1
|
Rehman R, Rafiq M, Shafi H, Rather AH, Khan RS, Raza SN, Rather SU, Majeed S, Khan NA, Sheikh FA. Designing sustained release from nanofiber patch for paclitaxel as prospective localized nanotherapeutic delivery in breast cancer. Int J Pharm 2025; 671:125158. [PMID: 39826787 DOI: 10.1016/j.ijpharm.2024.125158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/17/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025]
Abstract
The second most prevalent cause of mortality among women is breast cancer, and paclitaxel (PTX) is an effective drug for its treatment. The present work aims to develop patch-based poly(ε-caprolactone) (PCL) nanofibers incorporating PTX as a localized and sustained drug delivery system. The co-deposition of poly(vinyl alcohol) (PVA) fibers during electrospinning was allowed to improve water absorption by the scaffold, which in turn facilitated the release of drug molecules. To figure out optimized electrospinning parameters and predict the optimal formulation, the quality-by-design approach was utilized. The blank mat, i.e., without drug and optimized nanofiber formulation (Fo), was characterized physiochemically using FE-SEM, XRD, FT-IR, TGA and DSC techniques. The optimization yielded a 92.7 % final product yield, indicating high process efficiency and minimum losses during electrospinning. FE-SEM studies have demonstrated that uniform nanofibers with bead-free morphology. The average fiber diameter and drug entrapment of the optimal formulation, Fo, were 547 ± 6.6 nm and 85 ± 1.73 %, respectively. Diffraction and calorimetric studies revealed a sharp decrease in the crystallinity of pure PTX and its subsequent amorphization within the nanofiber matrix. FT-IR studies showed no chemical interaction between the drug and polymers. A decrease in water contact angle from 120.4 ± 0.9 to 81.0 ± 0.8 in the Fo formulation was due to the co-spinning of PVA; this ensures proper wettability and adhesion ideal for localized delivery. The Fo nanofiber formulation demonstrated sustained PTX release for up to 17 days. The MTT assay results confirm Fo nanofibers were cytotoxic to the breast cancer cell line, MDA-MB-231, than pristine nanofibers. These findings suggest that Fo nanofiber mats could be a potential localized delivery system for PTX in breast cancer treatment, pending further in-vivo validation.
Collapse
Affiliation(s)
- Razia Rehman
- Nanostructure and Biomimetic Lab, Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India; Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Muheeb Rafiq
- Nanostructure and Biomimetic Lab, Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Hasham Shafi
- Nanostructure and Biomimetic Lab, Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India; Center for Translational Science, Florida International University, Port St. Lucie 34987, FL, United States
| | - Anjum Hamid Rather
- Nanostructure and Biomimetic Lab, Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Rumysa Saleem Khan
- Nanostructure and Biomimetic Lab, Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Syed Naiem Raza
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Sami-Ullah Rather
- Department of Chemical and Materials Engineering, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Shafquat Majeed
- Laboratory for Multifunctional Nanomaterials, Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar, Jammu and Kashmir 190006, India
| | - Nisar Ahmad Khan
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India.
| | - Faheem A Sheikh
- Nanostructure and Biomimetic Lab, Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India.
| |
Collapse
|
2
|
Nur MG, Rahman M, Dip TM, Hossain MH, Hossain NB, Baratchi S, Padhye R, Houshyar S. Recent advances in bioactive wound dressings. Wound Repair Regen 2025; 33:e13233. [PMID: 39543919 DOI: 10.1111/wrr.13233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/10/2024] [Accepted: 10/20/2024] [Indexed: 11/17/2024]
Abstract
Traditional wound dressings, despite their widespread use, face limitations, such as poor infection control and insufficient healing promotion. To address these challenges, bioactive materials have emerged as a promising solution in wound care. This comprehensive review explores the latest developments in wound healing technologies, starting with an overview of the importance of effective wound management, emphasising the need for advanced bioactive wound dressings. The review further explores various bioactive materials, defining their characteristics. It covers a wide range of natural and synthetic biopolymers used to develop bioactive wound dressings. Next, the paper discusses the incorporation of bioactive agents into wound dressings, including antimicrobial and anti-inflammatory agents, alongside regenerative components like growth factors, platelet-rich plasma, platelet-rich fibrin and stem cells. The review also covers fabrication techniques for bioactive wound dressings, highlighting techniques like electrospinning, which facilitated the production of nanofibre-based dressings with controlled porosity, the sol-gel method for developing bioactive glass-based dressings, and 3D bioprinting for customised, patient-specific dressings. The review concludes by addressing the challenges and future perspectives in bioactive wound dressing development. It includes regulatory considerations, clinical efficacy, patient care protocol integration and wound healing progress monitoring. Furthermore, the review considers emerging trends such as smart materials, sensors and personalised medicine approaches, offering insights into the future direction of bioactive wound dressing research.
Collapse
Affiliation(s)
- Md Golam Nur
- Center for Materials Innovation and Future Fashion (CMIFF), School of Fashion and Textiles, RMIT University, Brunswick, Victoria, Australia
- Department of Textiles, Ministry of Textiles and Jute, Government of the People's Republic of Bangladesh, Dhaka, Bangladesh
| | - Mustafijur Rahman
- Center for Materials Innovation and Future Fashion (CMIFF), School of Fashion and Textiles, RMIT University, Brunswick, Victoria, Australia
- Department of Dyes and Chemical Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh
| | - Tanvir Mahady Dip
- Department of Materials, University of Manchester, Manchester, UK
- Department of Yarn Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh
| | - Md Hasibul Hossain
- Department of Textile Engineering, International Standard University, Dhaka, Bangladesh
| | - Nusrat Binta Hossain
- TJX Australia Pty Limited, Preston, Victoria, Australia
- Department of Environmental Science & Management, North South University, Dhaka, Bangladesh
| | - Sara Baratchi
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Rajiv Padhye
- Center for Materials Innovation and Future Fashion (CMIFF), School of Fashion and Textiles, RMIT University, Brunswick, Victoria, Australia
| | - Shadi Houshyar
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Lian S, Lamprou D, Zhao M. Electrospinning technologies for the delivery of Biopharmaceuticals: Current status and future trends. Int J Pharm 2024; 651:123641. [PMID: 38029864 DOI: 10.1016/j.ijpharm.2023.123641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/15/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023]
Abstract
This review provides an in-depth exploration of electrospinning techniques employed to produce micro- or nanofibres of biopharmaceuticals using polymeric solutions or melts with high-voltage electricity. Distinct from prior reviews, the current work narrows its focus on the recent developments and advanced applications in biopharmaceutical formulations. It begins with an overview of electrospinning principles, covering both solution and melt modes. Various methods for incorporating biopharmaceuticals into electrospun fibres, such as surface adsorption, blending, emulsion, co-axial, and high-throughput electrospinning, are elaborated. The review also surveys a wide array of biopharmaceuticals formulated through electrospinning, thereby identifying both opportunities and challenges in this emerging field. Moreover, it outlines the analytical techniques for characterizing electrospun fibres and discusses the legal and regulatory requirements for their production. This work aims to offer valuable insights into the evolving realm of electrospun biopharmaceutical delivery systems.
Collapse
Affiliation(s)
- Shangjie Lian
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | | | - Min Zhao
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK; China Medical University- Queen's University Belfast Joint College (CQC), China Medical University, Shenyang 110000, China
| |
Collapse
|
4
|
Farkas NI, Marincaș L, Barbu-Tudoran L, Barabás R, Turdean GL. Investigation of the Real-Time Release of Doxycycline from PLA-Based Nanofibers. J Funct Biomater 2023; 14:331. [PMID: 37367295 DOI: 10.3390/jfb14060331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/28/2023] Open
Abstract
Electrospun mats of PLA and PLA/Hap nanofibers produced by electrospinning were loaded with doxycycline (Doxy) through physical adsorption from a solution with initial concentrations of 3 g/L, 7 g/L, and 12 g/L, respectively. The morphological characterization of the produced material was performed using scanning electron microscopy (SEM). The release profiles of Doxy were studied in situ using the differential pulse voltammetry (DPV) electrochemical method on a glassy carbon electrode (GCE) and validated through UV-VIS spectrophotometric measurements. The DPV method has been shown to be a simple, rapid, and advantageous analytical technique for real-time measurements, allowing accurate kinetics to be established. The kinetics of the release profiles were compared using model-dependent and model-independent analyses. The diffusion-controlled mechanism of Doxy release from both types of fibers was confirmed by a good fit to the Korsmeyer-Peppas model.
Collapse
Affiliation(s)
- Noémi-Izabella Farkas
- Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 11 Arany János Street, 400028 Cluj-Napoca, Romania
| | - Laura Marincaș
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 11 Arany János Street, 400028 Cluj-Napoca, Romania
| | - Lucian Barbu-Tudoran
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 Mihail Kogălniceanu Street, 400084 Cluj-Napoca, Romania
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Street, 400293 Cluj-Napoca, Romania
| | - Réka Barabás
- Department of Chemistry and Chemical Engineering of Hungarian Line of Study, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 11 Arany János Street, 400028 Cluj-Napoca, Romania
| | - Graziella Liana Turdean
- Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 11 Arany János Street, 400028 Cluj-Napoca, Romania
| |
Collapse
|
5
|
Majidansari S, Vahedi N, Rekabgardan M, Ganjoury C, Najmoddin N, Tabatabaei M, Sigaroodi F, Naraghi‐Bagherpour P, Taheri SAA, Khani M. Enhancing endothelial differentiation of human mesenchymal stem cells by culture on a nanofibrous polycaprolactone/(poly‐glycerol sebacate)/gelatin scaffold. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shima Majidansari
- Department of Tissue Engineering Science and Research branch, Islamic Azad University Tehran Iran
| | - Negin Vahedi
- Department of Life Science Engineering Faculty of New Sciences and Technologies, University of Tehran Tehran Iran
| | - Mahmood Rekabgardan
- Department of Tissue Engineering and Applied Cell Sciences School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Camellia Ganjoury
- Medical Nanotechnology and Tissue Engineering Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Najmeh Najmoddin
- Department of Biomedical Engineering Science and Research Branch, Islamic Azad University Tehran Iran
| | - Mohammad Tabatabaei
- Cell Engineering and Biomicrofluidics Systems Lab Department of Biomedical Engineering, Amirkabir University of Technology Tehran Iran
| | - Faraz Sigaroodi
- Department of Tissue Engineering and Applied Cell Sciences School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Paniz Naraghi‐Bagherpour
- Medical Nanotechnology and Tissue Engineering Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Seyed Amir Ali Taheri
- Medical Nanotechnology and Tissue Engineering Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mohammad‐Mehdi Khani
- Department of Tissue Engineering and Applied Cell Sciences School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
6
|
Electrospun Fibers: Versatile Approaches for Controlled Release Applications. INT J POLYM SCI 2022. [DOI: 10.1155/2022/9116168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Electrospinning has been one of the most attractive methods of fiber fabrication in the last century. A lot of studies have been conducted, especially in tissue engineering and drug delivery using electrospun fibers. Loading many different drugs and bioactive agents on or within these fibers potentiates the efficacy of such systems; however, there are still no commercial products with this technology available in the market. Various methods have been developed to improve the mechanical and physicochemical behavior of structures toward more controllable delivery systems in terms of time, place, or quantity of release. In this study, most frequent methods used for the fabrication of controlled release electrospun fibers have been reviewed. Although there are a lot of achievements in the fabrication of controlled release fibers, there are still many challenges to be solved to reach a qualified, reproducible system applicable in the pharmaceutical industry.
Collapse
|
7
|
Chain-End Functionalization of Poly(ε-caprolactone) for Chemical Binding with Gelatin: Binary Electrospun Scaffolds with Improved Physico-Mechanical Characteristics and Cell Adhesive Properties. Polymers (Basel) 2022; 14:polym14194203. [PMID: 36236153 PMCID: PMC9570970 DOI: 10.3390/polym14194203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Composite biocompatible scaffolds, obtained using the electrospinning (ES) technique, are highly promising for biomedical application thanks to their high surface area, porosity, adjustable fiber diameter, and permeability. However, the combination of synthetic biodegradable (such as poly(ε-caprolactone) PCL) and natural (such as gelatin Gt) polymers is complicated by the problem of low compatibility of the components. Previously, this problem was solved by PCL grafting and/or Gt cross-linking after ES molding. In the present study, composite fibrous scaffolds consisting of PCL and Gt were fabricated by the electrospinning (ES) method using non-functionalized PCL1 or NHS-functionalized PCL2 and hexafluoroisopropanol as a solvent. To provide covalent binding between PCL2 and Gt macromolecules, NHS-functionalized methyl glutarate was synthesized and studied in model reactions with components of spinning solution. It was found that selective formation of amide bonds, which provide complete covalent bonding of Gt in PCL/Gt composite, requires the presence of weak acid. With the use of the optimized ES method, fibrous mats with different PCL/Gt ratios were prepared. The sample morphology (SEM), hydrolytic resistance (FT-IR), cell adhesion and viability (MTT assay), cell penetration (fluorescent microscopy), and mechanical characteristics of the samples were studied. PCL2-based films with a Gt content of 20 wt% have demonstrated the best set of properties.
Collapse
|
8
|
Deng X, Gould M, Ali MA. A review of current advancements for wound healing: Biomaterial applications and medical devices. J Biomed Mater Res B Appl Biomater 2022; 110:2542-2573. [PMID: 35579269 PMCID: PMC9544096 DOI: 10.1002/jbm.b.35086] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 12/12/2022]
Abstract
Wound healing is a complex process that is critical in restoring the skin's barrier function. This process can be interrupted by numerous diseases resulting in chronic wounds that represent a major medical burden. Such wounds fail to follow the stages of healing and are often complicated by a pro‐inflammatory milieu attributed to increased proteinases, hypoxia, and bacterial accumulation. The comprehensive treatment of chronic wounds is still regarded as a significant unmet medical need due to the complex symptoms caused by the metabolic disorder of the wound microenvironment. As a result, several advanced medical devices, such as wound dressings, wearable wound monitors, negative pressure wound therapy devices, and surgical sutures, have been developed to correct the chronic wound environment and achieve skin tissue regeneration. Most medical devices encompass a wide range of products containing natural (e.g., chitosan, keratin, casein, collagen, hyaluronic acid, alginate, and silk fibroin) and synthetic (e.g., polyvinyl alcohol, polyethylene glycol, poly[lactic‐co‐glycolic acid], polycaprolactone, polylactic acid) polymers, as well as bioactive molecules (e.g., chemical drugs, silver, growth factors, stem cells, and plant compounds). This review addresses these medical devices with a focus on biomaterials and applications, aiming to deliver a critical theoretical reference for further research on chronic wound healing.
Collapse
Affiliation(s)
- Xiaoxuan Deng
- Centre for Bioengineering & Nanomedicine (Dunedin), Department of Oral Rehabilitation, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Maree Gould
- Centre for Bioengineering & Nanomedicine (Dunedin), Department of Oral Rehabilitation, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - M Azam Ali
- Centre for Bioengineering & Nanomedicine (Dunedin), Department of Oral Rehabilitation, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
9
|
Teimouri S, Kasapis S, Dokouhaki M. Diffusional characteristics of food protein-based materials as nutraceutical delivery systems: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Teimouri S, Kasapis S. Mechanistic interpretation of vitamin B6 transport from swelling matrices of genipin-crosslinked gelatin, BSA and WPI. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
11
|
Wang L, Huang Y, Xin B, Li T. Doxorubicin hydrochloride‐loaded electrospun poly(
l
‐lactide‐
co
‐ε‐caprolactone)/gelatin core–shell nanofibers for controlled drug release. POLYM INT 2021. [DOI: 10.1002/pi.6270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Lei Wang
- School of Textiles and Fashion Shanghai University of Engineering Science Shanghai China
| | - Yifan Huang
- School of Textiles and Fashion Shanghai University of Engineering Science Shanghai China
| | - Binjie Xin
- School of Textiles and Fashion Shanghai University of Engineering Science Shanghai China
| | - Tingxiao Li
- School of Textiles and Fashion Shanghai University of Engineering Science Shanghai China
| |
Collapse
|
12
|
Pinzón-García AD, Sinisterra R, Cortes M, Mesa F, Ramírez-Clavijo S. Polycaprolactone nanofibers as an adjuvant strategy for Tamoxifen release and their cytotoxicity on breast cancer cells. PeerJ 2021; 9:e12124. [PMID: 34760343 PMCID: PMC8556714 DOI: 10.7717/peerj.12124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 08/17/2021] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is the second leading cause of death in women, and tamoxifen citrate (TMX) is accepted widely for the treatment of hormone receptor-positive breast cancers. Several local drug-delivery systems, including nanofibers, have been developed for antitumor treatment. Nanofibers are biomaterials that mimic the natural extracellular matrix, and they have been used as controlled release devices because they enable highly efficient drug loading. The purpose of the present study was to develop polycaprolactone (PCL) nanofibers incorporating TMX for use in the treatment of breast tumors. Pristine PCL and PCL-TMX nanofibers were produced by electrospinning and characterized physiochemically using different techniques. In addition, an in vitro study of TMX release from the nanofibers was performed. The PCL-TMX nanofibers showed sustained TMX release up to 14 h, releasing 100% of the TMX. The Resazurin reduction assay was used to evaluate the TMX cytotoxicity on MCF-7 breast cancer cell line and PBMCs human. The PCL-TMX nanofiber was cytotoxic toPBMCs and MCF-7. Based on these results, the PCL-TMX nanofibers developed have potential as an alternative for local chronic TMX use for breast cancer treatment, however tissue tests must be done.
Collapse
Affiliation(s)
- Ana D Pinzón-García
- Chemistry Department, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ruben Sinisterra
- Chemistry Department, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria Cortes
- Restorative Dentistry Department, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fredy Mesa
- Faculty of Natural Sciences, Department of Biology, Universidad del Rosario, Bogotá, Colombia
| | - Sandra Ramírez-Clavijo
- Faculty of Natural Sciences, Department of Biology, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
13
|
Atehortua C, Montoya Y, García A, Bustamante J. Hemolytic, Biocompatible, and Functional Effect of Cellularized Polycaprolactone-Hydrolyzed Collagen Electrospun Membranes for Possible Application as Vascular Implants. J Biomed Nanotechnol 2021; 17:1184-1198. [PMID: 34167631 DOI: 10.1166/jbn.2021.3087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In search of bioactive vascular prostheses that exhibit greater biocompatibility through the combination of natural and synthetic polymers, tissue engineering from a biomimetic perspective has proposed the development of three-dimensional structures as therapeutic strategies in the field of cardiovascular medicine. Techniques such as electrospinning allow obtaining of scaffolds that emulate the microarchitecture of the extracellular matrix of native vessels; thus, this study aimed to evaluate the biological influence of microarchitecture on polycaprolactone (PCL) and hydrolyzed collagen (H-Col) electrospun scaffolds, which have a homogeneous (microscale) or heterogeneous (micro-nanoscale) fibrillar structure. The hemolytic, biocompatible, and functional effect of the scaffolds in interaction with an in vitro fibroblast model was determined, in view of its potential use for vascular implants. Scaffolds were characterized by scanning electron microscopy and atomic force microscopy, Fourier transform infrared spectroscopy, wettability, static permeability, tensile test, and degradation. In addition, direct and indirect 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays were used to identify the cell viability of fibroblasts, fluorescence assays were performed to establish morphological changes of the cell nuclei, and the hemolytic effect of the scaffolds was calculated. Results showed that ethanol-treated biocompositescaffolds exhibited mass losses lower than 6.65% and slow wettability and absorption, resulting from an increase in secondary structures that contribute to the crystalline phase of H-Col. The scaffolds demonstrated stable degradation in saline during the incubation period because of the availability of soluble structures in aqueous media, and the inclusion of H-Col increased the elastic properties of the scaffold. As regards hemocompatibility, the scaffolds had hemolysis levels lower than 1%; moreover, in terms of biocompatible characteristics, scaffolds exhibited good adhesion, proliferation, and cell viability and insignificant changes in the circularity of the cell nuclei. However, scaffolds with homogeneous fibers showed cell agglomerates after 48 h of interaction. By contrast, permeability decreased as the incubation period progressed, because of the cellularization of the three-dimensional structure. In conclusion, multiscale scaffolds could exhibit a suitable behavior as a bioactive small-diameter vascular implant.
Collapse
Affiliation(s)
- Camilo Atehortua
- Grupo de Dinámica Cardiovascular, Centro de Bioingeniería, Universidad Pontificia Bolivariana, Medellín 050031, Colombia
| | - Yuliet Montoya
- Grupo de Dinámica Cardiovascular, Centro de Bioingeniería, Universidad Pontificia Bolivariana, Medellín 050031, Colombia
| | - Alejandra García
- Laboratorio de Síntesis y Modificación de Nanoestructuras y Materiales Bidimensionales, Centro de Investigación en Materiales Avanzados S.C. Parque PIIT Alianza Norte 202, Apodaca 66600, México
| | - John Bustamante
- Grupo de Dinámica Cardiovascular, Centro de Bioingeniería, Universidad Pontificia Bolivariana, Medellín 050031, Colombia
| |
Collapse
|
14
|
Ghosal K, Augustine R, Zaszczynska A, Barman M, Jain A, Hasan A, Kalarikkal N, Sajkiewicz P, Thomas S. Novel drug delivery systems based on triaxial electrospinning based nanofibers. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104895] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Omer S, Forgách L, Zelkó R, Sebe I. Scale-up of Electrospinning: Market Overview of Products and Devices for Pharmaceutical and Biomedical Purposes. Pharmaceutics 2021; 13:286. [PMID: 33671624 PMCID: PMC7927019 DOI: 10.3390/pharmaceutics13020286] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 12/11/2022] Open
Abstract
Recently, the electrospinning (ES) process has been extensively studied due to its potential applications in various fields, particularly pharmaceutical and biomedical purposes. The production rate using typical ES technology is usually around 0.01-1 g/h, which is lower than pharmaceutical industry production requirements. Therefore, different companies have worked to develop electrospinning equipment, technological solutions, and electrospun materials into large-scale production. Different approaches have been explored to scale-up the production mainly by increasing the nanofiber jet through multiple needles, free-surface technologies, and hybrid methods that use an additional energy source. Among them, needleless and centrifugal methods have gained the most attention and applications. Besides, the production rate reached (450 g/h in some cases) makes these methods feasible in the pharmaceutical industry. The present study overviews and compares the most recent ES approaches successfully developed for nanofibers' large-scale production and accompanying challenges with some examples of applied approaches in drug delivery systems. Besides, various types of commercial products and devices released to the markets have been mentioned.
Collapse
Affiliation(s)
- Safaa Omer
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre Street 7-9, 1092 Budapest, Hungary;
| | - László Forgách
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó Street 37-47, 1094 Budapest, Hungary;
| | - Romána Zelkó
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre Street 7-9, 1092 Budapest, Hungary;
| | - István Sebe
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre Street 7-9, 1092 Budapest, Hungary;
| |
Collapse
|
16
|
Faezeh Ghahreman, Semnani D, Khorasani SN, Varshosaz J, Khalili S, Mohammadi S, Kaviannasab E. Polycaprolactone–Gelatin Membranes in Controlled Drug Delivery of 5-Fluorouracil. POLYMER SCIENCE SERIES A 2020. [DOI: 10.1134/s0965545x20330020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Münchow EA, da Silva AF, Piva E, Cuevas-Suárez CE, de Albuquerque MTP, Pinal R, Gregory RL, Breschi L, Bottino MC. Development of an antibacterial and anti-metalloproteinase dental adhesive for long-lasting resin composite restorations. J Mater Chem B 2020; 8:10797-10811. [PMID: 33169763 PMCID: PMC7744429 DOI: 10.1039/d0tb02058c] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite all the advances in adhesive dentistry, dental bonds are still fragile due to degradation events that start during application of adhesive agents and the inherent hydrolysis of resin-dentin bonds. Here, we combined two outstanding processing methods (electrospinning and cryomilling) to obtain bioactive (antimicrobial and anti-metalloproteinase) fiber-based fillers containing a potent matrix metalloproteinase (MMP) inhibitor (doxycycline, DOX). Poly(ε)caprolactone solutions containing different DOX amounts (0, 5, 25, and 50 wt%) were processed via electrospinning, resulting in non-toxic submicron fibers with antimicrobial activity against Streptococcus mutans and Lactobacillus. The fibers were embedded in a resin blend, light-cured, and cryomilled for the preparation of fiber-containing fillers, which were investigated with antibacterial and in situ gelatin zymography analyzes. The fillers containing 0, 25, and 50 wt% DOX-releasing fibers were added to aliquots of a two-step, etch-and-rinse dental adhesive system. Mechanical strength, hardness, degree of conversion (DC), water sorption and solubility, bond strength to dentin, and nanoleakage analyses were performed to characterize the physico-mechanical, biological, and bonding properties of the modified adhesives. Statistical analyses (ANOVA; Kruskal-Wallis) were used when appropriate to analyze the data (α = 0.05). DOX-releasing fibers were successfully obtained, showing proper morphological architecture, cytocompatibility, drug release ability, slow degradation profile, and antibacterial activity. Reduced metalloproteinases (MMP-2 and MMP-9) activity was observed only for the DOX-containing fillers, which have also demonstrated antibacterial properties against tested bacteria. Adhesive resins modified with DOX-containing fillers demonstrated greater DC and similar mechanical properties as compared to the fiber-free adhesive (unfilled control). Concerning bonding performance to dentin, the experimental adhesives showed similar immediate bond strengths to the control. After 12 months of water storage, the fiber-modified adhesives (except the group consisting of 50 wt% DOX-loaded fillers) demonstrated stable bonds to dentin. Nanoleakage was similar among all groups investigated. DOX-releasing fibers showed promising application in developing novel dentin adhesives with potential therapeutic properties and MMP inhibition ability; antibacterial activity against relevant oral pathogens, without jeopardizing the physico-mechanical characteristics; and bonding performance of the adhesive.
Collapse
Affiliation(s)
- Eliseu A. Münchow
- Department of Conservative Dentistry, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| | - Adriana F. da Silva
- Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, RS 96015-560, Brazil
| | - Evandro Piva
- Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, RS 96015-560, Brazil
| | - Carlos E. Cuevas-Suárez
- Dental Materials Laboratory, Academic Area of Dentistry, Autonomous University of Hidalgo State, Circuito Ex Hacienda La Concepción S/N, San Agustín Tlaxiaca, Hgo, 42160 Mexico
| | - Maria T. P. de Albuquerque
- Department of Clinical Dentistry, Endodontics, Federal University of Bahia, Salvador, BA 40110-040, Brazil
| | - Rodolfo Pinal
- Department of Industrial and Physical Pharmacy, Purdue University, College of Pharmacy, West Lafayette, IN 47907, USA
| | - Richard L. Gregory
- Department of Biomedical and Applied Sciences, Division of Dental Biomaterials, Indiana University School of Dentistry (IUSD), Indianapolis, IN 46202, USA
| | - Lorenzo Breschi
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna, Alma Mater Studiorum, Bologna, Italy
| | - Marco C. Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| |
Collapse
|
18
|
Wang K, Wang P, Wang M, Yu DG, Wan F, Bligh SA. Comparative study of electrospun crystal-based and composite-based drug nano depots. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:110988. [DOI: 10.1016/j.msec.2020.110988] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/05/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022]
|
19
|
Al-Attar T, Madihally SV. Modeling the impact of fluid flow on resveratrol release from electrospun fibers. Comput Biol Med 2020; 117:103622. [PMID: 32072965 DOI: 10.1016/j.compbiomed.2020.103622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/30/2019] [Accepted: 01/12/2020] [Indexed: 02/06/2023]
Abstract
Using electrospun fibers to deliver therapeutic agents has gained significant attention in various applications including cancer treatment and tissue regeneration. However, the effect of fluid flow and uptake by cells on the concentration profile is not well understood. In this study, we evaluated the release of lipophilic resveratrol from poly(ε-caprolactone) (PCL)-gelatin (GT) electrospun fibers experimentally and by using computational fluid dynamics (CFD). Resveratrol containing PCL-GT electrospun fibers were formed and used in a custom-built tubular bioreactor, to assess flow effect on concentration profile over 5 days. CFD model was developed to simulate release in both static cultures and under fluid flow conditions. Resveratrol stability in the culture medium and uptake by human umbilical vein endothelial cells and K562 cells over 3 days were used in the model. The concentration profile as a function of time was simulated and validated by experiments. The effects of inlet velocity, cellular uptake rate, bioreactor's length, and surrounding tissue porosity were assessed. The release profile was mainly affected by cellular uptake and the presence of porous media. The model suggests that the perfusion velocity might not have a significant effect relative to the cellular uptake rate and porosity of the surrounding tissue.
Collapse
Affiliation(s)
- Thikrayat Al-Attar
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK, 74078, USA.
| | - Sundararajan V Madihally
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK, 74078, USA.
| |
Collapse
|
20
|
Al-Attar T, Madihally SV. Recent advances in the combination delivery of drug for leukemia and other cancers. Expert Opin Drug Deliv 2020; 17:213-223. [PMID: 31937127 DOI: 10.1080/17425247.2020.1715938] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Combination therapy has been explored for its potential to reduce or eliminate multidrug resistance in treating different types of cancer including leukemia. Nutraceutical, small molecular drugs, and small interfering ribonucleic acid (siRNA) are some of the effective drugs. In order to avoid off-site targeting, reduce the dosage required, and increase the half-life of the drug in the circulation system, drug delivery vehicles, such as nanoparticles and microfibers have been explored.Areas covered: This review summarizes various therapies utilized in treating leukemia based on their effectiveness in inducing protein inhibition and/or apoptosis. In particular, treatment effectiveness using combination therapy using various devices is addressed. Recently explored drug delivery methods are reviewed, providing examples and their applications in cancer treatment. The drug listing, delivery systems classifications, along with the general modeling approach in this review, provide, to a full extent, a basis for cancer drug delivery future studies.Expert opinion: The reviewer's opinion tackles the potential of using a multi-delivery system to deliver multiple drugs, providing better control upon drug release and targeting. Both local and systemic delivery are considered and explored for their potential targets. Researchers are advised to pre-consider all aspects associated with their desired delivery method.
Collapse
Affiliation(s)
- Thikrayat Al-Attar
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK, USA
| | | |
Collapse
|
21
|
Nagiah N, Murdock CJ, Bhattacharjee M, Nair L, Laurencin CT. Development of Tripolymeric Triaxial Electrospun Fibrous Matrices for Dual Drug Delivery Applications. Sci Rep 2020; 10:609. [PMID: 31953439 PMCID: PMC6969175 DOI: 10.1038/s41598-020-57412-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 12/26/2019] [Indexed: 11/09/2022] Open
Abstract
Since the first work by Laurencin and colleagues on the development of polymeric electrospinning for biomedical purposes, the use of electrospinning technology has found broad applications in such areas of tissue regeneration and drug delivery. More recently, coaxial electrospinning has emerged as an important technique to develop scaffolds for regenerative engineering incorporated with drug(s). However, the addition of a softer core layer leads to a reduction in mechanical properties. Here, novel robust tripolymeric triaxially electrospun fibrous scaffolds were developed with a polycaprolactone (PCL) (core layer), a 50:50 poly (lactic-co-glycolic acid) (PLGA) (sheath layer) and a gelatin (intermediate layer) with a dual drug delivery capability was developed through modified electrospinning. A sharp increase in elastic modulus after the incorporation of PCL in the core of the triaxial fibers in comparison with uniaxial PLGA (50:50) and coaxial PLGA (50:50) (sheath)-gelatin (core) fibers was observed. Thermal analysis of the fibrous scaffolds revealed an interaction between the core-intermediate and sheath-intermediate layers of the triaxial fibers contributing to the higher tensile modulus. A simultaneous dual release of model small molecule Rhodamine B (RhB) and model protein Fluorescein isothiocynate (FITC) Bovine Serum Albumin (BSA) conjugate incorporated in the sheath and intermediate layers of triaxial fibers was achieved. The tripolymeric, triaxial electrospun systems were seen to be ideal for the support of mesenchymal stem cell growth, as shrinkage of fibers normally found with conventional electrospun systems was minimized. These tripolymeric triaxial electrospun fibers that are biomechanically competent, biocompatible, and capable of dual drug release are designed for regenerative engineering and drug delivery applications.
Collapse
Affiliation(s)
- Naveen Nagiah
- Connecticut Convergence Institute for Translation in Regenerative Engineering, Farmington, Connecticut, United States of America
| | - Christopher J Murdock
- Connecticut Convergence Institute for Translation in Regenerative Engineering, Farmington, Connecticut, United States of America
| | - Maumita Bhattacharjee
- Connecticut Convergence Institute for Translation in Regenerative Engineering, Farmington, Connecticut, United States of America
| | - Lakshmi Nair
- Connecticut Convergence Institute for Translation in Regenerative Engineering, Farmington, Connecticut, United States of America
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, Farmington, Connecticut, United States of America
- Department of Materials Science & Engineering, University of Connecticut, Storrs, Connecticut, United States of America
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States of America
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, Farmington, Connecticut, United States of America.
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, Farmington, Connecticut, United States of America.
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut, United States of America.
- Department of Materials Science & Engineering, University of Connecticut, Storrs, Connecticut, United States of America.
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States of America.
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut, United States of America.
| |
Collapse
|
22
|
Abdullah MF, Nuge T, Andriyana A, Ang BC, Muhamad F. Core-Shell Fibers: Design, Roles, and Controllable Release Strategies in Tissue Engineering and Drug Delivery. Polymers (Basel) 2019; 11:E2008. [PMID: 31817133 PMCID: PMC6960548 DOI: 10.3390/polym11122008] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 01/04/2023] Open
Abstract
The key attributes of core-shell fibers are their ability to preserve bioactivity of incorporated-sensitive biomolecules (such as drug, protein, and growth factor) and subsequently control biomolecule release to the targeted microenvironments to achieve therapeutic effects. Such qualities are highly favorable for tissue engineering and drug delivery, and these features are not able to be offered by monolithic fibers. In this review, we begin with an overview on design requirement of core-shell fibers, followed by the summary of recent preparation methods of core-shell fibers, with focus on electrospinning-based techniques and other newly discovered fabrication approaches. We then highlight the importance and roles of core-shell fibers in tissue engineering and drug delivery, accompanied by thorough discussion on controllable release strategies of the incorporated bioactive molecules from the fibers. Ultimately, we touch on core-shell fibers-related challenges and offer perspectives on their future direction towards clinical applications.
Collapse
Affiliation(s)
- Muhammad Faiq Abdullah
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia;
- School of Bioprocess Engineering, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 3, Arau, Perlis 02600, Malaysia
| | - Tamrin Nuge
- Centre of Advanced Materials, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (T.N.); (A.A.)
| | - Andri Andriyana
- Centre of Advanced Materials, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (T.N.); (A.A.)
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Bee Chin Ang
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia;
- Centre of Advanced Materials, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (T.N.); (A.A.)
| | - Farina Muhamad
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
23
|
Al-Attar T, Madihally SV. Targeted cancer treatment using a combination of siRNA-liposomes and resveratrol-electrospun fibers in co-cultures. Int J Pharm 2019; 569:118599. [DOI: 10.1016/j.ijpharm.2019.118599] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/31/2019] [Accepted: 08/03/2019] [Indexed: 12/11/2022]
|
24
|
|
25
|
Eskitoros-Togay ŞM, Bulbul YE, Tort S, Demirtaş Korkmaz F, Acartürk F, Dilsiz N. Fabrication of doxycycline-loaded electrospun PCL/PEO membranes for a potential drug delivery system. Int J Pharm 2019; 565:83-94. [PMID: 31063838 DOI: 10.1016/j.ijpharm.2019.04.073] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/13/2019] [Accepted: 04/26/2019] [Indexed: 12/27/2022]
Abstract
Potential usage of biodegradable and biocompatible polymeric nanofibers is the most attention grabbing topic for the drug delivery system. In order to fabricate ultrafine fibers, electrospinning, one of the well-known techniques, has been extensively studied in the literature. In the present study, the objective is to achieve the optimum blend of hydrophobic and hydrophilic polymers to be used as a drug delivery vehicle and also to obtain the optimum amount of doxycycline (DOXH) to reach the optimum release. In this case, the biodegradable and biocompatible synthetic polymers, poly(ε-caprolactone) (PCL) and poly(ethylene oxide) (PEO), were blended with different ratios for the production of DOXH-loaded electrospun PCL/PEO membranes using electrospinning technique, which is a novel attempt. The fabricated membranes were subsequently characterized to optimize the blending ratio of polymers by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD) and water contact angle analysis. After the characterization studies, different amounts of DOXH were loaded to the optimized blend of PCL and PEO to investigate the release of DOXH from the membrane used as a drug delivery vehicle. In vitro drug release studies were performed, and in vitro drug release kinetics were assessed to confirm the usage of these nanofiber materials as efficient drug delivery vehicles. The results indicated that 3.5% DOXH-loaded (75:25 w/w) PCL/PEO is the most acceptable membrane to provide prolonged release rather than immediate release of DOXH.
Collapse
Affiliation(s)
- Ş Melda Eskitoros-Togay
- Department of Chemical Engineering, Institute for Graduate School of Natural and Applied Sciences, Gazi University, 06560 Ankara, Turkey
| | - Y Emre Bulbul
- Department of Chemical Engineering, Institute for Graduate School of Natural and Applied Sciences, Gazi University, 06560 Ankara, Turkey
| | - Serdar Tort
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | - Funda Demirtaş Korkmaz
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, 06500 Ankara, Turkey; Department of Medical Biology, Faculty of Medicine, Giresun University, 28100 Giresun, Turkey
| | - Füsun Acartürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | - Nursel Dilsiz
- Department of Chemical Engineering, Institute for Graduate School of Natural and Applied Sciences, Gazi University, 06560 Ankara, Turkey; Department of Chemical Engineering, Faculty of Engineering, Gazi University, 06570 Ankara, Turkey.
| |
Collapse
|
26
|
Doğan YK, Demirural A, Baykara T. Single-needle electrospinning of PVA hollow nanofibers for core–shell structures. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0446-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
27
|
Tyo KM, Minooei F, Curry KC, NeCamp SM, Graves DL, Fried JR, Steinbach-Rankins JM. Relating Advanced Electrospun Fiber Architectures to the Temporal Release of Active Agents to Meet the Needs of Next-Generation Intravaginal Delivery Applications. Pharmaceutics 2019; 11:E160. [PMID: 30987206 PMCID: PMC6523330 DOI: 10.3390/pharmaceutics11040160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/28/2019] [Accepted: 03/30/2019] [Indexed: 02/07/2023] Open
Abstract
Electrospun fibers have emerged as a relatively new delivery platform to improve active agent retention and delivery for intravaginal applications. While uniaxial fibers have been explored in a variety of applications including intravaginal delivery, the consideration of more advanced fiber architectures may offer new options to improve delivery to the female reproductive tract. In this review, we summarize the advancements of electrospun coaxial, multilayered, and nanoparticle-fiber architectures utilized in other applications and discuss how different material combinations within these architectures provide varied durations of release, here categorized as either transient (within 24 h), short-term (24 h to one week), or sustained (beyond one week). We seek to systematically relate material type and fiber architecture to active agent release kinetics. Last, we explore how lessons derived from these architectures may be applied to address the needs of future intravaginal delivery platforms for a given prophylactic or therapeutic application. The overall goal of this review is to provide a summary of different fiber architectures that have been useful for active agent delivery and to provide guidelines for the development of new formulations that exhibit release kinetics relevant to the time frames and the diversity of active agents needed in next-generation multipurpose applications.
Collapse
Affiliation(s)
- Kevin M Tyo
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA.
- Center for Predictive Medicine, Louisville, KY 40202, USA.
| | - Farnaz Minooei
- Department of Chemical Engineering, University of Louisville, Louisville, KY 40292, USA.
| | - Keegan C Curry
- Department of Biology, University of Louisville, Louisville, KY 40292, USA.
| | - Sarah M NeCamp
- Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY 40292, USA.
| | - Danielle L Graves
- Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY 40292, USA.
| | - Joel R Fried
- Department of Chemical Engineering, University of Louisville, Louisville, KY 40292, USA.
| | - Jill M Steinbach-Rankins
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA.
- Center for Predictive Medicine, Louisville, KY 40202, USA.
- Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY 40292, USA.
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
28
|
Influence of controlled release of resveratrol from electrospun fibers in combination with siRNA on leukemia cells. Eur J Pharm Sci 2018; 123:173-183. [DOI: 10.1016/j.ejps.2018.07.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/23/2018] [Accepted: 07/20/2018] [Indexed: 12/16/2022]
|
29
|
Kok MDR, Jervis R, Brett D, Shearing PR, Gostick JT. Insights into the Effect of Structural Heterogeneity in Carbonized Electrospun Fibrous Mats for Flow Battery Electrodes by X-Ray Tomography. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:1703616. [PMID: 29369509 DOI: 10.1002/smll.201703616] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Indexed: 06/07/2023]
Abstract
Electrospun custom made flow battery electrodes are imaged in 3D using X-ray computed tomography. A variety of computational methods and simulations are applied to the images to determine properties including the porosity, fiber size, and pore size distributions as well as the material permeability and flow distributions. The simulations are performed on materials before and after carbonization to determine the effect it has in the internal microstructure and material properties. It is found that the deposited fiber size is constantly changing throughout the electrospinning process. The results also show that the surfaces of the fibrous material are the most severely altered during carbonization and that the rest of the material remained intact. Pressure driven flow is modeled using the lattice Boltzmann method and excellent agreement with experimental results is found. The simulations coupled with the material analysis also demonstrate the highly heterogeneous nature of the flow. Most of the flow is concentrated to regions with high porosity while regions with low porosity shield other pores and starve them of flow. The importance of imaging these materials in 3D is highlighted throughout.
Collapse
Affiliation(s)
- Matt D R Kok
- Department of Chemical Engineering, McGill University, 845 Sherbrook St West, Montreal, H3A 0G4, Canada
| | - Rhodri Jervis
- Department of Chemical Engineering, University College London, Roberts Building Torrington Place, London, WC1E 7JE, UK
| | - Dan Brett
- Department of Chemical Engineering, University College London, Roberts Building Torrington Place, London, WC1E 7JE, UK
| | - Paul R Shearing
- Department of Chemical Engineering, University College London, Roberts Building Torrington Place, London, WC1E 7JE, UK
| | - Jeff T Gostick
- Department of Chemical Engineering, University of Waterloo, 259 Philip St, Waterloo, N2L 3W8, Canada
| |
Collapse
|
30
|
Ren K, Wang Y, Sun T, Yue W, Zhang H. Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:324-332. [DOI: 10.1016/j.msec.2017.04.084] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/13/2017] [Accepted: 04/15/2017] [Indexed: 11/15/2022]
|