1
|
Sánchez-Bodón J, Moreno-Benitez I, Laza JM, Larrea-Sebal A, Martin C, Irastorza I, Silvan U, Vilas-Vilela JL. Multifunctional curcumin-based polymer coating: A promising platform against bacteria, inflammation and coagulation. Colloids Surf B Biointerfaces 2024; 241:114048. [PMID: 38954936 DOI: 10.1016/j.colsurfb.2024.114048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/30/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
The extensive use of polymers in the medical field has facilitated the development of various devices and implants, contributing to the restoration of organ function. However, despite their advantages such as biocompatibility and robustness, these materials often face challenges like bacterial contamination and subsequent inflammation, leading to implant-associated infections (IAI). Integrating implants effectively is crucial to prevent bacterial colonization and reduce inflammatory responses. To overcome these major issues, surface chemical modifications have been extensively explored. Indeed, click chemistry, and particularly, copper (I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction has emerged as a promising approach for surface functionalization without affecting material bulk properties. Curcumin, known for its diverse biological activities, suffers from low solubility and stability. To enhance its bioavailability, bioconjugation strategy has garnered attention in recent years. This study represents pioneering work in immobilizing curcumin derivative onto polyethylene terephthalate (PET) surfaces, aiming to combat bacterial adhesion, inflammation and coagulation. Before curcumin derivative bioconjugation, a fluorophore, dansyl derivative, was employed in order to monitor and determine the efficiency of the proposed methodology. Previous surface chemical modifications were required for the immobilization of both dansyl and curcumin derivatives. Ultraviolet-Visible (UV-Vis) demonstrated the amidation functionalization of PET surface. Other surface characterization techniques including X-ray Photoelectron Spectroscopy (XPS), Attenuated Total Reflectance Fourier Transformed Infrared (ATR-FTIR), Scanning Electron Microscopy (SEM) and contact angle, among others, confirmed also the conjugation of both dansyl and curcumin derivatives. On the other hand, different biological assays corroborated that curcumin derivative immobilized PET surfaces do not exhibit cytotoxicity effect. Additionally, corresponding inflammation test were performed, indicating that these polymeric surfaces do not produce inflammation and, when curcumin derivative is immobilized, they decrease the inflammation marker level (IL-6). Moreover, the bacterial growth of both Gram positive and Gram negative bacteria were measured, demonstrating that the immobilization of curcumin derivative on PET provided antibacterial properties to the material. Finally, hemolysis rate analysis and whole blood clotting assay demonstrated the antithrombogenic effect of PET-Cur surfaces as well as no hemolysis concern in the fabricated functional surfaces.
Collapse
Affiliation(s)
- Julia Sánchez-Bodón
- Macromolecular Chemistry Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, B/Sarriena s/n, Leioa, 48940, Spain
| | - Isabel Moreno-Benitez
- Macromolecular Chemistry Group (LABQUIMAC), Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, B/Sarriena s/n, Leioa, 48940, Spain.
| | - José Manuel Laza
- Macromolecular Chemistry Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, B/Sarriena s/n, Leioa, 48940, Spain
| | - Asier Larrea-Sebal
- University of the Basque Country (UPV/EHU), Department of Biochemistry and Molecular Biology, Leioa 48940, Spain; Biofisika Institute (UPV/EHU, CSIC), Barrio Sarriena s/n, Leioa 48940, Spain; Fundación Biofisika Bizkaia, Barrio Sarriena s/n., 48940 Leioa, Bizkaia, Spain
| | - Cesar Martin
- University of the Basque Country (UPV/EHU), Department of Biochemistry and Molecular Biology, Leioa 48940, Spain; Biofisika Institute (UPV/EHU, CSIC), Barrio Sarriena s/n, Leioa 48940, Spain; Fundación Biofisika Bizkaia, Barrio Sarriena s/n., 48940 Leioa, Bizkaia, Spain
| | - Igor Irastorza
- University of the Basque Country, (UPV/EHU), Department of Cell Biology and Histology, Faculty of Medicine, Leioa 48940, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Unai Silvan
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - José Luis Vilas-Vilela
- Macromolecular Chemistry Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, B/Sarriena s/n, Leioa, 48940, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.
| |
Collapse
|
2
|
Park SS, Farwa U, Park I, Moon BG, Im SB, Lee BT. In-vivo bone remodeling potential of Sr-d-Ca-P /PLLA-HAp coated biodegradable ZK60 alloy bone plate. Mater Today Bio 2023; 18:100533. [PMID: 36619205 PMCID: PMC9816808 DOI: 10.1016/j.mtbio.2022.100533] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/12/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022] Open
Abstract
Magnesium and its alloys are widely applied biomaterials due to their biodegradability and biocompatibility. However, rapid degradation and hydrogen gas evolution hinder its applicability on a commercial scale. In this study, we developed an Mg alloy bone plate for bone remodeling and support after a fracture. We further coated the Mg alloy plate with Sr-D-Ca-P (Sr dopped Ca-P coating) and Sr-D-Ca-P/PLLA-HAp to evaluate and compare their biodegradability and biocompatibility in both in vitro and in vivo experiments. Chemical immersion and dip coating were employed for the formation of Sr-D-Ca-P and PLLA-HAp layers, respectively. In vitro evaluation depicted that both coatings delayed the degradation process and exhibited excellent biocompatibility. MC3T3-E1cells proliferation and osteogenic markers expression were also promoted. In vivo results showed that both Sr-D-Ca-P and Sr-D-Ca-P/PLLA-HAp coated bone plates had slower degradation rate as compared to Mg alloy. Remarkable bone remodeling was observed around the Sr-D-Ca-P/PLLA-HAp coated bone plate than bare Mg alloy and Sr-D-Ca-P coated bone plate. These results suggest that Sr-D-Ca-P/PLLA-HAp coated Mg alloy bone plate with lower degradation and enhanced biocompatibility can be applied as an orthopedic implant.
Collapse
Affiliation(s)
- Seong-Su Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Ume Farwa
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, South Korea
| | - Ihho Park
- Korea Institute of Material Science, Changwon, South Korea
| | - Byoung-Gi Moon
- Korea Institute of Material Science, Changwon, South Korea
| | - Soo-Bin Im
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, South Korea
- Department of Neuro-surgery, Soonchunhyang University Medical Centre, Bucheon, South Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, South Korea
| |
Collapse
|
3
|
Quarterman JC, Phruttiwanichakun P, Fredericks DC, Salem AK. Zoledronic Acid Implant Coating Results in Local Medullary Bone Growth. Mol Pharm 2022; 19:4654-4664. [PMID: 36378992 PMCID: PMC9727731 DOI: 10.1021/acs.molpharmaceut.2c00644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Osteoarthritis (OA) can necessitate surgical interventions to restore the function of the joint in severe cases. Joint replacement surgery is one of the procedures implemented to replace the damaged joint with prosthetic implants in severe cases of OA. However, after successful implantation, a fraction of OA patients still require revision surgery due to aseptic prosthetic loosening. Insufficient osseointegration is one of the factors that contribute to such loosening of the bone implant, which is commonly made from titanium-based materials. Zoledronic acid (ZA), a potent bisphosphonate agent, has been previously shown to enhance osseointegration of titanium implants. Herein, we fabricated ZA/Ca composites using a reverse microemulsion method and coated them with 1,2-dioleoyl-sn-glycero-3-phosphate monosodium salt (DOPA) to form ZA/Ca/DOPA composites. Titanium alloy screws were subsequently dip-coated with a suspension of the ZA/Ca/DOPA composites and poly(lactic-co-glycolic) acid (PLGA) in chloroform to yield Za/PLGA-coated screws. The coated screws exhibited a biphasic in vitro release profile with an initial burst release within 48 h, followed by a sustained release over 1 month. To assess their performance in vivo, the Za/PLGA screws were then implanted into the tibiae of Sprague-Dawley rats. After 8 weeks, microCT imaging showed new bone growth along the medullary cavity around the implant site, supporting the local release of ZA to enhance bone growth around the implant. Histological staining further confirmed the presence of new mineralized medullary bone growth resembling the cortical bone. Such local medullary growth represents an opportunity for future studies with alternative coating methods to fine-tune the local release of ZA from the coating and enhance complete osseointegration of the implant.
Collapse
Affiliation(s)
- Juliana C. Quarterman
- Department
of Pharmaceutical Sciences and Experimental Therapeutics, College
of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Pornpoj Phruttiwanichakun
- Department
of Pharmaceutical Sciences and Experimental Therapeutics, College
of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Douglas C. Fredericks
- The
Bone Healing Research Laboratory, Department of Orthopedics and Rehabilitation,
Carver College of Medicine, University of
Iowa, Iowa City, Iowa 52242, United
States
| | - Aliasger K. Salem
- Department
of Pharmaceutical Sciences and Experimental Therapeutics, College
of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States,
| |
Collapse
|
4
|
Akbarzadeh FZ, Ghomi ER, Ramakrishna S. Improving the corrosion behavior of magnesium alloys with a focus on AZ91 Mg alloy intended for biomedical application by microstructure modification and coating. Proc Inst Mech Eng H 2022; 236:1188-1208. [DOI: 10.1177/09544119221105705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Magnesium alloys such as AZ91 have received much attention due to their attractive properties, including biocompatibility and lightness. Although magnesium is a potential candidate for implant application, due to its rapid degradation in the physiological environment, there are still some challenges to using it as biocompatible implants. In this regard, various techniques such as microstructure modification and coating are utilized to moderate the degradation rate of magnesium alloys. Therefore, efforts are being made to conduct more extensive research to produce magnesium implants with acceptable corrosion resistance. In this literature review, an overview of the history of research on the corrosion behavior, biodegradability, microstructure deformation mechanisms, crystallographic texture in magnesium alloys with a focus on AZ91 Mg alloy, is provided. In addition, the necessity of improving the properties of AZ91 Mg alloy by the two methods of improving microstructure and coating, and existing innovations in these methods are investigated.
Collapse
Affiliation(s)
| | - Erfan Rezvani Ghomi
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore
| |
Collapse
|
5
|
Głąb M, Kudłacik-Kramarczyk S, Drabczyk A, Walter J, Kordyka A, Godzierz M, Bogucki R, Tyliszczak B, Sobczak-Kupiec A. Hydroxyapatite Obtained via the Wet Precipitation Method and PVP/PVA Matrix as Components of Polymer-Ceramic Composites for Biomedical Applications. Molecules 2021; 26:molecules26144268. [PMID: 34299547 PMCID: PMC8303795 DOI: 10.3390/molecules26144268] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
The aspect of drug delivery is significant in many biomedical subareas including tissue engineering. Many studies are being performed to develop composites with application potential for bone tissue regeneration which at the same provide adequate conditions for osteointegration and deliver the active substance conducive to the healing process. Hydroxyapatite shows a great potential in this field due to its osteoinductive and osteoconductive properties. In the paper, hydroxyapatite synthesis via the wet precipitation method and its further use as a ceramic phase of polymer-ceramic composites based on PVP/PVA have been presented. Firstly, the sedimentation rate of hydroxyapatite in PVP solutions has been determined, which allowed us to select a 15% PVP solution (sedimentation rate was 0.0292 mm/min) as adequate for preparation of homogenous reaction mixture treated subsequently with UV radiation. Both FT-IR spectroscopy and EDS analysis allowed us to confirm the presence of both polymer and ceramic phase in composites. Materials containing hydroxyapatite showed corrugated and well-developed surface. Composites exhibited swelling properties (hydroxyapatite reduced this property by 25%) in simulated physiological fluids, which make them useful in drug delivery (swelling proceeds parallel to the drug release). The short synthesis time, possibility of preparation of composites with desired shapes and sizes and determined physicochemical properties make the composites very promising for biomedical purposes.
Collapse
Affiliation(s)
- Magdalena Głąb
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (J.W.); (R.B.); (B.T.); (A.S.-K.)
- Correspondence: (M.G.); (S.K.-K.); (A.D.)
| | - Sonia Kudłacik-Kramarczyk
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (J.W.); (R.B.); (B.T.); (A.S.-K.)
- Correspondence: (M.G.); (S.K.-K.); (A.D.)
| | - Anna Drabczyk
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (J.W.); (R.B.); (B.T.); (A.S.-K.)
- Correspondence: (M.G.); (S.K.-K.); (A.D.)
| | - Janusz Walter
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (J.W.); (R.B.); (B.T.); (A.S.-K.)
| | - Aleksandra Kordyka
- Centre of Polymer and Carbon Materials Polish Academy of Sciences, M. Curie-Skłodowskiej 34 St., 41-819 Zabrze, Poland; (A.K.); (M.G.)
| | - Marcin Godzierz
- Centre of Polymer and Carbon Materials Polish Academy of Sciences, M. Curie-Skłodowskiej 34 St., 41-819 Zabrze, Poland; (A.K.); (M.G.)
| | - Rafał Bogucki
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (J.W.); (R.B.); (B.T.); (A.S.-K.)
| | - Bożena Tyliszczak
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (J.W.); (R.B.); (B.T.); (A.S.-K.)
| | - Agnieszka Sobczak-Kupiec
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (J.W.); (R.B.); (B.T.); (A.S.-K.)
| |
Collapse
|
6
|
Sánchez-Bodón J, Ruiz-Rubio L, Hernáez-Laviña E, Vilas-Vilela JL, Moreno-Benítez MI. Poly(l-lactide)-Based Anti-Inflammatory Responsive Surfaces for Surgical Implants. Polymers (Basel) 2020; 13:polym13010034. [PMID: 33374150 PMCID: PMC7794694 DOI: 10.3390/polym13010034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 12/23/2022] Open
Abstract
In the last few decades, surgical implants have been widely used to restore the function of damaged bones or joints. However, it is essential to receive antibiotic or anti-inflammatory treatment to circumvent significant problems associated, such as the colonization of the implanted surface by bacteria or other microorganisms and strong host inflammatory responses. This article presents the effectiveness of the copper catalyzed alkyne-azide cycloaddition (CuAAC) (“click”) reaction by the linkage of a fluorophore to the poly(L-lactide) (PLLA) surface. The results were analysed by means of X-ray photoelectron spectroscopy (XPS), contact angle and fluorescence microscopy. Moreover, this current work describes the covalent immobilization of the anti-inflammatory drug indomethacin on a PLLA surface. The CuAAC click reaction was selected to anchor the drug to the polymeric films. The successful bioconjugation of the drug was confirmed by XPS and the change on the contact angle.
Collapse
Affiliation(s)
- Julia Sánchez-Bodón
- Macromolecular Chemistry Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Spain; (L.R.-R.); (E.H.-L.); (J.L.V.-V.)
- Correspondence: (J.S.-B.); (M.I.M.-B.); Tel.: +34-61-9083-458 (J.S.-B.); +34-94-6015-983 (M.I.M.-B.)
| | - Leire Ruiz-Rubio
- Macromolecular Chemistry Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Spain; (L.R.-R.); (E.H.-L.); (J.L.V.-V.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Estíbaliz Hernáez-Laviña
- Macromolecular Chemistry Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Spain; (L.R.-R.); (E.H.-L.); (J.L.V.-V.)
| | - José Luis Vilas-Vilela
- Macromolecular Chemistry Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Spain; (L.R.-R.); (E.H.-L.); (J.L.V.-V.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Mª Isabel Moreno-Benítez
- Macromolecular Chemistry Group (LABQUIMAC), Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Spain
- Correspondence: (J.S.-B.); (M.I.M.-B.); Tel.: +34-61-9083-458 (J.S.-B.); +34-94-6015-983 (M.I.M.-B.)
| |
Collapse
|
7
|
Kang I, Kim J, Park S, Kim H, Han C. PLLA Membrane with Embedded Hydroxyapatite Patterns for Improved Bioactivity and Efficient Delivery of Growth Factor. Macromol Biosci 2020; 20:e2000136. [DOI: 10.1002/mabi.202000136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/14/2020] [Indexed: 12/16/2022]
Affiliation(s)
- In‐Gu Kang
- Department of Materials Science and Engineering Seoul National University Seoul 08826 South Korea
| | - Jinyoung Kim
- Department of Materials Science and Engineering Seoul National University Seoul 08826 South Korea
| | - Suhyung Park
- Department of Materials Science and Engineering Seoul National University Seoul 08826 South Korea
| | - Hyoun‐Ee Kim
- Department of Materials Science and Engineering Seoul National University Seoul 08826 South Korea
- Biomedical Implant Convergence Research Center Advanced Institutes of Convergence Technology Suwon 16629 South Korea
| | - Cheol‐Min Han
- Department of Carbon and Nano Materials Engineering Jeonju University Jeonju 55069 South Korea
| |
Collapse
|
8
|
Biodegradable Magnesium Alloy (ZK60) with a Poly(l-lactic)-Acid Polymer Coating for Maxillofacial Surgery. METALS 2020. [DOI: 10.3390/met10060724] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The purpose of this study was to evaluate the mechanical strength and biodegradation of a ZK60 plate coated with poly(l-lactic)-acid polymer (PLLA) in a LeFort I osteotomy canine model for maxillofacial applications. The PLLA-coated ZK60 plate and screw were evaluated using a LeFort I osteotomy canine model based on five beagles. The presence of wound dehiscence, plate exposure, gas formation, inflammation, pus formation, occlusion, food intake, and fistula formation were evaluated. After 12 weeks, these dogs were sacrificed, and an X-ray micro-computed tomography (µCT) was conducted. Plate exposure, gas formation, and external fistula were not observed, and the occlusion remained stable. Wound dehiscence did not heal for 12 weeks. CT images did not show plates in all the five dogs. A few screw bodies fixed in the bone remained, and screw heads were completely absorbed after 12 weeks. These findings may be attributed to the inability to optimize the absorption rate with PLLA coating. Rapid biodegradation of the PLLA-coated ZK60 occurred due to the formation of microcracks during the bending process. Further improvement to the plate system with PLLA-coated ZK60 is required using other surface coating methods or alternative Mg alloys.
Collapse
|
9
|
Kang IG, Park CI, Seong YJ, Lee H, Kim HE, Han CM. Bioactive and mechanically stable hydroxyapatite patterning for rapid endothelialization of artificial vascular graft. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 106:110287. [PMID: 31753339 DOI: 10.1016/j.msec.2019.110287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 07/26/2019] [Accepted: 10/05/2019] [Indexed: 12/23/2022]
Abstract
Polymeric vascular grafts have been widely used in the vascular regeneration field because of their ease of application. However, synthetic polymer grafts have the severe problem of low biocompatibility, which may cause delayed endothelialization and hyperplasia. In this study, we fabricated a linear hydroxyapatite (HA) pattern on a silicon wafer and then transferred the pattern to a poly(L-lactic)-acid (PLLA) film for use as a tubular vascular graft. The HA pattern with its characteristic needle-like shape was successfully embedded into the PLLA. The HA-patterned PLLA film exhibited superior mechanical stability compared with that of a HA-coated PLLA film under bending, elongation, and in vitro circulation conditions, suggesting its suitability for use as a tubular vascular graft. In addition, the HA pattern guided rapid endothelialization by promoting proliferation of endothelial cells and their migration along the pattern. The hemocompatibility of the HA-patterned PLLA was also confirmed, with substantially fewer platelets adhered on its surface. Overall, in addition to good mechanical stability, the HA-patterned PLLA exhibited enhanced biocompatibility and hemocompatibility compared with pure PLLA.
Collapse
Affiliation(s)
- In-Gu Kang
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Cheon-Il Park
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yun-Jeong Seong
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyoun-Ee Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea; Advanced Institute of Convergence Technology, Seoul National University, Suwon-si, Gyeonggi-do, 16629, Republic of Korea
| | - Cheol-Min Han
- Department of Carbon and Nano Materials Engineering, Jeonju University, Jeonju-si, Jeollabuk-do, 55069, Republic of Korea.
| |
Collapse
|
10
|
Kang MH, Lee H, Jang TS, Seong YJ, Kim HE, Koh YH, Song J, Jung HD. Biomimetic porous Mg with tunable mechanical properties and biodegradation rates for bone regeneration. Acta Biomater 2019; 84:453-467. [PMID: 30500444 DOI: 10.1016/j.actbio.2018.11.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 11/02/2018] [Accepted: 11/26/2018] [Indexed: 11/19/2022]
Abstract
The medical applications of porous Mg scaffolds are limited owing to its rapid corrosion, which dramatically decreases the mechanical strength of the scaffold. Mimicking the bone structure and composition can improve the mechanical and biological properties of porous Mg scaffolds. The Mg structure can also be coated with HA by an aqueous precipitation coating method to enhance both the corrosion resistance and the biocompatibility. However, due to the brittleness of HA coating layer, cracks tend to form in the HA coating layer, which may influence the corrosion and biological functionality of the scaffold. Consequently, in this study, hybrid poly(ether imide) (PEI)-SiO2 layers were applied to the HA-coated biomimetic porous Mg to impart the structure with the high corrosion resistance associated with PEI and excellent bioactivity with SiO2. The porosity of the Mg was controlled by adjusting the concentration of the sodium chloride (NaCl) particles used in the fabrication via the space-holder method. The mechanical measurements showed that the compressive strength and stiffness of the biomimetic porous Mg increased as the portion of the dense region increased. In addition, following results show that HA/(PEI-SiO2) hybrid-coated biomimetic Mg is a promising biodegradable scaffold for orthopedic applications. In-vitro testing revealed that the proposed hybrid coating reduced the degradation rate and facilitated osteoblast spreading compared to HA- and HA/PEI-coating scaffolds. Moreover, in-vivo testing with a rabbit femoropatellar groove model showed improved tissue formation, reduced corrosion and degradation, and improved bone formation on the scaffold. STATEMENT OF SIGNIFICANCE: Porous Mg is a promising biodegradable scaffold for orthopedic applications. However, there are limitations in applying porous Mg for an orthopedic biomaterial due to its poor mechanical properties and susceptibility to rapid corrosion. Here, we strategically designed the structure and coating layer of porous Mg to overcome these limitations. First, porous Mg was fabricated by mimicking the bone structure which has a combined structure of dense and porous regions, thus resulting in an enhancement of mechanical properties. Furthermore, the biomimetic porous Mg was coated with HA/(PEI-SiO2) hybrid layer to improve both corrosion resistance and biocompatibility. As the final outcome, with tunable mechanical and biodegradable properties, HA/(PEI-SiO2)-coated biomimetic porous Mg could be a promising candidate material for load-bearing orthopedic applications.
Collapse
Affiliation(s)
- Min-Ho Kang
- Department of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea; Center of Nanoparticle Research, Institute for Basic Science (IBS), Republic of Korea
| | - Hyun Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae-Sik Jang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457 Singapore, Singapore; Research Institute of Advanced Manufacturing Technology, Korea Institute of Industrial Technology, Incheon 21999, Republic of Korea
| | - Yun-Jeong Seong
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyoun-Ee Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Hag Koh
- School of Biomedical Engineering, Korea University, Seoul 136-703, Republic of Korea
| | - Juha Song
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457 Singapore, Singapore
| | - Hyun-Do Jung
- Research Institute of Advanced Manufacturing Technology, Korea Institute of Industrial Technology, Incheon 21999, Republic of Korea.
| |
Collapse
|
11
|
Almansoori AA, Ju KW, Kim B, Kim SM, Lee SM, Lee JH. Hydroxyapatite coated magnesium alloy for peripheral nerve regeneration. ACTA ACUST UNITED AC 2018. [DOI: 10.21851/obr.42.03.201809.105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Akram Abdo Almansoori
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, Korea
- Clinical Translational Research Center for Dental Science, Seoul National University Dental Hospital, Seoul, Korea
- Dental Research Institute, Seoul National University, Seoul, Korea
| | - Kyung Won Ju
- Clinical Translational Research Center for Dental Science, Seoul National University Dental Hospital, Seoul, Korea
| | - Bongju Kim
- Clinical Translational Research Center for Dental Science, Seoul National University Dental Hospital, Seoul, Korea
- Dental Research Institute, Seoul National University, Seoul, Korea
| | - Soung Min Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, Korea
- Dental Research Institute, Seoul National University, Seoul, Korea
| | - Sung-Mi Lee
- Department of Material Science and Engineering, College of Engineering, Seoul National University, Seoul, Korea
| | - Jong-Ho Lee
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, Korea
- Clinical Translational Research Center for Dental Science, Seoul National University Dental Hospital, Seoul, Korea
- Dental Research Institute, Seoul National University, Seoul, Korea
- Oral Cancer Center, Seoul National University Dental Hospital, Seoul, Korea
| |
Collapse
|
12
|
Zhai Q, Han F, He Z, Shi C, Zhou P, Zhu C, Guo Q, Zhu X, Yang H, Li B. The "Magnesium Sacrifice" Strategy Enables PMMA Bone Cement Partial Biodegradability and Osseointegration Potential. Int J Mol Sci 2018; 19:E1746. [PMID: 29895809 PMCID: PMC6032233 DOI: 10.3390/ijms19061746] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/20/2018] [Accepted: 05/29/2018] [Indexed: 12/30/2022] Open
Abstract
Poly (methyl methacrylate) (PMMA)-based bone cements are the most commonly used injectable orthopedic materials due to their excellent injectability and mechanical properties. However, their poor biocompatibility and excessive stiffness may cause complications such as aseptic implant loosening and stress shielding. In this study, we aimed to develop a new type of partially biodegradable composite bone cement by incorporating magnesium (Mg) microspheres, known as "Mg sacrifices" (MgSs), in the PMMA matrix. Being sensitive to the physiological environment, the MgSs in PMMA could gradually degrade to produce bioactive Mg ions and, meanwhile, result in an interconnected macroporous structure within the cement matrix. The mechanical properties, solidification, and biocompatibility, both in vitro and in vivo, of PMMA⁻Mg bone cement were characterized. Interestingly, the incorporation of Mg microspheres did not markedly affect the mechanical strength of bone cement. However, the maximum temperature upon setting of bone cement decreased. This partially biodegradable composite bone cement showed good biocompatibility in vitro. In the in vivo study, considerable bony ingrowth occurred in the pores upon MgS degradation. Together, the findings from this study indicate that such partially biodegradable PMMA⁻Mg composite may be ideal bone cement for minimally invasive orthopedic surgeries such as vertebroplasty and kyphoplasty.
Collapse
Affiliation(s)
- Qingpan Zhai
- College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou 215000, China.
| | - Fengxuan Han
- College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou 215000, China.
| | - Zhiwei He
- College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou 215000, China.
| | - Chen Shi
- Department of Biomedical Engineering, National University of Singapore, 117583 Singapore, Singapore.
| | - Pinghui Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou 215000, China.
| | - Caihong Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou 215000, China.
| | - Qianping Guo
- College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou 215000, China.
| | - Xuesong Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou 215000, China.
| | - Huilin Yang
- College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou 215000, China.
| | - Bin Li
- College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou 215000, China.
- China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou 310000, China.
| |
Collapse
|