1
|
Gao W, Wang H, Liu R, Ba X, Deng K, Liu F. Simultaneous Regulation of the Mechanical/Osteogenic Capacity of Brushite Calcium Phosphate Cement by Incorporating with Poly(ethylene glycol) Dicarboxylic Acid. ACS Biomater Sci Eng 2024; 10:2062-2067. [PMID: 38466032 DOI: 10.1021/acsbiomaterials.3c00886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Brushite calcium phosphate cement (brushite CPC) is a prospective bone repair material due to its ideal resorption rates in vivo. However, the undesirable mechanical property and bioactivity limited its availability in clinic application. To address this issue, incorporating polymeric additives has emerged as a viable solution. In this study, poly(ethylene glycol) dicarboxylic acid, PEG(COOH), was synthesized and employed as the polymeric additive. The setting behavior, anti-washout ability, mechanical property, degradation rate, and osteogenic capacity of brushite CPC were regulated by incorporating PEG(COOH). The incorporation of PEG(COOH) with carboxylic acid groups demonstrated a positive effect on both mechanical properties and osteogenic activity in bone repair. This study offers valuable insights and suggests a promising strategy for the development of materials in bone tissue engineering.
Collapse
Affiliation(s)
- Wenshan Gao
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, Hebei, China
- Affiliated Hospital of Hebei University, Hebei University, Baoding 071002, Hebei, China
| | - Hongjie Wang
- College of Basic Medicine, Hebei University, Baoding 071002, Hebei, China
- College of Clinical Medical, Hebei University, Baoding 071002, Hebei, China
| | - Rixu Liu
- College of Clinical Medical, Hebei University, Baoding 071002, Hebei, China
| | - Xinwu Ba
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, Hebei, China
- Engineering Research Center for Nanomaterials, Henan University, Zhengzhou 450000, China
| | - Kuilin Deng
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, Hebei, China
| | - Feng Liu
- College of Basic Medicine, Hebei University, Baoding 071002, Hebei, China
| |
Collapse
|
2
|
Jiang C, Zhu G, Liu Q. Current application and future perspectives of antimicrobial degradable bone substitutes for chronic osteomyelitis. Front Bioeng Biotechnol 2024; 12:1375266. [PMID: 38600942 PMCID: PMC11004352 DOI: 10.3389/fbioe.2024.1375266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
Chronic osteomyelitis remains a persistent challenge for the surgeons due to its refractory nature. Generally, treatment involves extensive debridement of necrotic bone, filling of dead space, adequate antimicrobial therapy, bone reconstruction, and rehabilitation. However, the optimal choice of bone substitute to manage the bone defect remains debatable. This paper reviewed the clinical evidence for antimicrobial biodegradable bone substitutes in the treatment of osteomyelitis in recent years. Indeed, this combination was proved to eradicate infection and facilitate bone reconstruction, which might reduce the cost and hospital stay. Handling was associated with increased risk of unwanted side effect to affect bone healing. The study provides some valuable insights into the clinical evaluation of treatment outcomes in the aspects of infection eradication, bone reconstruction, and complications caused by materials. However, achieving complete infection eradication and subsequently perfect bone reconstruction remains challenging in compromised conditions, hence advanced innovative bone substitutes are imperative. In this review, we mainly focus on the desired functional effects of advanced bone substitutes on infection eradication and bone reconstruction from the future perspective. Handling property was optimized to simplify surgery process. It is expected that this review will provide an important opportunity to enhance the understanding of the design and application of innovative biomaterials to synergistically eradicate infection and restore integrity and function of bone.
Collapse
Affiliation(s)
- Chenxi Jiang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guangxun Zhu
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
3
|
Kim Y, Hamada K, Sekine K. The effect of supplementing the calcium phosphate cement containing poloxamer 407 on cellular activities. J Biomed Mater Res B Appl Biomater 2024; 112:e35335. [PMID: 37772460 DOI: 10.1002/jbm.b.35335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023]
Abstract
Calcium phosphate cement (CPC) is generally used for bone repair and augmentation. Poloxamers are tri-block copolymers that are used as surfactants but have applications in drug and antibiotic delivery. However, their biological effects on bone regeneration systems remain unelucidated. Here, we aimed to understand how supplementing the prototype CPC with poloxamer would impact cellular activity and its function as a bone-grafting material. A novel CPC, modified beta-tricalcium phosphate (mβ-TCP) powder, was developed through a planetary ball-milling process using a beta-tricalcium phosphate (β-TCP). The mβ-TCP dissolves rapidly and accelerates hydroxyapatite precipitation; successfully shortening the cement setting time and enhancing the strength. Furthermore, the addition of poloxamer 407 to mβ-TCP could reduce the risk of leakage from bone defects and improve fracture toughness while maintaining mechanical properties. In this study, the poloxamer addition effects (0.05 and 0.1 g/mL) on the cellular activities of MC3T3-E1 cells cultured in vitro were investigated. The cell viability of mβ-TCP containing poloxamer 407 was similar to that of mβ-TCP. All specimens showed effective cell attachment and healthy polygonal extension of the cytoplasm firmly attached to hydroxyapatite (HA) crystals. Therefore, even with the addition of poloxamer to mβ-TCP, it does not have a negative effect to osteoblast growth. These data demonstrated that the addition of poloxamer 407 to mβ-TCP might be considered a potential therapeutic application for the repair and regeneration of bone defects.
Collapse
Affiliation(s)
- Yeeun Kim
- Department of Biomaterials and Bioengineering, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Kenichi Hamada
- Department of Biomaterials and Bioengineering, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Kazumitsu Sekine
- Department of Biomaterials and Bioengineering, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
4
|
Li X, Ma Z, Wu C, Zhang M, Wang Y, Zheng G, Zhu M, Li G, Fu F, Hao X. Injectable Self-Harden Antibiofilm Bioceramic Cement for Minimally Invasive Surgery. ACS Biomater Sci Eng 2023; 9:6225-6240. [PMID: 37906514 DOI: 10.1021/acsbiomaterials.3c00822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
There is an urgent demand for antibacterial bone grafts in clinics. Worryingly, the misuse and overuse of antibiotics accelerate the emergence of drug-resistant bacteria. Therefore, this study prepared a novel injectable bioceramic cement without antibiotics (FS-BCS), which showed good antibacterial properties by loading iron and strontium onto a matrix composed of brushite and calcium sulfate. The setting time, injectability, microstructure, antibacterial properties, anti-biofilm properties, and cytocompatibility of the novel bioceramic cement were evaluated thoroughly. The results showed that the material was highly injectable and antiwashout. The antibacterial tests revealed that FS-BCS inhibited the growth of 99.9% E. coli and S. aureus separately in the broth due to the synergistic effect of strontium and iron. Simultaneously, crystal violet and fluorescent staining tests revealed that the material could significantly inhibit the formation of E. coli and S. aureus biofilms. In addition, the co-incorporation of iron and strontium promoted the proliferation and migration of osteoblasts. Therefore, FS-BCS has good application potential in antibiotic-free anti-infection bone grafting using minimally invasive surgery.
Collapse
Affiliation(s)
- Xiaofang Li
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luo Yang 471023, Henan, China
| | - Zexu Ma
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luo Yang 471023, Henan, China
| | - Congping Wu
- School of Electronic Engineering, Chengdu Technological University, Chengdu 611730, Sichuan, China
| | - Mei Zhang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luo Yang 471023, Henan, China
| | - Yitong Wang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luo Yang 471023, Henan, China
| | - Guangxun Zheng
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luo Yang 471023, Henan, China
| | - Mengxin Zhu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luo Yang 471023, Henan, China
| | - Guangda Li
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luo Yang 471023, Henan, China
| | - Fangfang Fu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luo Yang 471023, Henan, China
| | - Xueqin Hao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luo Yang 471023, Henan, China
| |
Collapse
|
5
|
Krokhicheva PA, Goldberg MA, Fomin AS, Khayrutdinova DR, Antonova OS, Baikin AS, Leonov AV, Merzlyak EM, Mikheev IV, Kirsanova VA, Sviridova IK, Akhmedova SA, Sergeeva NS, Barinov SM, Komlev VS. Zn-Doped Calcium Magnesium Phosphate Bone Cement Based on Struvite and Its Antibacterial Properties. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4824. [PMID: 37445137 DOI: 10.3390/ma16134824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
The development of magnesium calcium phosphate bone cements (MCPCs) has garnered substantial attention. MCPCs are bioactive and biodegradable and have appropriate mechanical and antimicrobial properties for use in reconstructive surgery. In this study, the cement powders based on a (Ca + Mg)/P = 2 system doped with Zn2+ at 0.5 and 1.0 wt.% were obtained and investigated. After mixing with a cement liquid, the structural and phase composition, morphology, chemical structure, setting time, compressive strength, degradation behavior, solubility, antibacterial activities, and in vitro behavior of the cement materials were examined. A high compressive strength of 48 ± 5 MPa (mean ± SD) was achieved for the cement made from Zn2+ 1.0 wt.%-substituted powders. Zn2+ introduction led to antibacterial activity against Staphylococcus aureus and Escherichia coli strains, with an inhibition zone diameter of up to 8 mm. Biological assays confirmed that the developed cement is cytocompatible and promising as a potential bone substitute in reconstructive surgery.
Collapse
Affiliation(s)
- Polina A Krokhicheva
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow 119334, Russia
| | - Margarita A Goldberg
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow 119334, Russia
| | - Alexander S Fomin
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow 119334, Russia
| | - Dinara R Khayrutdinova
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow 119334, Russia
| | - Olga S Antonova
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow 119334, Russia
| | - Alexander S Baikin
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow 119334, Russia
| | - Aleksander V Leonov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ekaterina M Merzlyak
- Department of Molecular Technologies, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Ivan V Mikheev
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Valentina A Kirsanova
- P.A. Hertsen Moscow Oncology Research Institute-Branch of National Medical Research Radiological Centre Affiliated with Ministry of Health of Russian Federation, 2nd Botkinsky Pr. 3, Moscow 125284, Russia
| | - Irina K Sviridova
- P.A. Hertsen Moscow Oncology Research Institute-Branch of National Medical Research Radiological Centre Affiliated with Ministry of Health of Russian Federation, 2nd Botkinsky Pr. 3, Moscow 125284, Russia
| | - Suraya A Akhmedova
- P.A. Hertsen Moscow Oncology Research Institute-Branch of National Medical Research Radiological Centre Affiliated with Ministry of Health of Russian Federation, 2nd Botkinsky Pr. 3, Moscow 125284, Russia
| | - Natalia S Sergeeva
- P.A. Hertsen Moscow Oncology Research Institute-Branch of National Medical Research Radiological Centre Affiliated with Ministry of Health of Russian Federation, 2nd Botkinsky Pr. 3, Moscow 125284, Russia
| | - Sergey M Barinov
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow 119334, Russia
| | - Vladimir S Komlev
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
6
|
Dias AM, do Nascimento Canhas I, Bruziquesi CGO, Speziali MG, Sinisterra RD, Cortés ME. Magnesium (Mg2 +), Strontium (Sr2 +), and Zinc (Zn2 +) Co-substituted Bone Cements Based on Nano-hydroxyapatite/Monetite for Bone Regeneration. Biol Trace Elem Res 2023; 201:2963-2981. [PMID: 35994139 DOI: 10.1007/s12011-022-03382-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/06/2022] [Indexed: 11/30/2022]
Abstract
New bone cement type that combines Sr2 + /Mg2 + or Sr2 + /Zn2 + co-substituted nano-hydroxyapatite (n-HAs) with calcium phosphate dibasic and chitosan/gelatin polymers was developed to increase adhesion and cellular response. The cements were physicochemically described and tested in vitro using cell cultures. All cements exhibited quite hydrophilic and had high washout resistance. Cement releases Ca2 + , Mg2 + , Sr2 + , and Zn2 + in concentrations that are suitable for osteoblast proliferation and development. All of the cements stimulated cell proliferation in fibroblasts, endothelial cells, and osteoblasts, were non-cytotoxic, and produced apatite. Cements containing co-substituted n-HAs had excellent cytocompatibility, which improved osteoblast adhesion and cell proliferation. These cements had osteoinductive potential, stimulating extracellular matrix (ECM) mineralization and differentiation of MC3T3-E1 cells by increasing ALP and NO production. The ions Ca2 + , Mg2 + , Zn2 + , and Sr2 + appear to cooperate in promoting osteoblast function. The C3 cement (HA-SrMg5%), which was made up of n-HA co-substituted with 5 mol% Sr and 5 mol% Mg, showed exceptional osteoinductive capacity in terms of bone regeneration, indicating that this new bone cement could be a promising material for bone replacement.
Collapse
Affiliation(s)
- Alexa Magalhães Dias
- Dentistry Department, Faculty of Dentistry, Universidade Federal de Juiz de Fora, Rua São Paulo, 745 Governador Valadares/MG Brazil, Governador Valadares, MG, CEP, 31270901, Brazil
- Restorative Dentistry Department, Faculty of Dentistry, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte, MG, CEP, 31270901, Brazil
| | - Isabela do Nascimento Canhas
- Biopharmaceutical and Technology Innovation Graduate Program, ICB, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte, MG, CEP, 31270901, Brazil
| | - Carlos Giovani Oliveira Bruziquesi
- Chemistry Department, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte, MG, CEP, 31270901, Brazil
| | - Marcelo Gomes Speziali
- Biopharmaceutical and Technology Innovation Graduate Program, ICB, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte, MG, CEP, 31270901, Brazil
- Chemistry Department, Instituto de Ciências Exatas E Biológicas, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro s/n, Ouro Preto, MG, CEP, 35400000, Brazil
| | - Rubén Dario Sinisterra
- Biopharmaceutical and Technology Innovation Graduate Program, ICB, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte, MG, CEP, 31270901, Brazil
- Chemistry Department, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte, MG, CEP, 31270901, Brazil
| | - Maria Esperanza Cortés
- Biopharmaceutical and Technology Innovation Graduate Program, ICB, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte, MG, CEP, 31270901, Brazil.
- Restorative Dentistry Department, Faculty of Dentistry, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte, MG, CEP, 31270901, Brazil.
| |
Collapse
|
7
|
Preparation and evaluation of osteoinductive porous biphasic calcium phosphate granules obtained from eggshell for bone tissue engineering. ADV POWDER TECHNOL 2023. [DOI: 10.1016/j.apt.2022.103909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Lim HK, Kwon IJ, On SW, Hong SJ, Yang BE, Kim SM, Lee JH, Byun SH. Enhanced Bone Regeneration in Variable-Type Biphasic Ceramic Phosphate Scaffolds Using rhBMP-2. Int J Mol Sci 2021; 22:11485. [PMID: 34768914 PMCID: PMC8583890 DOI: 10.3390/ijms222111485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022] Open
Abstract
Our aim was to investigate the bone regeneration capacity of powder-type biphasic ceramic scaffold (BCP powder), block-type BCP (BCP block), and collagen-added block-type BCP (BCP collagen) with different concentrations of recombinant human bone morphogenetic protein 2 (rhBMP-2) in an animal model. Four rabbits were assigned to each of the following groups: no graft + rhBMP-2 (0.1/0.2 mg/mL), BCP powder + rhBMP-2 (0.1/0.2 mg/mL), BCP block + rhBMP-2 (0.1/0.2 mg/mL), and BCP collagen + rhBMP-2 (0.1/0.2 mg/mL), i.e., a total of 32 rabbits. Polycarbonate tubes (Φ 7 mm × 5 mm) for supporting scaffolds were fixed into a 7 mm round border. Subsequently, 0.1 mL of rhBMP-2 solutions with different concentrations was injected into the tubes. Both radiological and histomorphometric analyses showed that osteogenesis was not enhanced by increasing the concentration of rhBMP-2 in all groups at both 3 and 6 weeks. Radiological analysis showed that bone formation was higher in the BCP collagen group than in the BCP powder and BCP block groups at both rhBMP-2 concentrations at 3 weeks. rhBMP-2 enhanced bone formation; however, as the concentration increased, bone formation could not be enhanced infinitely. Collagen-added alloplastic graft material may be useful for mediating rapid bone formation in initial stages.
Collapse
Affiliation(s)
- Ho-Kyung Lim
- Department of Oral and Maxillofacial Surgery, Korea University Guro Hospital, Seoul 08308, Korea;
| | - Ik-Jae Kwon
- Department of Oral & Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul 03080, Korea; (I.-J.K.); (S.-M.K.); (J.-H.L.)
| | - Sung-Woon On
- Department of Oral and Maxillofacial Surgery, Dentistry, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong 18450, Korea;
| | - Seok-Jin Hong
- Department of Otolaryngology-Head & Neck Surgery, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong 18450, Korea;
| | - Byoung-Eun Yang
- Department of Oral and Maxillofacial Surgery, Dentistry, Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Korea;
- Graduate School of Clinical Dentistry, Hallym University, Chuncheon 24252, Korea
- Research Center of Clinical Dentistry, Clinical Dentistry Graduate School, Hallym University, Chuncheon 24252, Korea
| | - Soung-Min Kim
- Department of Oral & Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul 03080, Korea; (I.-J.K.); (S.-M.K.); (J.-H.L.)
| | - Jong-Ho Lee
- Department of Oral & Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul 03080, Korea; (I.-J.K.); (S.-M.K.); (J.-H.L.)
| | - Soo-Hwan Byun
- Department of Oral and Maxillofacial Surgery, Dentistry, Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Korea;
- Graduate School of Clinical Dentistry, Hallym University, Chuncheon 24252, Korea
- Research Center of Clinical Dentistry, Clinical Dentistry Graduate School, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
9
|
A Review on the Enhancement of Calcium Phosphate Cement with Biological Materials in Bone Defect Healing. Polymers (Basel) 2021; 13:polym13183075. [PMID: 34577976 PMCID: PMC8472520 DOI: 10.3390/polym13183075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 01/28/2023] Open
Abstract
Calcium phosphate cement (CPC) is a promising material used in the treatment of bone defects due to its profitable features of self-setting capability, osteoconductivity, injectability, mouldability, and biocompatibility. However, the major limitations of CPC, such as the brittleness, lack of osteogenic property, and poor washout resistance, remain to be resolved. Thus, significant research effort has been committed to modify and reinforce CPC. The mixture of CPC with various biological materials, defined as the materials produced by living organisms, have been fabricated by researchers and their characteristics have been investigated in vitro and in vivo. This present review aimed to provide a comprehensive overview enabling the readers to compare the physical, mechanical, and biological properties of CPC upon the incorporation of different biological materials. By mixing the bone-related transcription factors, proteins, and/or polysaccharides with CPC, researchers have demonstrated that these combinations not only resolved the lack of mechanical strength and osteogenic effects of CPC but also further improve its own functional properties. However, exceptions were seen in CPC incorporated with certain proteins (such as elastin-like polypeptide and calcitonin gene-related peptide) as well as blood components. In conclusion, the addition of biological materials potentially improves CPC features, which vary depending on the types of materials embedded into it. The significant enhancement of CPC seen in vitro and in vivo requires further verification in human trials for its clinical application.
Collapse
|
10
|
Individualized plasticity autograft mimic with efficient bioactivity inducing osteogenesis. Int J Oral Sci 2021; 13:14. [PMID: 33846295 PMCID: PMC8041815 DOI: 10.1038/s41368-021-00120-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/08/2021] [Accepted: 03/02/2021] [Indexed: 12/20/2022] Open
Abstract
Mineralized tissue regeneration is an important and challenging part of the field of tissue engineering and regeneration. At present, autograft harvest procedures may cause secondary trauma to patients, while bone scaffold materials lack osteogenic activity, resulting in a limited application. Loaded with osteogenic induction growth factor can improve the osteoinductive performance of bone graft, but the explosive release of growth factor may also cause side effects. In this study, we innovatively used platelet-rich fibrin (PRF)-modified bone scaffolds (Bio-Oss®) to replace autograft, and used cytokine (BMP-2) to enhance osteogenesis. Encouragingly, this mixture, which we named “Autograft Mimic (AGM)”, has multiple functions and advantages. (1) The fiber network provided by PRF binds the entire bone scaffold together, thereby shaping the bone grafts and maintaining the space of the defect area. (2) The sustained release of BMP-2 from bone graft promoted bone regeneration continuously. (3) AGM recruited bone marrow mesenchymal stem cells (BMSCs) and promote their proliferation, migration, and osteogenic differentiation. Thus, AGM developed in this study can improve osteogenesis, and provide new guidance for the development of clinical bone grafts.
Collapse
|
11
|
Hurle K, Oliveira J, Reis R, Pina S, Goetz-Neunhoeffer F. Ion-doped Brushite Cements for Bone Regeneration. Acta Biomater 2021; 123:51-71. [PMID: 33454382 DOI: 10.1016/j.actbio.2021.01.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/11/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
Decades of research in orthopaedics has culminated in the quest for formidable yet resorbable biomaterials using bioactive materials. Brushite cements most salient features embrace high biocompatibility, bioresorbability, osteoconductivity, self-setting characteristics, handling, and injectability properties. Such type of materials is also effectively applied as drug delivery systems. However, brushite cements possess limited mechanical strength and fast setting times. By means of incorporating bioactive ions, which are incredibly promising in directing cell fate when incorporated within biomaterials, it can yield biomaterials with superior mechanical properties. Therefore, it is a key to develop fine-tuned regenerative medicine therapeutics. A comprehensive overview of the current accomplishments of ion-doped brushite cements for bone tissue repair and regeneration is provided herein. The role of ionic substitution on the cements physicochemical properties, such as structural, setting time, hydration products, injectability, mechanical behaviour and ion release is discussed. Cell-material interactions, osteogenesis, angiogenesis, and antibacterial activity of the ion-doped cements, as well as its potential use as drug delivery carriers are also presented. STATEMENT OF SIGNIFICANCE: Ion-doped brushite cements have unbolted a new era in orthopaedics with high clinical interest to restore bone defects and facilitate the healing process, owing its outstanding bioresorbability and osteoconductive/osteoinductive features. Ion incorporation expands their application by increasing the osteogenic and neovascularization potential of the materials, as well as their mechanical performance. Recent accomplishments of brushite cements incorporating bioactive ions are overviewed. Focus was placed on the role of ions on the physicochemical and biological properties of the biomaterials, namely their structure, setting time, injectability and handling, mechanical behaviour, ion release and in vivo osteogenesis, angiogenesis and vascularization. Antibacterial activity of the cements and their potential use for delivery of drugs are also highlighted herein.
Collapse
|
12
|
Wu K, Chen YC, Lin SM, Chang CH. In vitro and in vivo effectiveness of a novel injectable calcitonin-loaded collagen/ceramic bone substitute. J Biomater Appl 2021; 35:1355-1365. [PMID: 33522363 DOI: 10.1177/0885328221989984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This study aimed to evaluate the effectiveness of a novel calcitonin-loaded calcium phosphate composite bone cement in vitro and in vivo. The novel composite bone cements were composed of NuROs injectable bone graft substitute, type I collagen, and/or salmon calcitonin. The setting time, porosity, wettability, compressive strength, compressive modulus, and crystallographic structures of cement specimens were determined. Degradation rate, calcitonin release rate, and osteoinductivity were assessed in vitro. In addition, osteogenic effect was examined in a rabbit model of femoral defect. The results revealed that addition of collagen/calcitonin did not substantially alter physical properties and degradation rate of bone cement specimens. Calcitonin was released into culture medium in a two-phase manner. Osteogenic effect of conditioned medium derived from calcitonin containing bone cement was observed. Finally, de novo bone growth and bone mineralization across the bone defect area were observed in rabbits after implantation of composite bone cement specimens. In conclusion, this novel calcitonin-loaded composite calcium phosphate bone cement exhibits biocompatibility, bioresorbability, osteoinductivity, and osteoconductivity, which may be suitable for clinical use.
Collapse
Affiliation(s)
- Karl Wu
- Department of Orthopedic Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan.,Department of Materials and Textiles, Oriental Institute of Technology, New Taipei City, Taiwan
| | - Yu-Chun Chen
- Department of Orthopedic Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan.,College of General Studies, Yuan Ze University, Taoyuan City, Taiwan
| | - Shang M Lin
- Department of Materials and Textiles, Oriental Institute of Technology, New Taipei City, Taiwan
| | - Chih-Hung Chang
- Department of Orthopedic Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan.,Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan City, Taiwan
| |
Collapse
|
13
|
Wang Q, Feng Y, He M, Zhao W, Qiu L, Zhao C. A Hierarchical Janus Nanofibrous Membrane Combining Direct Osteogenesis and Osteoimmunomodulatory Functions for Advanced Bone Regeneration. ADVANCED FUNCTIONAL MATERIALS 2020. [DOI: 10.1002/adfm.202008906] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Qian Wang
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
| | - Yunbo Feng
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
| | - Min He
- State Key Laboratory of Oral Disease West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Weifeng Zhao
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
| | - Li Qiu
- Department of Ultrasound West China School of Medicine/West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Changsheng Zhao
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
| |
Collapse
|
14
|
Advances in the modification of injectable calcium-phosphate-based bone cements for clinical application. Chin Med J (Engl) 2020; 133:2610-2612. [PMID: 32960840 PMCID: PMC7722559 DOI: 10.1097/cm9.0000000000001092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
15
|
Lima DB, de Souza MAA, de Lima GG, Ferreira Souto EP, Oliveira HML, Fook MVL, de Sá MJC. Injectable bone substitute based on chitosan with polyethylene glycol polymeric solution and biphasic calcium phosphate microspheres. Carbohydr Polym 2020; 245:116575. [DOI: 10.1016/j.carbpol.2020.116575] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/06/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022]
|
16
|
Zhao Q, Tang H, Ren L, Wei J. In vitro Apatite Mineralization, Degradability, Cytocompatibility and in vivo New Bone Formation and Vascularization of Bioactive Scaffold of Polybutylene Succinate/Magnesium Phosphate/Wheat Protein Ternary Composite. Int J Nanomedicine 2020; 15:7279-7295. [PMID: 33061381 PMCID: PMC7535120 DOI: 10.2147/ijn.s255477] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022] Open
Abstract
Purpose A bioactive and degradable scaffold of ternary composite with good biocompatibility and osteogenesis was developed for bone tissue repair. Materials and Methods Polybutylene succinate (PS:50 wt%), magnesium phosphate (MP:40 wt%) and wheat protein (WP:10 wt%) composite (PMWC) scaffold was fabricated, and the biological performances of PMWC were evaluated both in vitro and vivo in this study. Results PMWC scaffold possessed not only interconnected macropores (400 μm to 600 μm) but also micropores (10 μm ~20 μm) on the walls of macropores. Incorporation of MP into composite improved the apatite mineralization (bioactivity) of PMWC scaffold in simulated body fluid (SBF), and addition of WP into composite further enhanced the degradability of PMWC in PBS compared with the scaffold of PS (50 wt%)/MP (50 wt%) composite (PMC) and PS alone. In addition, the PMWC scaffold containing MP and WP significantly promoted the proliferation and differentiation of mouse pre-osteoblastic cell line (MC3T3-E1) cells. Moreover, the images from synchrotron radiation microcomputed tomography (SRmCT) and histological sections of the in vivo implantation suggested that the PMWC scaffold containing MP and WP prominently improved the new bone formation and ingrowth compared with PMC and PS. Furthermore, the immunohistochemical analysis further confirmed that the PMWC scaffold obviously promoted osteogenesis and vascularization in vivo compared with PMC and PS. Conclusion This study demonstrated that the biocompatible PMWC scaffold with improved bioactivity and degradability significantly promoted the osteogenesis and vascularization in vivo, which would have a great potential to be applied for bone tissue repair.
Collapse
Affiliation(s)
- Qinghui Zhao
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, People's Republic of China.,Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, People's Republic of China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, People's Republic of China
| | - Hongming Tang
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, People's Republic of China.,Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, People's Republic of China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, People's Republic of China
| | - Lishu Ren
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| |
Collapse
|
17
|
Yousefi AM. A review of calcium phosphate cements and acrylic bone cements as injectable materials for bone repair and implant fixation. J Appl Biomater Funct Mater 2020; 17:2280800019872594. [PMID: 31718388 DOI: 10.1177/2280800019872594] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Treatment of bone defects caused by trauma or disease is a major burden on human healthcare systems. Although autologous bone grafts are considered as the gold standard, they are limited in availability and are associated with post-operative complications. Minimally invasive alternatives using injectable bone cements are currently used in certain clinical procedures, such as vertebroplasty and balloon kyphoplasty. Nevertheless, given the high incidence of fractures and pathologies that result in bone voids, there is an unmet need for injectable materials with desired properties for minimally invasive procedures. This paper provides an overview of the most common injectable bone cement materials for clinical use. The emphasis has been placed on calcium phosphate cements and acrylic bone cements, while enabling the readers to compare the opportunities and challenges for these two classes of bone cements. This paper also briefly reviews antibiotic-loaded bone cements used in bone repair and implant fixation, including their efficacy and cost for healthcare systems. A summary of the current challenges and recommendations for future directions has been brought in the concluding section of this paper.
Collapse
Affiliation(s)
- Azizeh-Mitra Yousefi
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA
| |
Collapse
|
18
|
Comparative study on biodegradation and biocompatibility of multichannel calcium phosphate based bone substitutes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110694. [PMID: 32204008 DOI: 10.1016/j.msec.2020.110694] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 01/13/2020] [Accepted: 01/25/2020] [Indexed: 02/06/2023]
Abstract
The objective of this study was to fabricate multichannel biphasic calcium phosphate (BCP) and β-tricalcium phosphate (TCP) bone substitutes and compare their long-term biodegradation and bone regeneration potentials. Multi-channel BCP and TCP scaffolds were fabricated by multi-pass extrusion process. Both scaffolds were cylindrical with a diameter of 1-mm, a length of 1-mm, and seven interconnected channels. Morphology, chemical composition, phase, porosity, compressive strength, ion release behavior, and in-vitro biocompatibility of both scaffolds were studied. In-vivo biodegradation and bone regeneration efficacies of BCP and TCP were also evaluated using a rabbit model for 1 week, 1 month, and 6 months. BCP exhibited superior compressive strength compared to TCP scaffold. TCP showed higher release of both calcium ions and phosphorous ions than BCP in SBF solution. Both scaffolds showed excellent in-vitro biocompatibility and upregulated the expression of osteogenic markers of MC3T3-E1 cells. In-vivo studies revealed that both cylindrical TCP and BCP scaffolds were osteoconductive and supported new bone formation. Micro-CT data showed that the bone-regeneration efficacy of TCP was higher at one month and at six months after implantation. Histological examination confirmed that TCP degraded faster and had better bone regeneration than BCP after 6 months.
Collapse
|
19
|
Abstract
Recently, intensive efforts have been undertaken to find new, superior biomaterial solutions in the field of hybrid inorganic–organic materials. In our studies, biomicroconcretes containing hydroxyapatite (HAp)–chitosan (CTS) granules dispersed in an α tricalcium phospahate (αTCP) matrix were investigated. The influence of CTS content and the size of granules on the physicochemical properties of final bone implant materials (setting time, porosity, mechanical strength, and phase composition) were evaluated. The obtained materials were found to be promising bone substitutes for use in non-load bearing applications.
Collapse
|
20
|
Recent Advances of Biphasic Calcium Phosphate Bioceramics for Bone Tissue Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1250:177-188. [PMID: 32601945 DOI: 10.1007/978-981-15-3262-7_12] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biphasic calcium phosphate bioceramics consist of an intimate mixture of hydroxyapatite (HA) and beta-tricalcium phosphate (β-TCP) in varying ratios. Due to their biocompatibility, osteoconductivity, and safety in in vitro, in vivo, and clinical models, they have become promising bone substitute biomaterials and are recommended for use as alternatives for or as additives in bone tissue regeneration in various orthopedic and dental applications. Many studies have demonstrated the potential uses of BCP bioceramics as scaffolds for tissue engineering. Here, we highlight the recent advances in the uses of BCP bioceramics and functionalized BCPs for bone tissue regeneration.
Collapse
|
21
|
Hasan ML, Kim B, Padalhin AR, Faruq O, Sultana T, Lee BT. In vitro and in vivo evaluation of bioglass microspheres incorporated brushite cement for bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109775. [DOI: 10.1016/j.msec.2019.109775] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 05/04/2019] [Accepted: 05/17/2019] [Indexed: 01/15/2023]
|
22
|
Gunnella F, Kunisch E, Horbert V, Maenz S, Bossert J, Jandt KD, Plöger F, Kinne RW. In Vitro Release of Bioactive Bone Morphogenetic Proteins (GDF5, BB-1, and BMP-2) from a PLGA Fiber-Reinforced, Brushite-Forming Calcium Phosphate Cement. Pharmaceutics 2019; 11:pharmaceutics11090455. [PMID: 31484306 PMCID: PMC6781330 DOI: 10.3390/pharmaceutics11090455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 08/06/2019] [Accepted: 08/23/2019] [Indexed: 12/17/2022] Open
Abstract
Bone regeneration of sheep lumbar osteopenia is promoted by targeted delivery of bone morphogenetic proteins (BMPs) via a biodegradable, brushite-forming calcium-phosphate-cement (CPC) with stabilizing poly(l-lactide-co-glycolide) acid (PLGA) fibers. The present study sought to quantify the release and bioactivity of BMPs from a specific own CPC formulation successfully used in previous in vivo studies. CPC solid bodies with PLGA fibers (0%, 5%, 10%) containing increasing dosages of GDF5, BB-1, and BMP-2 (2 to 1000 µg/mL) were ground and extracted in phosphate-buffered saline (PBS) or pure sheep serum/cell culture medium containing 10% fetal calf serum (FCS; up to 30/31 days). Released BMPs were quantified by ELISA, bioactivity was determined via alkaline phosphatase (ALP) activity after 3-day exposure of different osteogenic cell lines (C2C12; C2C12BRlb with overexpressed BMP-receptor-1b; MCHT-1/26; ATDC-5) and via the influence of the extracts on the expression of osteogenic/chondrogenic genes and proteins in human adipose tissue-derived mesenchymal stem cells (hASCs). There was hardly any BMP release in PBS, whereas in medium + FCS or sheep serum the cumulative release over 30/31 days was 11-34% for GDF5 and 6-17% for BB-1; the release of BMP-2 over 14 days was 25.7%. Addition of 10% PLGA fibers significantly augmented the 14-day release of GDF5 and BMP-2 (to 22.6% and 43.7%, respectively), but not of BB-1 (13.2%). All BMPs proved to be bioactive, as demonstrated by increased ALP activity in several cell lines, with partial enhancement by 10% PLGA fibers, and by a specific, early regulation of osteogenic/chondrogenic genes and proteins in hASCs. Between 10% and 45% of bioactive BMPs were released in vitro from CPC + PLGA fibers over a time period of 14 days, providing a basis for estimating and tailoring therapeutically effective doses for experimental and human in vivo studies.
Collapse
Affiliation(s)
- Francesca Gunnella
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, 07607 Eisenberg, Germany
| | - Elke Kunisch
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, 07607 Eisenberg, Germany
| | - Victoria Horbert
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, 07607 Eisenberg, Germany
| | - Stefan Maenz
- Chair of Materials Science, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Jörg Bossert
- Chair of Materials Science, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Klaus D Jandt
- Chair of Materials Science, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, 07743 Jena, Germany
- Jena School for Microbial Communication (JSMC), Friedrich Schiller University Jena, 07743 Jena, Germany
| | | | - Raimund W Kinne
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, 07607 Eisenberg, Germany.
| |
Collapse
|
23
|
Thermal cycling effect on osteogenic differentiation of MC3T3-E1 cells loaded on 3D-porous Biphasic Calcium Phosphate (BCP) scaffolds for early osteogenesis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110027. [PMID: 31546388 DOI: 10.1016/j.msec.2019.110027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/21/2019] [Accepted: 07/26/2019] [Indexed: 12/30/2022]
Abstract
The application of heat stress on a defect site during the healing process is a promising technique for early bone regeneration. The primary goal of this study was to investigate the effect of periodic heat shock on bone formation. MC3T3-E1 cells were seeded onto biphasic calcium phosphate (BCP) scaffolds, followed by periodic heating to evaluate osteogenic differentiation. Heat was applied to cells seeded onto scaffolds at 41 °C for 1 h once, twice, and four times a day for seven days and their viability, morphology, and differentiation were analyzed. BCP scaffolds with interconnected porous structures mimic bone biology for cellular studies. MTT and confocal studies have shown that heat shock significantly increased cell proliferation without any toxic effects. Compared to non-heated samples, heat shock enhanced calcium deposition and mineralization, which could be visualized by SEM observation and Alizarin red S staining. Immunostaining images showed the localization of osteogenic proteins ALP and OPN on heat-shocked cells. qRT-PCR analysis revealed the presence of more osteospecific markers, osteopontin (OPN), osteocalcin, collagen type X, and Runx2, in the heat-shocked samples than in the non-heated sample. Periodic heat shock significantly upregulated both heat shock proteins (HSP70 and HSP27) in differentiated MC3T3-E1 cells. The results of this study demonstrated that periodically heat applied especially two times a day was better approach for osteogenic differentiation. Hence, this work provides a define temperature and time schedule for the development of a clinical heating device in future for early bone regeneration during the postsurgical period.
Collapse
|
24
|
Tebyanian H, Norahan MH, Eyni H, Movahedin M, Mortazavi SJ, Karami A, Nourani MR, Baheiraei N. Effects of collagen/β-tricalcium phosphate bone graft to regenerate bone in critically sized rabbit calvarial defects. J Appl Biomater Funct Mater 2019; 17:2280800018820490. [PMID: 30832532 DOI: 10.1177/2280800018820490] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Bone defects remain a significant health issue and a major cause of morbidity in elderly patients. Composites based on collagen/calcium phosphate have been widely used for bone repair in clinical applications, owing to their comparability to bone extracellular matrix. This study aimed to evaluate the effects of a scaffold of collagen/calcium phosphate (COL/β-TCP) on bone formation to assess its potential use as a bone substitute to repair bone defects. Bilateral full-thickness critically sized calvarial defects (8 mm in diameter) were created in New Zealand white rabbits and treated with COL/β-TCP or COL scaffolds. One defect was also left unfilled as a control. Bone regeneration was assessed through histological evaluation using hematoxylin and eosin and Masson's trichrome staining after 4 and 8 weeks. Alizarin Red staining was also utilized to observe the mineralization process. Our findings indicated that COL/β-TCP implantation could better enhance bone regeneration than COL and exhibited both new bone growth and scaffold material degradation.
Collapse
Affiliation(s)
- Hamid Tebyanian
- 1 Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Hossein Eyni
- 3 Department of Anatomical Science, faculty of medical sciences, Tarbiat Modares University, Tehran, Iran
| | - Mansoureh Movahedin
- 3 Department of Anatomical Science, faculty of medical sciences, Tarbiat Modares University, Tehran, Iran
| | - Sm Javad Mortazavi
- 4 Joint Reconstruction Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Karami
- 1 Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Nourani
- 5 Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Nafiseh Baheiraei
- 6 Tissue Engineering & Applied Cell Sciences Division, Department of hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
25
|
Taz M, Makkar P, Imran KM, Jang D, Kim YS, Lee BT. Bone regeneration of multichannel biphasic calcium phosphate granules supplemented with hyaluronic acid. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:1058-1066. [DOI: 10.1016/j.msec.2019.02.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/31/2019] [Accepted: 02/15/2019] [Indexed: 10/27/2022]
|
26
|
Taz M, Bae SH, Jung HI, Cho HD, Lee BT. Bone regeneration strategy by different sized multichanneled biphasic calcium phosphate granules: In vivo evaluation in rabbit model. J Biomater Appl 2018; 32:1406-1420. [DOI: 10.1177/0885328218768605] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A variety of synthetic materials are currently in use as bone substitutes, among them a new calcium phosphate-based multichannel, cylindrical, granular bone substitute that is showing satisfactory biocompatibility and osteoconductivity in clinical applications. These cylindrical granules differ in their mechanical and morphological characteristics such as size, diameter, surface area, pore size, and porosity. The aim of this study is to investigate whether the sizes of these synthetic granules and the resultant inter-granular spaces formed by their filling critical-sized bone defects affect new bone formation characteristics and to determine the best formulations from these individual types by combining the granules in different proportions to optimize the bone tissue regeneration. We evaluated two types of multichanneled cylindrical granules, 1 mm and 3 mm in diameter, combined the granules in two different proportions (wt%), and compared their different mechanical, morphological, and in vitro and in vivo biocompatibility characteristics. We assessed in vitro biocompatibility and cytotoxicity using MC3T3-E1 osteoblast-like cells using MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and confocal imaging. In vivo investigation in a rabbit model indicated that all four samples formed significantly better bone than the control after four weeks and eight weeks of implantation. Micro-computed tomography analysis showed more bone formation by the 1 mm cylindrical granules with 160 ± 10 µm channeled pore and 50% porosity than the other three samples ( p<.05), which we confirmed by histological analysis.
Collapse
Affiliation(s)
- Mirana Taz
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Sang Ho Bae
- Department of Surgery, College of Medicine, Soonchunhyang University Hospital, Cheonan, Republic of Korea
| | - Hae Il Jung
- Department of Surgery, College of Medicine, Soonchunhyang University Hospital, Cheonan, Republic of Korea
| | - Hyun-Deuk Cho
- Department of Pathology, College of Medicine, Soonchunhyang University Hospital, Cheonan, Republic of Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| |
Collapse
|
27
|
Qian Y, Zhou X, Sun H, Yang J, Chen Y, Li C, Wang H, Xing T, Zhang F, Gu N. Biomimetic Domain-Active Electrospun Scaffolds Facilitating Bone Regeneration Synergistically with Antibacterial Efficacy for Bone Defects. ACS APPLIED MATERIALS & INTERFACES 2018; 10:3248-3259. [PMID: 29172421 DOI: 10.1021/acsami.7b14524] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
To improve bone regeneration in oral microenvironment, we generated a novel biodegradable, antibacterial, and osteoconductive electrospun PLGA/PCL membrane as an ideal osteogenic scaffold. The novel three-layer membranes were structured with serial layers of electrospun chlorhexidine-doped-PLGA/PCL (PPC), PLGA/PCL (PP), and β-tricalcium phosphate-doped-PLGA/PCL (PPβ). To characterize osteoconductive properties of these membranes, MC3T3-E1 (MC) cultures were seeded onto the membranes for 14 days for evaluation of cell proliferation, morphology and gene/protein expression. In addition, MC cells were cultured onto different surfaces of the three-layer membranes, PPC layer facing MC cells (PPβ-PP-PPC) and PPβ layer facing MC cells (PPC-PP-PPβ) to evaluate surface-material effects. Membrane properties and structures were evaluated. Antibacterial properties against Streptococcus mutans and Staphylococcus aureus were determined. Scanning electron microscope demonstrated smaller interfiber spaces of PPC and PPβ-PP-PPC compared to PPβ, PPC-PP-PPβ, and PP. PPC and PPβ-PP-PPC exhibited hydrophilic property. The three-layer membranes (PPC-PP-PPβ and PPβ-PP-PPC) demonstrated significantly higher Young's modulus (94.99 ± 4.03 MPa and 92.88 ± 4.03 MPa) compared to PP (48.76 ± 18.15 MPa) or PPC (7.92 ± 3.97 MPa) (p < 0.05). No significant difference of cell proliferation was found among any groups at any time point (p > 0.05). Higher expression of integrins were detected at 12 h of cultures on PPC-PP-PPβ compared to the controls. Promoted osteoconductive effects of PPC-PP-PPβ were revealed by alkaline phosphatase assays and Western blot compared with the controls at 7 and 14 days. PPC, PPC-PP-PPβ and PPβ-PP-PPC exhibited a significantly wider antibacterial zone against the tested bacteria compared to PP and PPβ (p < 0.05). These results suggested that the three-layer electrospun membranes demonstrated superior properties: higher strength, better cell adhesion, and promoted osteoconductive properties compared to single-layer membrane: however, antibacterial properties were exhibited in three-layer electrospun membranes and chlorhexidine-doped single-layer membrane. We concluded that the novel three-layer membranes could be used as a biocompatible scaffold for intraoral bone regeneration due to its enhanced osteoconductive activity and antibacterial effect.
Collapse
Affiliation(s)
- Yunzhu Qian
- Center of Stomatology, The Second Affiliated Hospital of Soochow University , Suzhou 215004, People's Republic of China
| | - Xuefeng Zhou
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, People's Republic of China
| | - Hong Sun
- Xi'an Jiaotong University Suzhou Research Institute , Suzhou 215123, People's Republic of China
| | - Jianxin Yang
- Center of Stomatology, The Second Affiliated Hospital of Soochow University , Suzhou 215004, People's Republic of China
| | - Yi Chen
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, People's Republic of China
| | - Chao Li
- Xi'an Jiaotong University Suzhou Research Institute , Suzhou 215123, People's Republic of China
| | - Hongjin Wang
- Xi'an Jiaotong University Suzhou Research Institute , Suzhou 215123, People's Republic of China
| | - Tong Xing
- Xi'an Jiaotong University Suzhou Research Institute , Suzhou 215123, People's Republic of China
| | - Feimin Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University , Nanjing 210029, People's Republic of China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, People's Republic of China
| |
Collapse
|
28
|
Xu HHK, Wang P, Wang L, Bao C, Chen Q, Weir MD, Chow LC, Zhao L, Zhou X, Reynolds MA. Calcium phosphate cements for bone engineering and their biological properties. Bone Res 2017; 5:17056. [PMID: 29354304 PMCID: PMC5764120 DOI: 10.1038/boneres.2017.56] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/13/2017] [Accepted: 08/09/2017] [Indexed: 02/08/2023] Open
Abstract
Calcium phosphate cements (CPCs) are frequently used to repair bone defects. Since their discovery in the 1980s, extensive research has been conducted to improve their properties, and emerging evidence supports their increased application in bone tissue engineering. Much effort has been made to enhance the biological performance of CPCs, including their biocompatibility, osteoconductivity, osteoinductivity, biodegradability, bioactivity, and interactions with cells. This review article focuses on the major recent developments in CPCs, including 3D printing, injectability, stem cell delivery, growth factor and drug delivery, and pre-vascularization of CPC scaffolds via co-culture and tri-culture techniques to enhance angiogenesis and osteogenesis.
Collapse
Affiliation(s)
- Hockin HK Xu
- Department of Endodontics, Periodontics and
Prosthodontics, University of Maryland School of Dentistry,
Baltimore, MD
21201, USA
- Center for Stem Cell Biology and Regenerative
Medicine, University of Maryland School of Medicine, Baltimore,
MD
21201, USA
- University of Maryland Marlene and Stewart
Greenebaum Cancer Center, University of Maryland School of Medicine,
Baltimore, MD
21201, USA
- Mechanical Engineering Department, University
of Maryland Baltimore County, Baltimore, MD
21250, USA
| | - Ping Wang
- Department of Endodontics, Periodontics and
Prosthodontics, University of Maryland School of Dentistry,
Baltimore, MD
21201, USA
- State Key Laboratory of Oral Diseases, West
China Hospital of Stomatology, Sichuan University, Chengdu,
Sichuan
610041, China
| | - Lin Wang
- Department of Endodontics, Periodontics and
Prosthodontics, University of Maryland School of Dentistry,
Baltimore, MD
21201, USA
- VIP Integrated Department, Stomatological
Hospital of Jilin University, Changchun, Jilin
130011, China
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases, West
China Hospital of Stomatology, Sichuan University, Chengdu,
Sichuan
610041, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, West
China Hospital of Stomatology, Sichuan University, Chengdu,
Sichuan
610041, China
| | - Michael D Weir
- Department of Endodontics, Periodontics and
Prosthodontics, University of Maryland School of Dentistry,
Baltimore, MD
21201, USA
| | - Laurence C Chow
- Volpe Research Center, American Dental
Association Foundation, National Institute of Standards & Technology,
Gaithersburg, MD
20899, USA
| | - Liang Zhao
- Department of Endodontics, Periodontics and
Prosthodontics, University of Maryland School of Dentistry,
Baltimore, MD
21201, USA
- Department of Orthopaedic Surgery, Nanfang
Hospital, Southern Medical University, Guangzhou,
Guangdong
510515, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West
China Hospital of Stomatology, Sichuan University, Chengdu,
Sichuan
610041, China
| | - Mark A Reynolds
- Department of Endodontics, Periodontics and
Prosthodontics, University of Maryland School of Dentistry,
Baltimore, MD
21201, USA
| |
Collapse
|
29
|
Jung A, Makkar P, Amirian J, Lee BT. A novel hybrid multichannel biphasic calcium phosphate granule-based composite scaffold for cartilage tissue regeneration. J Biomater Appl 2017; 32:775-787. [DOI: 10.1177/0885328217741757] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The objective of the present study was to develop a novel hybrid multichannel biphasic calcium phosphate granule (MCG)-based composite system for cartilage regeneration. First, hyaluronic acid-gelatin (HG) hydrogel was coated onto MCG matrix (MCG-HG). Poly(lactic-co-glycolic acid) (PLGA) microspheres was separately prepared and modified with polydopamine subsequent to BMP-7 loading (B). The surface-modified microspheres were finally embedded into MCG-HG scaffold to develop the novel hybrid (MCG-HG-PLGA-PD-B) composite system. The newly developed MCG-HG-PLGA-PD-B composite was then subjected to scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier Transform infrared spectroscopy, porosity, compressive strength, swelling, BMP-7 release and in-vitro biocompatibility studies. Results showed that 60% of BMP-7 retained on the granular surface after 28 days. A hybrid MCG-HG-PLGA-PD-B composite scaffold exhibited higher swelling and compressive strength compared to MCG-HG or MCG. In-vitro studies showed that MCG-HG-PLGA-PD-B had improved cell viability and cell proliferation for both MC3T3-E1 pre-osteoblasts and ATDC5 pre-chondrocytes cell line with respect to MCG-HG or MCG scaffold. Our results suggest that a hybrid MCG-HG-PLGA-PD-B composite scaffold can be a promising candidate for cartilage regeneration applications.
Collapse
Affiliation(s)
- Albert Jung
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, 366-1 Ssangyoung-Dong, Cheonan, South Korea
| | - Preeti Makkar
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, 366-1 Ssangyoung-Dong, Cheonan, South Korea
| | - Jhaleh Amirian
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, 366-1 Ssangyoung-Dong, Cheonan, South Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, 366-1 Ssangyoung-Dong, Cheonan, South Korea
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, 366-1 Ssangyoung-Dong, Cheonan, South Korea
| |
Collapse
|