - Ling Li
- Faculty of Chemistry, Northeast Normal University, Renmin Street 5268, Changchun, 130024, PR China
| | - Xiaohong Wang
- Faculty of Chemistry, Northeast Normal University, Renmin Street 5268, Changchun, 130024, PR China
| | - Shengtian Wang
- Faculty of Chemistry, Northeast Normal University, Renmin Street 5268, Changchun, 130024, PR China.
| |
Collapse
|
10
|
Sebastian J, Samuel JM. Recent advances in the applications of substituted polyanilines and their blends and composites. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-03081-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Erkal-Aytemur A, Üstündağ İ, Kariper İA, Çağlayan MO, Üstündağ Z. Electrocatalytic effect of nano-wrinkled layer carbonaceous electrode: determination of folic acid by differential pulse voltammetry. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00689-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
A voltammetric biosensor based on poly(o-methoxyaniline)-gold nanocomposite modified electrode for the simultaneous determination of dopamine and folic acid. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:512-523. [PMID: 30033283 DOI: 10.1016/j.msec.2018.05.070] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 04/25/2018] [Accepted: 05/23/2018] [Indexed: 11/24/2022]
Abstract
Dopamine (DA) and Folic acid (FA) are co-existing compounds in biological fluids that plays a vital role in central nervous system and human metabolism. DA is an important neurotransmitter in the brain's neural circuits and its diminution often results in Parkinson's disease. Folate is another form of folic acid, which is known as one of the B vitamins. It is utilized as an additive by women during pregnancy in order to prevent the neural tube defects. The present study reports on the fabrication of electrochemical sensor for the simultaneous determination of DA and FA using poly(o-methoxyaniline)-gold (POMA-Au) nanocomposite. The POMA-Au nanocomposite was prepared via insitu chemical oxidative polymerization method and characterized using X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS). The suitability of POMA-Au nanocomposite as a modifier for the electrocatalytic detection of DA and FA in aqueous solution was investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chronoamperometry (CA) techniques. The fabricated POMA-Au/GCE sensor exhibited sharp and intense peaks towards the electro-oxidation of DA and FA as compared to bare electrode. The sensor exhibited the promising electron mediating behavior with well separated oxidation peaks with a potential difference of about 350.0 mV. The linear calibration plots of DA and FA were obtained from 10.0 to 300.0 μM and 0.5 to 900.0 μM with the detection limits of 0.062 μM and 0.090 μM, respectively. The reliability of this sensor was verified to be precise as well as sensitive for the determination of DA and FA in pharmaceutical samples and human urine samples.
Collapse
|
13
|
Dhanjai, Sinha A, Lu X, Wu L, Tan D, Li Y, Chen J, Jain R. Voltammetric sensing of biomolecules at carbon based electrode interfaces: A review. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.11.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
14
|
Li Y, Bao L, Zhou Q, Ou E, Xu W. Functionalized Graphene Obtained via Thiol-Ene Click Reactions as an Efficient Electrochemical Sensor. ChemistrySelect 2017. [DOI: 10.1002/slct.201700659] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yali Li
- State Key Laboratory for Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082, Hunan Province P.R. China
| | - Lin Bao
- Key Laboratory of Electroanalytical Chemistry of Shaanxi Province; Institute of Analytical Science; Northwest University; Xi'an 710069, Shaanxi Province P. R. China
| | - Qiulan Zhou
- State Key Laboratory for Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082, Hunan Province P.R. China
| | - Encai Ou
- State Key Laboratory for Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082, Hunan Province P.R. China
| | - Weijian Xu
- State Key Laboratory for Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082, Hunan Province P.R. China
| |
Collapse
|