1
|
Turkmen Koc SN, Rezaei Benam S, Aral IP, Shahbazi R, Ulubayram K. Gold nanoparticles-mediated photothermal and photodynamic therapies for cancer. Int J Pharm 2024; 655:124057. [PMID: 38552752 DOI: 10.1016/j.ijpharm.2024.124057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Cancer remains one of the major causes of death globally, with one out of every six deaths attributed to the disease. The impact of cancer is felt on psychological, physical, and financial levels, affecting individuals, communities, and healthcare institutions. Conventional cancer treatments have many challenges and inadequacies. Nanomedicine, however, presents a promising solution by not only overcoming these problems but also offering the advantage of combined therapy for treatment-resistant cancers. Nanoparticles specifically engineered for use in nanomedicine can be efficiently targeted to cancer cells through a combination of active and passive techniques, leading to superior tumor-specific accumulation, enhanced drug availability, and reduced systemic toxicity. Among various nanoparticle formulations designed for cancer treatment, gold nanoparticles have gained prominence in the field of nanomedicine due to their photothermal, photodynamic, and immunologic effects without the need for photosensitizers or immunotherapeutic agents. To date, there is no comprehensive literature review that focuses on the photothermal, photodynamic, and immunologic effects of gold nanoparticles. In this review, significant attention has been devoted to examining the parameters pertaining to the structure of gold nanoparticles and laser characteristics, which play a crucial role in influencing the efficacy of photothermal therapy (PTT) and photodynamic therapy (PDT). Moreover, this article provides insights into the success of PTT and PDT mediated by gold nanoparticles in primary cancer treatment, as well as the immunological effects of PTT and PDT on metastasis and recurrence, providing a promising strategy for cancer therapy. In summary, gold nanoparticles, with their unique properties, have the potential for clinical application in various cancer therapies, including the treatment of primary cancer, recurrence and metastasis.
Collapse
Affiliation(s)
- Seyma Nur Turkmen Koc
- Department of Nanotechnology and Nanomedicine, Hacettepe University, Ankara, Türkiye
| | - Sanam Rezaei Benam
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, USA
| | - Ipek Pınar Aral
- Department of Radiation Oncology, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara Bilkent City Hospital, Ankara, Türkiye
| | - Reza Shahbazi
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, USA; Tumor Microenvironment & Metastasis, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, USA; Brown Center for Immunotherapy, Indiana University School of Medicine, Indianapolis, USA.
| | - Kezban Ulubayram
- Department of Nanotechnology and Nanomedicine, Hacettepe University, Ankara, Türkiye; Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Türkiye; Department of Bioengineering, Hacettepe University, Ankara, Türkiye.
| |
Collapse
|
2
|
Koklesova L, Jakubikova J, Cholujova D, Samec M, Mazurakova A, Šudomová M, Pec M, Hassan STS, Biringer K, Büsselberg D, Hurtova T, Golubnitschaja O, Kubatka P. Phytochemical-based nanodrugs going beyond the state-of-the-art in cancer management-Targeting cancer stem cells in the framework of predictive, preventive, personalized medicine. Front Pharmacol 2023; 14:1121950. [PMID: 37033601 PMCID: PMC10076662 DOI: 10.3389/fphar.2023.1121950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Cancer causes many deaths worldwide each year, especially due to tumor heterogeneity leading to disease progression and treatment failure. Targeted treatment of heterogeneous population of cells - cancer stem cells is still an issue in protecting affected individuals against associated multidrug resistance and disease progression. Nanotherapeutic agents have the potential to go beyond state-of-the-art approaches in overall cancer management. Specially assembled nanoparticles act as carriers for targeted drug delivery. Several nanodrugs have already been approved by the US Food and Drug Administration (FDA) for treating different cancer types. Phytochemicals isolated from plants demonstrate considerable potential for nanomedical applications in oncology thanks to their antioxidant, anti-inflammatory, anti-proliferative, and other health benefits. Phytochemical-based NPs can enhance anticancer therapeutic effects, improve cellular uptake of therapeutic agents, and mitigate the side effects of toxic anticancer treatments. Per evidence, phytochemical-based NPs can specifically target CSCs decreasing risks of tumor relapse and metastatic disease manifestation. Therefore, this review focuses on current outlook of phytochemical-based NPs and their potential targeting CSCs in cancer research studies and their consideration in the framework of predictive, preventive, and personalized medicine (3PM).
Collapse
Affiliation(s)
- Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Jana Jakubikova
- Cancer Research Institute, Department of Tumor Immunology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Centre for Advanced Material Application, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dana Cholujova
- Cancer Research Institute, Department of Tumor Immunology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Centre for Advanced Material Application, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marek Samec
- Department of Pathological Physiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Alena Mazurakova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | | | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Tatiana Hurtova
- Department of Dermatology, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin and University Hospital Martin, Martin, Slovakia
| | - Olga Golubnitschaja
- Predictive, Preventive, Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
3
|
Updates on Responsive Drug Delivery Based on Liposome Vehicles for Cancer Treatment. Pharmaceutics 2022; 14:pharmaceutics14102195. [PMID: 36297630 PMCID: PMC9608678 DOI: 10.3390/pharmaceutics14102195] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/20/2022] Open
Abstract
Liposomes are well-known nanoparticles with a non-toxic nature and the ability to incorporate both hydrophilic and hydrophobic drugs simultaneously. As modern drug delivery formulations are produced by emerging technologies, numerous advantages of liposomal drug delivery systems over conventional liposomes or free drug treatment of cancer have been reported. Recently, liposome nanocarriers have exhibited high drug loading capacity, drug protection, improved bioavailability, enhanced intercellular delivery, and better therapeutic effect because of resounding success in targeting delivery. The site targeting of smart responsive liposomes, achieved through changes in their physicochemical and morphological properties, allows for the controlled release of active compounds under certain endogenous or exogenous stimuli. In that way, the multifunctional and stimuli-responsive nanocarriers for the drug delivery of cancer therapeutics enhance the efficacy of treatment prevention and fighting over metastases, while limiting the systemic side effects on healthy tissues and organs. Since liposomes constitute promising nanocarriers for site-targeted and controlled anticancer drug release, this review focuses on the recent progress of smart liposome achievements for anticancer drug delivery applications.
Collapse
|
4
|
Yuan Z, Gottsacker C, He X, Waterkotte T, Park YC. Repetitive drug delivery using Light-Activated liposomes for potential antimicrobial therapies. Adv Drug Deliv Rev 2022; 187:114395. [DOI: 10.1016/j.addr.2022.114395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/15/2022] [Accepted: 06/08/2022] [Indexed: 12/22/2022]
|
5
|
Chen SH, Bell DR, Luan B. Understanding interactions between biomolecules and two-dimensional nanomaterials using in silico microscopes. Adv Drug Deliv Rev 2022; 186:114336. [PMID: 35597306 PMCID: PMC9212071 DOI: 10.1016/j.addr.2022.114336] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/08/2022] [Accepted: 05/06/2022] [Indexed: 12/28/2022]
Abstract
Two-dimensional (2D) nanomaterials such as graphene are increasingly used in research and industry for various biomedical applications. Extensive experimental and theoretical studies have revealed that 2D nanomaterials are promising drug delivery vehicles, yet certain materials exhibit toxicity under biological conditions. So far, it is known that 2D nanomaterials possess strong adsorption propensities for biomolecules. To mitigate potential toxicity and retain favorable physical and chemical properties of 2D nanomaterials, it is necessary to explore the underlying mechanisms of interactions between biomolecules and nanomaterials for the subsequent design of biocompatible 2D nanomaterials for nanomedicine. The purpose of this review is to integrate experimental findings with theoretical observations and facilitate the study of 2D nanomaterial interaction with biomolecules at the molecular level. We discuss the current understanding and progress of 2D nanomaterial interaction with proteins, lipid membranes, and DNA based on molecular dynamics (MD) simulation. In this review, we focus on the 2D graphene nanosheet and briefly discuss other 2D nanomaterials. With the ever-growing computing power, we can image nanoscale processes using MD simulation that are otherwise not observable in experiment. We expect that molecular characterization of the complex behavior between 2D nanomaterials and biomolecules will help fulfill the goal of designing effective 2D nanomaterials as drug delivery platforms.
Collapse
Affiliation(s)
- Serena H Chen
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - David R Bell
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Binquan Luan
- IBM Thomas J. Watson Research, Yorktown Heights, New York 10598, USA.
| |
Collapse
|
6
|
Yuan Z, Das S, Do C, Park YC. Effect of Cholesterol on Nano-Structural Alteration of Light-Activatable Liposomes via Laser Irradiation: Small Angle Neutron Scattering Study. Colloids Surf A Physicochem Eng Asp 2022; 641. [PMID: 35295084 DOI: 10.1016/j.colsurfa.2022.128548] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although the light-activated liposomes have been extensively studied for drug delivery applications, the fundamental mechanism of the drug release based on lipid compositions has not been fully understood. Especially, despite the extensive use of cholesterol in the lipid composition, the role of cholesterol in the light-activated drug release has not been studied. In this study, the influence of cholesterol on drug release from light-responsive drug-encapsulated liposomes after activated by near infrared (NIR) laser was investigated. We prepared methotrexate (MTX)-encapsulated DSPC liposomes consisting of 0 mol% (-Chol) or 35 mol% cholesterol (+Chol), with (+Au) or without gold nanorods (-Au) on the lipid bilayer to compare drug release, morphological changes, and nanostructures after laser irradiations. Transmission electron microscopy (TEM) and small angel neutron scattering (SANS) data revealed that only +Chol +Au liposomes showed partial aggregation of the liposomes after laser irradiation. Similar trends on the drug release and structural change were observed when the liposomes were heated to above chain-transition temperature. Overall, we have found that (1) inclusion of 35 mol% cholesterol enhanced the permeability of lipid bilayers above Tc; (2) the mechanism of laser-activated liposomal drug delivery is disrupting lipid bilayer membranes by the photothermal effect in the presence of plasmonic materials. By understanding the fundamentals of the technology, precise controlled drug release at a targeted site with great stability and repeatability is anticipated.
Collapse
Affiliation(s)
- Zheng Yuan
- Department of Chemical & Environmental Engineering, University of Cincinnati, Cincinnati, OH 45220
| | - Saikat Das
- Department of Chemical & Environmental Engineering, University of Cincinnati, Cincinnati, OH 45220
| | - Changwoo Do
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
| | - Yoonjee C Park
- Department of Chemical & Environmental Engineering, University of Cincinnati, Cincinnati, OH 45220
| |
Collapse
|
7
|
Fiorica C, Palumbo FS, Pitarresi G, Biscari G, Martorana A, Calà C, Maida CM, Giammona G. Ciprofloxacin releasing gellan gum/polydopamine based hydrogels with near infrared activated photothermal properties. Int J Pharm 2021; 610:121231. [PMID: 34715261 DOI: 10.1016/j.ijpharm.2021.121231] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/11/2021] [Accepted: 10/22/2021] [Indexed: 01/10/2023]
Abstract
In this work, with the aim to obtain a wound dressing hydrogel, an amine derivative of gellan gum was crosslinked in the presence of 4arm-polyethylenglycole-vinylsulfone. Through this easy and reproducible chemical procedure, a hydrogel with advanced elastic properties and hydrolytic resistance under physiological conditions was obtained. The incorporation of different quantities of polydopamine in the gelling solutions allows to obtain different hydrogels with marked photothermal properties when irradiated with a laser in the near infrared at 810 nm. The organic nanoparticles, reacting with the amino groups of the polysaccharide derivative, contribute to increase the storage moduli of the hydrogels. Ciprofloxacin was loaded into the hydrogel with higher amount of polydopamine and drug delivery experiments were performed to investigate the effect of irradiation on the antibiotic release profile. Antimicrobial studies, evaluated against S. aureus and P. aeruginosa, revealed that generated hyperthermia exerts a direct inhibition on the pathogens growth and, in the case of S. aureus, adjuvates the ciprofloxacin antimicrobial effect.
Collapse
Affiliation(s)
- Calogero Fiorica
- Università degli Studi di Palermo, Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Via Archirafi 32, 90123 Palermo, Italy
| | - Fabio Salvatore Palumbo
- Università degli Studi di Palermo, Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Via Archirafi 32, 90123 Palermo, Italy
| | - Giovanna Pitarresi
- Università degli Studi di Palermo, Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Via Archirafi 32, 90123 Palermo, Italy.
| | - Giuseppina Biscari
- Università degli Studi di Palermo, Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Via Archirafi 32, 90123 Palermo, Italy
| | - Annalisa Martorana
- Università degli Studi di Palermo, Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Via Archirafi 32, 90123 Palermo, Italy
| | - Cinzia Calà
- Department of Scienze per la Promozione della Salute e Materno Infantile - G. d'Alessandro, University of Palermo, Via del Vespro 133, Palermo 90127, Italy
| | - Carmelo Massimo Maida
- Department of Scienze per la Promozione della Salute e Materno Infantile - G. d'Alessandro, University of Palermo, Via del Vespro 133, Palermo 90127, Italy
| | - Gaetano Giammona
- Università degli Studi di Palermo, Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Via Archirafi 32, 90123 Palermo, Italy
| |
Collapse
|
8
|
Granja A, Pinheiro M, Sousa CT, Reis S. Gold nanostructures as mediators of hyperthermia therapies in breast cancer. Biochem Pharmacol 2021; 190:114639. [PMID: 34077740 DOI: 10.1016/j.bcp.2021.114639] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022]
Abstract
Breast cancer is the leading cause of cancer-related deaths among women. Due to the limitations of the current therapeutics, new treatment options are needed. Hyperthermia is a promising approach to improve breast cancer therapy, particularly when combined with chemo and radiotherapy. This area has gained more attention following association with nanotechnology, with the emergence of modalities, such as photothermal therapy (PTT). PTT is a simple, minimally invasive technique that requires a near infrared (NIR) light source and a PTT agent. Gold nanostructures are excellent PTT agents as they offer biocompatibility, versatility, high photothermal conversion efficiency, imaging contrast and an easily-modified surface. In this review, we describe the molecular basis and the current clinical aspects of hyperthermia-based therapies. The emergent area of nanoparticle-induced hyperthermia will be explored, in particular gold nanostructure-mediated PTT, focusing on recent preclinical studies for breast cancer management.
Collapse
Affiliation(s)
- Andreia Granja
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Marina Pinheiro
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Célia T Sousa
- IFIMUP and Dep. Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre 687, 4169 - 007 Porto, Portugal
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| |
Collapse
|
9
|
Ghani M, Heiskanen A, Thomsen P, Alm M, Emnéus J. Molecular-Gated Drug Delivery Systems Using Light-Triggered Hydrophobic-to-Hydrophilic Switches. ACS APPLIED BIO MATERIALS 2021; 4:1624-1631. [PMID: 35014511 DOI: 10.1021/acsabm.0c01458] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A photoresponsive molecular-gated drug delivery system (DDS) based on silicone-hydrogel (poly(HEMA-co-PEGMEA)) interpenetrating polymer networks (IPNs) functionalized with carboxylated spiropyran (SPCOOH) was designed and demonstrated as an on-demand DDS. The triggered-release mechanism relies on controlling the wetting behavior of the surface by light, exploiting different hydrophobicities between the "closed" and "open" isomers of spiropyran as a photoswitchable molecular gate on the surface of IPN (SP-photogated IPN). Light-triggered release of doxycycline (DOX) as a model drug indicated that the spiropyran (SP) molecules provide a hydrophobic layer around the drug carrier and have a good gate-closing efficiency for IPNs with 20-30% hydrogel content. Upon UV light irradiation, SP converts into an open hydrophilic merocyanine state, which triggers the release of DOX. These results were compared with a previously developed SP-bulk modified IPN using the same hydrogel as a control, proving the efficiency of the gated IPN system. The covalent attachment of SPCOOH to the alcohol groups of the hydrogel and the structural change caused by UV light was indicated with FTIR analysis. XPS results also confirm the presence of SP by indicating the atomic percentage of nitrogen with respect to the hydrogel content.
Collapse
Affiliation(s)
- Mozhdeh Ghani
- Biomodics ApS, Fjeldhammervej 15, 2610 Rødovre, Denmark.,DTU Bioengineering, Building 423, 2800 Kgs. Lyngby, Denmark
| | - Arto Heiskanen
- DTU Bioengineering, Building 423, 2800 Kgs. Lyngby, Denmark
| | - Peter Thomsen
- Biomodics ApS, Fjeldhammervej 15, 2610 Rødovre, Denmark
| | - Martin Alm
- Biomodics ApS, Fjeldhammervej 15, 2610 Rødovre, Denmark
| | - Jenny Emnéus
- DTU Bioengineering, Building 423, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
10
|
Zafar M, Ijaz M, Iqbal T. Efficient Au nanostructures for NIR-responsive controlled drug delivery systems. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-020-01465-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Almeida B, Nag OK, Rogers KE, Delehanty JB. Recent Progress in Bioconjugation Strategies for Liposome-Mediated Drug Delivery. Molecules 2020; 25:E5672. [PMID: 33271886 PMCID: PMC7730700 DOI: 10.3390/molecules25235672] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 02/06/2023] Open
Abstract
In nanoparticle (NP)-mediated drug delivery, liposomes are the most widely used drug carrier, and the only NP system currently approved by the FDA for clinical use, owing to their advantageous physicochemical properties and excellent biocompatibility. Recent advances in liposome technology have been focused on bioconjugation strategies to improve drug loading, targeting, and overall efficacy. In this review, we highlight recent literature reports (covering the last five years) focused on bioconjugation strategies for the enhancement of liposome-mediated drug delivery. These advances encompass the improvement of drug loading/incorporation and the specific targeting of liposomes to the site of interest/drug action. We conclude with a section highlighting the role of bioconjugation strategies in liposome systems currently being evaluated for clinical use and a forward-looking discussion of the field of liposomal drug delivery.
Collapse
Affiliation(s)
- Bethany Almeida
- American Society for Engineering Education, Washington, DC 20036, USA;
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA; (O.K.N.); (K.E.R.)
| | - Okhil K. Nag
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA; (O.K.N.); (K.E.R.)
| | - Katherine E. Rogers
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA; (O.K.N.); (K.E.R.)
- Fischell Department of Bioengineering, 2330 Kim Engineering Building, University of Maryland, College Park, MD 20742, USA
| | - James B. Delehanty
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA; (O.K.N.); (K.E.R.)
| |
Collapse
|
12
|
Ribovski L, Zhou Q, Chen J, Feringa BL, van Rijn P, Zuhorn IS. Light-induced molecular rotation triggers on-demand release from liposomes. Chem Commun (Camb) 2020; 56:8774-8777. [PMID: 32618300 DOI: 10.1039/d0cc02499f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Controllable molecular release from delivery vehicles is essential to successfully reduce drug toxicity and improve therapeutic efficacy. Light-powered hydrophobic molecular motors were therefore incorporated in liposomes to use molecular rotation to facilitate on-demand release. The extent of the release was precisely controlled by irradiation times, providing a simple yet sophisticated responsive molecular nanocarrier.
Collapse
Affiliation(s)
- Laís Ribovski
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
13
|
Zhang H, Fan T, Chen W, Li Y, Wang B. Recent advances of two-dimensional materials in smart drug delivery nano-systems. Bioact Mater 2020; 5:1071-1086. [PMID: 32695937 PMCID: PMC7363990 DOI: 10.1016/j.bioactmat.2020.06.012] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/10/2020] [Accepted: 06/20/2020] [Indexed: 01/08/2023] Open
Abstract
Smart drug delivery nano-systems show significant changes in their physical or chemical properties in response to slight change in environmental physical and/or chemical signals, and further releasing drugs adjusted to the progression of the disease at the right target and rate intelligently. Two-dimensional materials possess dramatic status extend all over various scientific and technological disciplines by reason of their exceptional unique properties in application of smart drug delivery nano-systems. In this review, we summarized current progress to highlight various kinds of two-dimensional materials drug carriers which are widely explored in smart drug delivery systems as well as classification of stimuli responsive two-dimensional materials and the advantages and disadvantages of their applications. Consequently, we anticipate that this review might inspire the development of new two-dimensional materials with smart drug delivery systems, and deepen researchers' understanding of smart nano-carries based on two-dimensional materials.
Collapse
Affiliation(s)
- Hua Zhang
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832000, China
| | - Taojian Fan
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, Collaborative Innovation Center for Optoelectronic Science &Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen, 518060, China
| | - Wen Chen
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832000, China
| | - Yingchun Li
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832000, China
| | - Bing Wang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, Collaborative Innovation Center for Optoelectronic Science &Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
14
|
Zhang J, Chen L, Chen J, Zhang Q, Feng J. Stability, Cellular Uptake, and in Vivo Tracking of Zwitterion Modified Graphene Oxide as a Drug Carrier. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1495-1502. [PMID: 30089359 DOI: 10.1021/acs.langmuir.8b01995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this paper, a novel kind of zwitterion modified graphene oxide (GO) for promoting stability and reducing aggregation of GO as a drug carrier was proposed and demonstrated. Specifically, the GO was functionalized with a kind of zwitterion based silane, 3-(dimethyl(3-(trimethoxysilyl)propyl)-ammonio)propane-1-sulfonate (SBS). After zwitterion modification, the SBS functionalized GO (GO-SB) shows significantly enhanced stability in both serum-free and serum-containing solution, especially after loading doxorubicin hydrochloride (DOX). According to drug release profiles, the drug-loaded GO-SB exhibits thermosensitive and sustained release behavior. Meanwhile, in vitro studies show that the DOX loaded GO-SB could be easily internalized by HepG2 cells and exhibit obvious cytotoxicity on the cells. And, in vivo studies demonstrate that the GO-SB drug carrier is capable of being taken by the larvae of zebrafish and can be eliminated from the body within several days.
Collapse
|
15
|
Yang Y, Yang X, Li H, Li C, Ding H, Zhang M, Guo Y, Sun M. Near-infrared light triggered liposomes combining photodynamic and chemotherapy for synergistic breast tumor therapy. Colloids Surf B Biointerfaces 2019; 173:564-570. [DOI: 10.1016/j.colsurfb.2018.10.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/17/2018] [Accepted: 10/09/2018] [Indexed: 01/10/2023]
|
16
|
Raza A, Hayat U, Rasheed T, Bilal M, Iqbal HM. “Smart” materials-based near-infrared light-responsive drug delivery systems for cancer treatment: A review. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY 2019; 8:1497-1509. [DOI: 10.1016/j.jmrt.2018.03.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
17
|
Zhao C, Zhang J, Hu H, Qiao M, Chen D, Zhao X, Yang C. Design of lactoferrin modified lipid nano-carriers for efficient brain-targeted delivery of nimodipine. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:1031-1040. [DOI: 10.1016/j.msec.2018.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/07/2017] [Accepted: 02/05/2018] [Indexed: 02/06/2023]
|
18
|
Prasad R, Chauhan DS, Yadav AS, Devrukhkar J, Singh B, Gorain M, Temgire M, Bellare J, Kundu GC, Srivastava R. A biodegradable fluorescent nanohybrid for photo-driven tumor diagnosis and tumor growth inhibition. NANOSCALE 2018; 10:19082-19091. [PMID: 30288516 DOI: 10.1039/c8nr05164j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Specific targeting and phototriggered therapy in mouse model have recently emerged as the starting point of cancer theragnosis. Herein, we report a bioresponsive and degradable nanohybrid, a liposomal nanohybrid decorated with red emissive carbon dots, for localized tumor imaging and light-mediated tumor growth inhibition. Unsaturated carbon dots (C-dots) anchored to liposomes convert near-infrared (NIR) light into heat and also produce reactive oxygen species (ROS), demonstrating the capability of phototriggered cancer cell death and tumor regression. The photothermal and oxidative damage of breast tumor by the nonmetallic nanohybrid has also been demonstrated. Designed nanoparticles show excellent aqueous dispersibility, biocompatibility, light irradiated enhanced cellular uptake, release of reactive oxygen species, prolonged and specific tumor binding ability and good photothermal response (62 °C in 5 minutes). Safe and localized irradiation of 808 nm light demonstrates significant tumor growth inhibition and bioresponsive degradation of the fluorescent nanohybrid without affecting the surrounding healthy tissues.
Collapse
Affiliation(s)
- Rajendra Prasad
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Mellado C, Figueroa T, Báez R, Castillo R, Melendrez M, Schulz B, Fernández K. Development of Graphene Oxide Composite Aerogel with Proanthocyanidins with Hemostatic Properties As a Delivery System. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7717-7729. [PMID: 29461041 DOI: 10.1021/acsami.7b16084] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The graphene aerogels' potential for use as both a hemostatic agent and dermal delivery system has scarcely been investigated. In this study, we used a sol-gel process for generating dry and stable composite aerogels based on graphene oxide (GO) and poly(vinyl alcohol) (PVA). Furthermore, we incorporated natural extract of País grape seed (SD) and skin (SK), rich in proanthocyanidins (PAs or condensed tannins). The effect of the incorporation of the grape extracts was investigated in relation to the aerogels' structure, coagulation performance and the release of the extracts. The results demonstrated that they have a porous structure and low density, capable of absorbing water and blood. The incorporation of 12% (w/w) of PA extracts into the aerogel increased the negative zeta potential of the material by 33% (-18.3 ± 1.3 mV), and the coagulation time was reduced by 37% and 28% during the first 30 and 60 s of contact between the aerogel and whole blood, respectively. The release of extracts from the GO-PVA-SD and GO-PVA-SK aerogels was prolonged to 3 h with 20%, probably due to the existence of strong binding between PAs andGO-PVA, both characterized by the presence of aromatic and hydroxyl groups that can form noncovalent bonds but are strong and stable enough to avoid a greater release into the medium. This study provides a new GO-based aerogel, which has a great potential use in the field of dermal delivery, wound healing and/or the treatment of trauma bleeding.
Collapse
Affiliation(s)
- Constanza Mellado
- Laboratory of Biomaterials, Department of Chemical Engineering, Faculty of Engineering , University of Concepción , Barrio Universitario s/n , P.O. Box 160-C, Concepción 4030000 , Chile
| | - Toribio Figueroa
- Laboratory of Biomaterials, Department of Chemical Engineering, Faculty of Engineering , University of Concepción , Barrio Universitario s/n , P.O. Box 160-C, Concepción 4030000 , Chile
| | - Ricardo Báez
- Department of Physics, Faculty of Physical and Mathematical Sciences , University of Concepción , Concepción , Chile
| | - Rosario Castillo
- Department of Instrumental Analysis, Faculty of Pharmacy , University of Concepción , Concepción , Chile
| | - Manuel Melendrez
- Department of Material, Faculty of Engineering , University of Concepción , Concepción , Chile
| | - Berta Schulz
- Department of Pharmacy, Faculty of Pharmacy , University of Concepción , Concepción , Chile
| | - Katherina Fernández
- Laboratory of Biomaterials, Department of Chemical Engineering, Faculty of Engineering , University of Concepción , Barrio Universitario s/n , P.O. Box 160-C, Concepción 4030000 , Chile
| |
Collapse
|
20
|
Recent advances in near-infrared light-responsive nanocarriers for cancer therapy. Drug Discov Today 2018; 23:1115-1125. [PMID: 29481876 DOI: 10.1016/j.drudis.2018.02.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/18/2018] [Accepted: 02/19/2018] [Indexed: 01/11/2023]
Abstract
In recent years, research has focused on the development of smart nanocarriers that can respond to specific stimuli. Among the various stimuli-responsive platforms for cancer therapy, near-infrared (NIR) light (700-1000nm)-responsive nanocarriers have gained considerable interest because of their deeper tissue penetration capacity, precisely controlled drug release, and minimal damage towards normal tissues. In this review, we outline various therapeutic applications of NIR-responsive nanocarriers in drug delivery, photothermal therapy (PTT), photodynamic therapy (PDT), and bioimaging. We also highlight recent trends towards NIR-responsive combinatorial therapy and multistimuli-responsive nanocarriers for improving therapeutic outcomes.
Collapse
|