1
|
Zhang W, Geng X, Qin S, Xie Z, Li W, Li J. Research progress and application of chitosan dressings in hemostasis: A review. Int J Biol Macromol 2024; 282:136421. [PMID: 39389479 DOI: 10.1016/j.ijbiomac.2024.136421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/23/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
Hemorrhage affects human health, and severe bleeding remains a leading contributor to trauma-related mortality. The speed and effectiveness of the application of hemostatic materials are critical. Conventional hemostatic dressings such as bandages and gauze are gradually being replaced by new types of hemostatic dressings due to their poor hemostatic and antibacterial properties. Chitosan, a biopolymer, is biodegradable and nontoxic and possesses hemostatic and antibacterial properties. Chitosan induces hemostasis through direct contact with red corpuscles and platelets, independent of the coagulation pathways of the host, rendering it an optimal hemostatic dressing. It is widely used in wound care, particularly to stop bleeding, promote wound healing, and provide antimicrobial properties. This article reviews the recent research and development of chitosan-based hemostatic dressings, focusing on trauma hemostasis, burn hemostasis, diabetic skin ulcer hemostasis and other aspects. It also emphasizes the significance of chitosan dressings in wound hemostasis and healing, identifies their research opportunities in hemostasis and wound healing, and explores new research directions.
Collapse
Affiliation(s)
- Wenwen Zhang
- Research Institute of Marine Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xinrong Geng
- Research Institute of Marine Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Song Qin
- Research Institute of Marine Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Zeping Xie
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Wenjun Li
- Research Institute of Marine Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Jie Li
- Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
2
|
Janahmadi Z, Momeni S, Manoochehri H, Talebi S. Development of an efficient hemostatic material based on cuttlefish ink nanoparticles loaded in cuttlebone biocomposite. J Mater Chem B 2024; 12:4172-4183. [PMID: 38591253 DOI: 10.1039/d3tb01966g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Traumatic hemorrhage is one of the main causes of mortality in civilian and military accidents. This study aimed to evaluate the effectiveness of cuttlefish bone (cuttlebone, CB) and CB loaded with cuttlefish ink (CB-CFI) nanoparticles for hemorrhage control. CB and CB-CFI were prepared and characterized using different methods. The hemostasis behavior of constructed biocomposites was investigated in vitro and in vivo using a rat model. Results showed that CFI nanoparticles (NPs) are uniformly dispersed throughout the CB surface. CB-CFI10 (10 mg CFI in 1.0 g of CB) showed the best blood clotting performance in both in vitro and in vivo tests. In vitro findings revealed that the blood clotting time of CB, CFI, and CB-CFI10 was found to be 275.4 ± 12.4 s, 229.9 ± 19.9 s, and 144.0 ± 17.5 s, respectively. The bleeding time in rat liver injury treated with CB, CFI, and CB-CFI10 was 158.1 ± 9.2 s, 114.0 ± 5.7 s, and 46.8 ± 2.7 s, respectively. CB-CFI10 composite resulted in more reduction of aPTT (11.31 ± 1.51 s) in comparison with CB (17.34 ± 2.12 s) and CFI (16.79 ± 1.46 s) (p < 0.05). Furthermore, CB and CB-CFI10 exhibited excellent hemocompatibility. The CB and CB-CFI did not show any cytotoxicity on human foreskin fibroblast (HFF) cells. The CB-CFI has a negative surface charge and may activate coagulation factors through direct contact with their components, including CaCO3, chitin, and CFI-NPs with blood. Thus, the superior hemostatic potential, low cost, abundant, simple, and time-saving preparation process make CB-CFI a very favorable hemostatic material for traumatic bleeding control in clinical applications.
Collapse
Affiliation(s)
- Zeinab Janahmadi
- Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 75147, Iran.
| | - Safieh Momeni
- Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 75147, Iran.
| | - Hamed Manoochehri
- Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 75147, Iran.
| | - Shadi Talebi
- Department of Medical Sciences, Yazd Branch, Islamic Azad University, Yazd, Iran
| |
Collapse
|
3
|
You T, You Q, Feng X, Li H, Yi B, Xu H. A novel approach to wound healing: Green synthetic nano-zinc oxide embedded with sodium alginate and polyvinyl alcohol hydrogels for dressings. Int J Pharm 2024; 654:123968. [PMID: 38460771 DOI: 10.1016/j.ijpharm.2024.123968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/11/2024]
Abstract
Wound healing constitutes a formidable challenge within the healthcare system, attributable to infection risks and protracted recovery periods. The pressing need for innovative wound healing methods has spurred the urgency to develop novel approaches. This study sought to advance wound healing by introducing a novel approach employing a composite sponge dressing. The composite sponge dressing, derived from LFL-ZnO (synthesized through the green methodology utilizing Lactobacillus plantarum ZDY2013 fermentation liquid), polyvinyl alcohol (PVA), and sodium alginate (SA) via a freeze-thaw cycle and freeze-drying molding process, demonstrated notable properties. The findings elucidate the commendable swelling, moisturizing, and mechanical attributes of the SA/LFL-ZnO/PVA composite sponge dressing, characterized by a porous structure. Remarkably, the dressing incorporating LFL-ZnO exhibited substantial inhibition against both methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus aureus (S. aureus). Hemolysis and cytotoxicity tests corroborated the excellent biocompatibility of the sponge dressing. In vivo evaluation of the therapeutic efficacy of the 1 mg/mL LFL-ZnO composite dressing on scald wounds and S. aureus-infected wounds revealed its capacity to accelerate wound healing and exert pronounced antibacterial effects. Consequently, the composite sponge dressings synthesized in this study hold significant potential for application in wound treatment.
Collapse
Affiliation(s)
- Tao You
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Qixiu You
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xiaoyan Feng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Hui Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Bo Yi
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
4
|
Zhou Y, Lu W, Yang Q, Xu Z, Li J. [Preparation and Performance Study of a Novel Antibacterial Hemostatic Chitosan Sponge]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:190-197. [PMID: 38322514 PMCID: PMC10839500 DOI: 10.12182/20240160403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Indexed: 02/08/2024]
Abstract
Objective To create a novel chitosan antibacterial hemostatic sponge (NCAHS) and to evaluate its material and biological properties. Methods Chitosan, a polysaccharide, was used as the sponge substrate and different proportions of sodium tripolyphosphate (STPP), glycerol, and phenol sulfonyl ethylamine were added to prepare the sponges through the freeze-drying method. The whole-blood coagulation index (BCI) was used as the screening criterion to determine the optimal concentrations of chitosan and the other additives and the hemostatic sponges were prepared accordingly. Zein/calcium carbonate (Zein/CaCO3) composite microspheres loaded with ciprofloxacin hydrochloride were prepared and added to the hemostatic sponges to obtain NCAHS. Scanning electron microscope was used to observe the microscopic morphology and porosity of the NCAHS. The water absorption rate, in vitro antibacterial susceptibility rate against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), in vitro coagulation performance, and hemocompatibility of NCAHS were examined. The coagulation performance of NCAHS was evaluated by using rabbit liver injury and rabbit auricular artery hemorrhageear models and commercial hemostatic sponge (CHS) was used as a control. The in vivo biocompatibility, including such aspects as cytotoxicity, skin irritation in animals, and acute in vivo toxicity, of the NCAHS extracts was examined by using as a reference the national standards for biological evaluation of medical devices. Results The NCAHS prepared with 1.5% chitosan (W/V), 0.01% STPP (W/V), 0% glycerol (V/V), 0.15% phenol-sulfonyl-ethylamine (V/V), Zein and CaCO3 at the mixing ratio of 5∶1 (W/W), Zein at the final mass concentration of 2.5 g/L, and ethanol at the final concentration of 17.5% (V/V) were fine and homogeneous, possessing a honeycomb-like porous structure with a pore size of about 200 μm. The NCAHS thus prepared had the lowest BCI value. The water absorption ([2362.16±201.15] % vs. [1102.56±91.79]%) and in vitro coagulation performance (31.338% vs. 1.591%) of NCAHS were significantly better than those of CHS (P<0.01). Tests with the in vivo auricular artery hemorrhage model ([36.00±13.42] s vs. [80.00±17.32] s) and rabbit liver bleeding model ([30.00±0] s vs. [70.00±17.32] s) showed that the hemostasis time of NCAHS was significantly shorter than that of CHS (P<0.01). NCAHS had significant inhibitory ability against S. aureus and E. coli. In addition, NCAHS showed good in vitro and in vivo biocompatibility. Conclusion NCAHS is a composite sponge that shows excellent antimicrobial properties, hemostatic effect, and biocompatibility. Therefore, its extensive application in clinical settings is warranted.
Collapse
Affiliation(s)
- Yuanzhi Zhou
- ( 710049) School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
- ( 710061) Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- () ( 710061) Clinical Medical Research Center for Digestive Diseases of Shaanxi Province (Oncology), Xi'an 710061, China
| | - Wen Lu
- ( 710049) School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qianqian Yang
- ( 710049) School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhao Xu
- ( 710049) School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jianjun Li
- ( 710049) School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
5
|
Wang Z, Xu Z, Yang X, Li M, Yip RCS, Li Y, Chen H. Current application and modification strategy of marine polysaccharides in tissue regeneration: A review. BIOMATERIALS ADVANCES 2023; 154:213580. [PMID: 37634336 DOI: 10.1016/j.bioadv.2023.213580] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023]
Abstract
Marine polysaccharides (MPs) are exceptional bioactive materials that possess unique biochemical mechanisms and pharmacological stability, making them ideal for various tissue engineering applications. Certain MPs, including agarose, alginate, carrageenan, chitosan, and glucan have been successfully employed as biological scaffolds in animal studies. As carriers of signaling molecules, scaffolds can enhance the adhesion, growth, and differentiation of somatic cells, thereby significantly improving the tissue regeneration process. However, the biological benefits of pure MPs composite scaffold are limited. Therefore, physical, chemical, enzyme modification and other methods are employed to expand its efficacy. Chemically, the structural properties of MPs scaffolds can be altered through modifications to functional groups or molecular weight reduction, thereby enhancing their biological activities. Physically, MPs hydrogels and sponges emulate the natural extracellular matrix, creating a more conducive environment for tissue repair. The porosity and high permeability of MPs membranes and nanomaterials expedite wound healing. This review explores the distinctive properties and applications of select MPs in tissue regeneration, highlighting their structural versatility and biological applicability. Additionally, we provide a brief overview of common modification strategies employed for MP scaffolds. In conclusion, MPs have significant potential and are expected to be a novel regenerative material for tissue engineering.
Collapse
Affiliation(s)
- Zhaokun Wang
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Zhiwen Xu
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Xuan Yang
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Man Li
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Ryan Chak Sang Yip
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Yuanyuan Li
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, USA.
| | - Hao Chen
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
6
|
Gheorghiță D, Moldovan H, Robu A, Bița AI, Grosu E, Antoniac A, Corneschi I, Antoniac I, Bodog AD, Băcilă CI. Chitosan-Based Biomaterials for Hemostatic Applications: A Review of Recent Advances. Int J Mol Sci 2023; 24:10540. [PMID: 37445718 DOI: 10.3390/ijms241310540] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Hemorrhage is a detrimental event present in traumatic injury, surgery, and disorders of bleeding that can become life-threatening if not properly managed. Moreover, uncontrolled bleeding can complicate surgical interventions, altering the outcome of surgical procedures. Therefore, to reduce the risk of complications and decrease the risk of morbidity and mortality associated with hemorrhage, it is necessary to use an effective hemostatic agent that ensures the immediate control of bleeding. In recent years, there have been increasingly rapid advances in developing a novel generation of biomaterials with hemostatic properties. Nowadays, a wide array of topical hemostatic agents is available, including chitosan-based biomaterials that have shown outstanding properties such as antibacterial, antifungal, hemostatic, and analgesic activity in addition to their biocompatibility, biodegradability, and wound-healing effects. This review provides an analysis of chitosan-based hemostatic biomaterials and discusses the progress made in their performance, mechanism of action, efficacy, cost, and safety in recent years.
Collapse
Affiliation(s)
- Daniela Gheorghiță
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Horațiu Moldovan
- Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Cardiovascular Surgery, Clinical Emergency Hospital Bucharest, 014461 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
| | - Alina Robu
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Ana-Iulia Bița
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Elena Grosu
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Aurora Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Iuliana Corneschi
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Iulian Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
| | - Alin Dănuț Bodog
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, 410073 Oradea, Romania
| | - Ciprian Ionuț Băcilă
- Faculty of Medicine, Lucian Blaga University of Sibiu, 10 Victoriei Boulevard, 550024 Sibiu, Romania
| |
Collapse
|
7
|
Liu Z, Xu Y, Su H, Jing X, Wang D, Li S, Chen Y, Guan H, Meng L. Chitosan-based hemostatic sponges as new generation hemostatic materials for uncontrolled bleeding emergency: Modification, composition, and applications. Carbohydr Polym 2023; 311:120780. [PMID: 37028883 DOI: 10.1016/j.carbpol.2023.120780] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/12/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
The choice of hemostatic technique is a curial concern for surgery and as first-aid treatment in combat. To treat uncontrolled bleeding in complex wound environments, chitosan-based hemostatic sponges have attracted significant attention in recent years because of the excellent biocompatibility, degradability, hemostasis and antibacterial properties of chitosan and their unique sponge-like morphology for high fluid absorption rate and priority aggregation of blood cells/platelets to achieve rapid hemostasis. In this review, we provide a historical perspective on the use of chitosan hemostatic sponges as the new generation of hemostatic materials for uncontrolled bleeding emergencies in complex wounds. We summarize the modification of chitosan, review the current status of preparation protocols of chitosan sponges based on various composite systems, and highlight the recent achievements on the detailed breakdown of the existing chitosan sponges to present the relationship between their composition, physical properties, and hemostatic capacity. Finally, the future opportunities and challenges of chitosan hemostatic sponges are also proposed.
Collapse
|
8
|
Li XF, Lu P, Jia HR, Li G, Zhu B, Wang X, Wu FG. Emerging materials for hemostasis. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Antibacterial activity of lysozyme-loaded cream against MRSA and promotion of scalded wound healing. Int J Pharm 2022; 627:122200. [PMID: 36155893 DOI: 10.1016/j.ijpharm.2022.122200] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/29/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022]
Abstract
Staphylococcus aureus (S. aureus) infection, especially its drug-resistant bacterial infection, is a great challenge often faced by clinicians and patients, and it is also one of the most important threats to public health. Finding a safe and effective antibacterial agent is of great significance for the prevention and treatment of S. aureus infection. Lysozyme is known to have antibacterial effects against Gram-positive bacteria including S. aureus. Here, high-quality lysozyme with a purity of more than 99% and an activity of more than 60, 000 U/mg was prepared from egg white, which showed excellent antibacterial activity against three strains of S. aureus, especially against MRSA. Furthermore, an antibacterial cream loaded with lysozyme was prepared and tested in scald wound healing. The lysozyme-loaded cream exhibited the effect of preventing wound infection and promoting wound healing on scalds, and no toxicity was found in animal organs. Overall, lysozyme showed great application potential in the prevention and treatment of infections caused by S. aureus and scalded wound healing. The most remarkable discovery in this work is the unexpectedly powerful inhibitory effect of lysozyme on the drug-resistant bacterial, especially MRSA, which is usually very difficult to deal with using normal antibacterial drugs.
Collapse
|
10
|
Ilyas RA, Aisyah HA, Nordin AH, Ngadi N, Zuhri MYM, Asyraf MRM, Sapuan SM, Zainudin ES, Sharma S, Abral H, Asrofi M, Syafri E, Sari NH, Rafidah M, Zakaria SZS, Razman MR, Majid NA, Ramli Z, Azmi A, Bangar SP, Ibrahim R. Natural-Fiber-Reinforced Chitosan, Chitosan Blends and Their Nanocomposites for Various Advanced Applications. Polymers (Basel) 2022; 14:874. [PMID: 35267697 PMCID: PMC8912483 DOI: 10.3390/polym14050874] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 02/01/2023] Open
Abstract
There has been much effort to provide eco-friendly and biodegradable materials for the next generation of composite products owing to global environmental concerns and increased awareness of renewable green resources. This review article uniquely highlights the use of green composites from natural fiber, particularly with regard to the development and characterization of chitosan, natural-fiber-reinforced chitosan biopolymer, chitosan blends, and chitosan nanocomposites. Natural fiber composites have a number of advantages such as durability, low cost, low weight, high specific strength, non-abrasiveness, equitably good mechanical properties, environmental friendliness, and biodegradability. Findings revealed that chitosan is a natural fiber that falls to the animal fiber category. As it has a biomaterial form, chitosan can be presented as hydrogels, sponges, film, and porous membrane. There are different processing methods in the preparation of chitosan composites such as solution and solvent casting, dipping and spray coating, freeze casting and drying, layer-by-layer preparation, and extrusion. It was also reported that the developed chitosan-based composites possess high thermal stability, as well as good chemical and physical properties. In these regards, chitosan-based "green" composites have wide applicability and potential in the industry of biomedicine, cosmetology, papermaking, wastewater treatment, agriculture, and pharmaceuticals.
Collapse
Affiliation(s)
- Rushdan Ahmad Ilyas
- Faculty of Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia; (A.H.N.); (N.N.)
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
| | - Humaira Alias Aisyah
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (S.M.S.); (E.S.Z.)
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Abu Hassan Nordin
- Faculty of Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia; (A.H.N.); (N.N.)
| | - Norzita Ngadi
- Faculty of Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia; (A.H.N.); (N.N.)
| | - Mohamed Yusoff Mohd Zuhri
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (S.M.S.); (E.S.Z.)
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Muhammad Rizal Muhammad Asyraf
- Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia;
| | - Salit Mohd Sapuan
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (S.M.S.); (E.S.Z.)
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Edi Syams Zainudin
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (S.M.S.); (E.S.Z.)
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Shubham Sharma
- Department of Mechanical Engineering, IK Gujral Punjab Technical University, Kapurthala 144603, India;
| | - Hairul Abral
- Department of Mechanical Engineering, Andalas University, Padang 25163, Sumatera Barat, Indonesia;
| | - Mochamad Asrofi
- Department of Mechanical Engineering, University of Jember, Kampus Tegalboto, Jember 68121, East Java, Indonesia;
| | - Edi Syafri
- Department of Agricultural Technology, Agricultural Polytechnic, Payakumbuh 26271, West Sumatra, Indonesia;
| | - Nasmi Herlina Sari
- Mechanical Engineering Department, Faculty of Engineering, University of Mataram, Mataram 83115, West Nusa Tenggara, Indonesia;
| | - Mazlan Rafidah
- Department of Civil Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Sharifah Zarina Syed Zakaria
- Research Centre for Environment, Economic and Social Sustainability (KASES), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia; (S.Z.S.Z.); (N.A.M.)
| | - Muhammad Rizal Razman
- Research Centre for Sustainability Science and Governance (SGK), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia;
| | - Nuriah Abd Majid
- Research Centre for Environment, Economic and Social Sustainability (KASES), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia; (S.Z.S.Z.); (N.A.M.)
| | - Zuliskandar Ramli
- Institute of the Malay World and Civilisation (ATMA), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia;
| | - Ashraf Azmi
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia;
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29631, USA;
| | - Rushdan Ibrahim
- Pulp and Paper Branch, Forest Research Institute Malaysia, Kepong 52109, Selangor, Malaysia;
| |
Collapse
|
11
|
Goncharuk O, Korotych O, Samchenko Y, Kernosenko L, Kravchenko A, Shtanova L, Tsуmbalуuk O, Poltoratska T, Pasmurtseva N, Mamyshev I, Pakhlov E, Siryk O. Hemostatic dressings based on poly(vinyl formal) sponges. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112363. [PMID: 34579882 DOI: 10.1016/j.msec.2021.112363] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 07/07/2021] [Accepted: 08/05/2021] [Indexed: 11/28/2022]
Abstract
The development of novel hemostatic agents is related to the fact that severe blood loss due to hemorrhage continues to be the leading cause of preventable death of patients with military trauma and the second leading cause of death of civilian patients with injuries. Herein we assessed the hemostatic properties of porous sponges based on biocompatible hydrophilic polymer, poly(vinyl formal) (PVF), which meets the main requirements for the development of hemostatic materials. A series of composite hemostatic materials based on PVF sponges with different porosities and fillers were synthesized by acetalization of poly(vinyl alcohol) with formaldehyde. Nano-sized aminopropyl silica, micro-sized calcium carbonate, and chitosan hydrogel were used to modify PVF matrixes. The physicochemical properties (pore size, elemental composition, functional groups, hydrophilicity, and acetalization degree) of the synthesized composite sponges were studied by gravimetrical analysis, optical microscopy, scanning electron microscopy combined with energy dispersive x-ray spectroscopy, infrared spectroscopy, and nuclear magnetic resonance. Hemostatic properties of the materials were assessed using a model of parenchymal bleeding from the liver of white male Wistar rat with a gauze bandage as a control. All investigated PVF-based porous sponges showed high hemostatic activity: upon the application of PVF-samples the bleeding decreased within 3 min by 68.4-94.4% (р < 0.001). The bleeding time upon the application of PVF-based composites decreased by 78.3-90.4% (p < 0.001) compared to the application of well-known commercial product Celox™.
Collapse
Affiliation(s)
- O Goncharuk
- Ovcharenko Institute of Biocolloidal Chemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine; Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine.
| | - O Korotych
- University of Florida, Chemical Engineering Department, Gainesville, United States of America; University of Tennessee, Department of Biochemistry and Cellular and Molecular Biology, Knoxville, TN, United States of America.
| | - Yu Samchenko
- Ovcharenko Institute of Biocolloidal Chemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine.
| | - L Kernosenko
- Ovcharenko Institute of Biocolloidal Chemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - A Kravchenko
- Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - L Shtanova
- Biology and Medicine Institute Science Educational Center of Taras, Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - O Tsуmbalуuk
- Biology and Medicine Institute Science Educational Center of Taras, Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - T Poltoratska
- Ovcharenko Institute of Biocolloidal Chemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - N Pasmurtseva
- Ovcharenko Institute of Biocolloidal Chemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - I Mamyshev
- Ovcharenko Institute of Biocolloidal Chemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - E Pakhlov
- Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - O Siryk
- Ovcharenko Institute of Biocolloidal Chemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
12
|
Sun L, Li M, Gong T, Feng J. Preparation and evaluation of an innovative antibacterial bi-layered composite dressing for skin wound healing. J Tissue Viability 2021; 30:454-461. [PMID: 33962852 DOI: 10.1016/j.jtv.2021.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/15/2021] [Accepted: 04/25/2021] [Indexed: 02/01/2023]
Abstract
AIM OF THE STUDY The aim of the current study was to develop collagen-based bi-layered composite dressings with antibacterial property and evaluate the efficiency for wound healing. MATERIALS AND METHODS A bi-layered composite wound dressing was fabricated using two marine biomacromolecules (collagen and chitosan or carboxymethyl chitosan). Non-crosslinked and N-Ethyl-N'-(3-dimethylaminopropyl) carbodiimide/N-Hydroxy succinimide (EDC/NHS) cross-linked collagen sponges fabricated by vacuum freeze-drying technology was used as the inner layer. The medical spun-laced nonwoven coated with chitosan and carboxymethyl chitosan was used as the outer layer. The antibacterial activities against E. coli and S. aureus were evaluated by the inhibition zone assay. Deep second-degree scald model was performed to evaluate the efficiency of bi-layered composite dressings for wound healing. RESULTS In view of comprehensive evaluation of appearance and in vitro antibacterial activity, medical spun-laced nonwoven coated with 3% of chitosan solution was chosen to be used as the optimized preparation conditions to produce the outer layer of composite dressing, which acted as a barrier against microorganisms and provided mechanical support. Furthermore, the results of wound closure and histopathological analysis indicated that EDC/NHS cross-linked collagen-based bi-layered composite dressing was superior to non-crosslinked and commercial products, which stimulated the wound healing process and accomplished deep second-degree scalded skin healing within a time span of 28 days. CONCLUSION The EDC/NHS cross-linked collagen-based bi-layered composite dressing had immense potential to be applied for an ideal wound dressing for more efficient and faster wound healing. Therefore, the findings provided the essential theoretical basis for great potential of collagen-based composite dressing used in wound healing applications.
Collapse
Affiliation(s)
- Leilei Sun
- College of Life Science, Yantai University, No.30, Qing Quan Road, Yantai, Shandong Province, 264005, PR China.
| | - Mingbo Li
- College of Life Science, Yantai University, No.30, Qing Quan Road, Yantai, Shandong Province, 264005, PR China
| | - Tengfei Gong
- Weihai Food and Drug Inspection Testing Center, No.52, Xin Wei Road, Weihai, Shandong Province, 264200, PR China
| | - Jianling Feng
- Weihai Food and Drug Inspection Testing Center, No.52, Xin Wei Road, Weihai, Shandong Province, 264200, PR China
| |
Collapse
|
13
|
Ngece K, Aderibigbe BA, Ndinteh DT, Fonkui YT, Kumar P. Alginate-gum acacia based sponges as potential wound dressings for exuding and bleeding wounds. Int J Biol Macromol 2021; 172:350-359. [PMID: 33453258 DOI: 10.1016/j.ijbiomac.2021.01.055] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/06/2020] [Accepted: 01/09/2021] [Indexed: 12/20/2022]
Abstract
The improper management of wound exudates can expose the wound to bacterial invasion, skin maceration etc. thereby resulting in prolonged wound healing. Biopolymers are characterized by hydrophilic functional groups which when employed for the development of wound dressings promote the wound dressings capability to absorb a high amount of wound exudates. Alginate-gum acacia sponges were prepared from a combination of biopolymers such as sodium alginate and gum acacia in varying amounts with carbopol via crosslinking with 1 and 2% CaCl2. The prepared sponges were loaded with a combination of ampicillin and norfloxacin. In vitro antibacterial analysis revealed that the antibacterial activity of the loaded antibiotics was retained and the sponges were effective against gram-positive and gram-negative bacteria. The sponges displayed rapid and high absorption capability in the range of 1022-2419% at pH 5.5 simulating wound exudates, and 2268-5042% at pH 7.4 simulating blood within a period of 1-3 h. Furthermore, the whole blood clotting studies further revealed low absorbance values when compared to the control revealing the good clotting capability of the sponges. The unique features of the sponges revealed their potential application for the management of infected, high exuding and bleeding wounds.
Collapse
Affiliation(s)
- K Ngece
- Department of Chemistry, University of Fort Hare, Alice Campus, Eastern Cape, South Africa
| | - B A Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Eastern Cape, South Africa.
| | - D T Ndinteh
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, Johannesburg 2028, South Africa
| | - Y T Fonkui
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, South Africa
| | - P Kumar
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| |
Collapse
|
14
|
Basit HM, Mohd Amin MCI, Ng SF, Katas H, Shah SU, Khan NR. Formulation and Evaluation of Microwave-Modified Chitosan-Curcumin Nanoparticles-A Promising Nanomaterials Platform for Skin Tissue Regeneration Applications Following Burn Wounds. Polymers (Basel) 2020; 12:E2608. [PMID: 33171959 PMCID: PMC7694694 DOI: 10.3390/polym12112608] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 12/23/2022] Open
Abstract
Improved physicochemical properties of chitosan-curcumin nanoparticulate carriers using microwave technology for skin burn wound application are reported. The microwave modified low molecular weight chitosan variant was used for nanoparticle formulation by ionic gelation method nanoparticles analyzed for their physicochemical properties. The antimicrobial activity against Staphylococcus aureus and Pseudomonas aeruginosa cultures, cytotoxicity and cell migration using human dermal fibroblasts-an adult cell line-were studied. The microwave modified chitosan variant had significantly reduced molecular weight, increased degree of deacetylation and decreased specific viscosity. The nanoparticles were nano-sized with high positive charge and good dispersibility with entrapment efficiency and drug content in between 99% and 100%, demonstrating almost no drug loss. Drug release was found to be sustained following Fickian the diffusion mechanism for drug release with higher cumulative drug release observed for formulation (F)2. The microwave treatment does not render a destructive effect on the chitosan molecule with the drug embedded in the core of nanoparticles. The optimized formulation precluded selected bacterial strain colonization, exerted no cytotoxic effect, and promoted cell migration within 24 h post application in comparison to blank and/or control application. Microwave modified low molecular weight chitosan-curcumin nanoparticles hold potential in delivery of curcumin into the skin to effectively treat skin manifestations.
Collapse
Affiliation(s)
- Hafiz Muhammad Basit
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, DIKhan 29050, KPK, Pakistan; (H.M.B.); (S.U.S.)
- Gomal Centre for Skin/Regenerative Medicine and Drug Delivery Research (GCSRDDR), Faculty of Pharmacy, Gomal University, DIKhan 29050, KPK, Pakistan
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (M.C.I.M.A.); (S.-F.N.); (H.K.)
| | - Shiow-Fern Ng
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (M.C.I.M.A.); (S.-F.N.); (H.K.)
| | - Haliza Katas
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (M.C.I.M.A.); (S.-F.N.); (H.K.)
| | - Shefaat Ullah Shah
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, DIKhan 29050, KPK, Pakistan; (H.M.B.); (S.U.S.)
| | - Nauman Rahim Khan
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, DIKhan 29050, KPK, Pakistan; (H.M.B.); (S.U.S.)
- Gomal Centre for Skin/Regenerative Medicine and Drug Delivery Research (GCSRDDR), Faculty of Pharmacy, Gomal University, DIKhan 29050, KPK, Pakistan
| |
Collapse
|
15
|
Oryan A, Alemzadeh E, Eskandari MH. Kefir Accelerates Burn Wound Healing Through Inducing Fibroblast Cell Migration In Vitro and Modulating the Expression of IL-1ß, TGF-ß1, and bFGF Genes In Vivo. Probiotics Antimicrob Proteins 2020; 11:874-886. [PMID: 29948798 DOI: 10.1007/s12602-018-9435-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Kefir is a natural probiotic compound with a long history of health benefits which can improve wound healing. This study investigated the regeneration potential of kefir in vitro scratch assay and in vivo burn wound in rat model. Cytotoxicity of different concentrations of kefir was evaluated by colorimetric methylthiazoltetrazolium assay. A scratch wound experiment was performed to investigate the ability of kefir in reducing the gap of wounds in a dose-dependent manner, in vitro. The standardized kefir was incorporated into silver sulfadiazine (SSD) and applied on burn wounds in vivo, and was compared with the SSD and negative control groups after 7, 14, and 28 days of treatment. The wound sites were then removed for histopathological and morphometric analyses, assessment of interleukin-1β (IL-1β), transforming growth factor-β1 (TGF-β1), basic fibroblast growth factor (bFGF), dry weight, and hydroxyproline contents. Kefir enhanced proliferation and migration of human dermal fibroblast (HDF) cells and 12.50, 6.25, and 3.12 μL/mL concentrations showed better effects on the scratch assay. Kefir resulted in reduction of IL-1β and TGF-β1 expression at day 7 compared to the negative control. Kefir also reduced the expression of IL-1β at days 14 and 28 and stimulated bFGF at day 28. It significantly improved the dry matter and hydroxyproline contents in the burn wounds. Kefir also resulted in enhanced angiogenesis and elevated migration and proliferation of fibroblasts and improved fibrous connective tissue formation in the wound area. The morphometric results indicated significant global contraction values in the kefir-treated wounds compared to other groups. Taken together, the findings suggest that kefir has considerable ability to accelerate healing of the burn wounds. Therefore, kefir may be a possible option to improve the outcomes of severe burns.
Collapse
Affiliation(s)
- Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Esmat Alemzadeh
- Department of Biotechnology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
16
|
Chen Y, Wu L, Li P, Hao X, Yang X, Xi G, Liu W, Feng Y, He H, Shi C. Polysaccharide Based Hemostatic Strategy for Ultrarapid Hemostasis. Macromol Biosci 2020; 20:e1900370. [DOI: 10.1002/mabi.201900370] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/08/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Yeyi Chen
- School of Chemical Engineering and TechnologyTianjin University Tianjin 300350 China
- Wenzhou Institute of Biomaterials and EngineeringWenzhou InstituteUniversity of Chinese Academy of Sciences Wenzhou Zhejiang 325011 China
| | - Lei Wu
- School of Chemical Engineering and TechnologyTianjin University Tianjin 300350 China
- Wenzhou Institute of Biomaterials and EngineeringWenzhou InstituteUniversity of Chinese Academy of Sciences Wenzhou Zhejiang 325011 China
| | - Pengpeng Li
- Wenzhou Institute of Biomaterials and EngineeringWenzhou InstituteUniversity of Chinese Academy of Sciences Wenzhou Zhejiang 325011 China
- School of Ophthalmology & OptometryEye HospitalSchool of Biomedical EngineeringWenzhou Medical University Wenzhou Zhejiang 325027 China
| | - Xiao Hao
- Cardiovascular Division 1Hebei General Hospital Shijiazhuang Hebei 050051 China
| | - Xiao Yang
- School of Chemical Engineering and TechnologyTianjin University Tianjin 300350 China
- Wenzhou Institute of Biomaterials and EngineeringWenzhou InstituteUniversity of Chinese Academy of Sciences Wenzhou Zhejiang 325011 China
| | - Guanghui Xi
- Wenzhou Institute of Biomaterials and EngineeringWenzhou InstituteUniversity of Chinese Academy of Sciences Wenzhou Zhejiang 325011 China
| | - Wen Liu
- Wenzhou Institute of Biomaterials and EngineeringWenzhou InstituteUniversity of Chinese Academy of Sciences Wenzhou Zhejiang 325011 China
| | - Yakai Feng
- School of Chemical Engineering and TechnologyTianjin University Tianjin 300350 China
| | - Hongchao He
- Department of UrologyShanghai Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine Shanghai 200025 China
| | - Changcan Shi
- Wenzhou Institute of Biomaterials and EngineeringWenzhou InstituteUniversity of Chinese Academy of Sciences Wenzhou Zhejiang 325011 China
| |
Collapse
|
17
|
Feki A, Bardaa S, Hajji S, Ktari N, Hamdi M, Chabchoub N, Kallel R, Boudawara T, Nasri M, Ben Amara I. Falkenbergia rufolanosa polysaccharide - Poly(vinyl alcohol) composite films: A promising wound healing agent against dermal laser burns in rats. Int J Biol Macromol 2020; 144:954-966. [PMID: 31672634 DOI: 10.1016/j.ijbiomac.2019.09.173] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/21/2022]
Abstract
This work was conducted to evaluate the compatibility between physicochemical, antioxidant and morphological properties of polysaccharide (FRP) extracted from red marine alga Falkenbergia rufolanosa reinforced by poly (vinyl alcohol) (PVA) composed films at different ratios of FRP/PVA: F1 (70:30), F2 (50:50), F3 (30:70) and PVA (100% PVA) and the potential wound healing effects. As assessed, FRP/PVA prepared films were heterogeneous, slightly opaque with a rough surface as ascertained by Fourier transform infrared spectroscopy, scanning electron microscopy and colorimetric parameters. Even, X-ray diffraction and glass transition results revealed a semi-crystalline structure of FRP composed films which decreased with increasing PVA ratios. The antioxidant activities of composite films depicted that F1 exhibited the highest antioxidant activity in vitro. Therefore, F1 was found to promote significantly the wound healing, after eight days of treatment, evidenced by higher wound appearance scores and a higher content of collagen (885.12 ± 20.35 mg/g of tissue) confirmed by histological examination, when compared with control, CYTOL BASIC® and PVA-treated groups. All together, the marine-derived polysaccharide gave a substantial pledge for the development of biodegradable films as a potent antioxidant material and a promising agent for tissue regeneration.
Collapse
Affiliation(s)
- Amal Feki
- Laboratory of Enzyme Engineering and Microbiology, National Engineering School in Sfax, University of Sfax, B.P. 1173, 3038 Sfax, Tunisia.
| | - Sana Bardaa
- Laboratory of Pharmacology, Faculty of Medicine of Sfax, University of Sfax, Tunisia
| | - Sawssan Hajji
- Laboratory of Enzyme Engineering and Microbiology, National Engineering School in Sfax, University of Sfax, B.P. 1173, 3038 Sfax, Tunisia
| | - Naourez Ktari
- Laboratory of Enzyme Engineering and Microbiology, National Engineering School in Sfax, University of Sfax, B.P. 1173, 3038 Sfax, Tunisia
| | - Marwa Hamdi
- Laboratory of Enzyme Engineering and Microbiology, National Engineering School in Sfax, University of Sfax, B.P. 1173, 3038 Sfax, Tunisia
| | | | - Rim Kallel
- Laboratory of Anatomopathology, CHU Habib Bourguiba, University of Sfax, 3029 Sfax, Tunisia
| | - Tahia Boudawara
- Laboratory of Anatomopathology, CHU Habib Bourguiba, University of Sfax, 3029 Sfax, Tunisia
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, National Engineering School in Sfax, University of Sfax, B.P. 1173, 3038 Sfax, Tunisia
| | - Ibtissem Ben Amara
- Laboratory of Enzyme Engineering and Microbiology, National Engineering School in Sfax, University of Sfax, B.P. 1173, 3038 Sfax, Tunisia
| |
Collapse
|
18
|
Effect of Polysaccharides from Bletilla striata on the Healing of Dermal Wounds in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:9212314. [PMID: 31781284 PMCID: PMC6855086 DOI: 10.1155/2019/9212314] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/29/2019] [Accepted: 08/08/2019] [Indexed: 12/19/2022]
Abstract
Bletilla striata has been largely used in traditional folk medicine in China as a wound healing agent and to treat gastritis and several other health problems. Some studies have shown that plant polysaccharides may have the ability to promote wound healing. The aim of this work was to evaluate the wound healing activity of the polysaccharide extracted from Bletilla striata. Firstly, a Bletilla striata polysaccharide was extracted by water extraction and alcohol precipitation and characterized by Fourier transform infrared spectroscopy. The Bletilla striata polysaccharide was then tested for cell migration and proliferation using the mouse fibroblast cell line. Then, the Bletilla striata hydrogel was fabricated for acute wound health care of the mouse full-thickness excision. The results showed that the BSP enhanced the proliferation and migration of L929 cells. The superior wound healing capacity of the BSP hydrogel was demonstrated that it significantly accelerated the wound healing process in vivo in full-thickness skin defect wounded models. Compared to the saline group, the BSP hydrogel could accelerate wound healing and promote re-epithelialization and collagen deposition by means of TGF-β/Smad signal pathway activation. Taken together, BSP hydrogel would be a useful pharmaceutic candidate for acute cutaneous wound health care.
Collapse
|
19
|
Ouyang Q, Hou T, Li C, Hu Z, Liang L, Li S, Zhong Q, Li P. Construction of a composite sponge containing tilapia peptides and chitosan with improved hemostatic performance. Int J Biol Macromol 2019; 139:719-729. [DOI: 10.1016/j.ijbiomac.2019.07.163] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/02/2019] [Accepted: 07/25/2019] [Indexed: 01/14/2023]
|
20
|
Wang CH, Doan CT, Nguyen VB, Nguyen AD, Wang SL. Reclamation of Fishery Processing Waste: A Mini-Review. Molecules 2019; 24:E2234. [PMID: 31207992 PMCID: PMC6630555 DOI: 10.3390/molecules24122234] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 02/07/2023] Open
Abstract
: Seafood such as fish, shellfish, and squid are a unique source of nutrients. However, many marine processing byproducts, such as viscera, shells, heads, and bones, are discarded, even though they are rich sources of structurally diverse bioactive nitrogenous components. Based on emerging evidence of their potential health benefits, these components show significant promise as functional food ingredients. Fish waste components contain significant levels of high-quality protein, which represents a source for biofunctional peptide mining. The chitin contained in shrimp shells, crab shells, and squid pens may also be of value. The components produced by bioconversion are reported to have antioxidative, antimicrobial, anticancer, antihypertensive, antidiabetic, and anticoagulant activities. This review provides an overview of the extraordinary potential of processing fish and chitin-containing seafood byproducts via chemical procedures, enzymatic and fermentation technologies, and chemical modifications, as well as their applications.
Collapse
Affiliation(s)
- Chi-Hao Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.-H.W.); (C.T.D.)
| | - Chien Thang Doan
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.-H.W.); (C.T.D.)
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - Van Bon Nguyen
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - Anh Dzung Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.-H.W.); (C.T.D.)
- Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan
| |
Collapse
|
21
|
Shariatinia Z. Pharmaceutical applications of chitosan. Adv Colloid Interface Sci 2019; 263:131-194. [PMID: 30530176 DOI: 10.1016/j.cis.2018.11.008] [Citation(s) in RCA: 302] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/23/2018] [Accepted: 11/25/2018] [Indexed: 01/06/2023]
Abstract
Chitosan (CS) is a linear polysaccharide which is achieved by deacetylation of chitin, which is the second most plentiful compound in nature, after cellulose. It is a linear copolymer of β-(1 → 4)-linked 2-acetamido-2-deoxy-β-d-glucopyranose and 2-amino-2-deoxy-β-d-glucopyranose. It has appreciated properties such as biocompatibility, biodegradability, hydrophilicity, nontoxicity, high bioavailability, simplicity of modification, favorable permselectivity of water, outstanding chemical resistance, capability to form films, gels, nanoparticles, microparticles and beads as well as affinity to metals, proteins and dyes. Also, the biodegradable CS is broken down in the human body to safe compounds (amino sugars) which are easily absorbed. At present, CS and its derivatives are broadly investigated in numerous pharmaceutical and medical applications including drug/gene delivery, wound dressings, implants, contact lenses, tissue engineering and cell encapsulation. Besides, CS has several OH and NH2 functional groups which allow protein binding. CS with a deacetylation degree of ~50% is soluble in aqueous acidic environment. While CS is dissolved in acidic medium, its amino groups in the polymeric chains are protonated and it becomes cationic which allows its strong interaction with different kinds of molecules. It is believed that this positive charge is responsible for the antimicrobial activity of CS through the interaction with the negatively charged cell membranes of microorganisms. This review presents properties and numerous applications of chitosan-based compounds in drug delivery, gene delivery, cell encapsulation, protein binding, tissue engineering, preparation of implants and contact lenses, wound healing, bioimaging, antimicrobial food additives, antibacterial food packaging materials and antibacterial textiles. Moreover, some recent molecular dynamics simulations accomplished on the pharmaceutical applications of chitosan were presented.
Collapse
|
22
|
Odeleye T, White WL, Lu J. Extraction techniques and potential health benefits of bioactive compounds from marine molluscs: a review. Food Funct 2019; 10:2278-2289. [DOI: 10.1039/c9fo00172g] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Marine molluscs and their bioactive compounds are of particular relevance to the growing pool of nutraceutical resources under global investigation.
Collapse
Affiliation(s)
- Tinu Odeleye
- School of Science
- Faculty of Health and Environmental Sciences
- Auckland University of Technology
- Auckland 1010
- New Zealand
| | - William Lindsey White
- School of Science
- Faculty of Health and Environmental Sciences
- Auckland University of Technology
- Auckland 1010
- New Zealand
| | - Jun Lu
- School of Science
- Faculty of Health and Environmental Sciences
- Auckland University of Technology
- Auckland 1010
- New Zealand
| |
Collapse
|
23
|
Enhancement of hemostatic property of plant derived oxidized nanocellulose-silk fibroin based scaffolds by thrombin loading. Carbohydr Polym 2018; 208:168-179. [PMID: 30658788 DOI: 10.1016/j.carbpol.2018.12.056] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 11/15/2018] [Accepted: 12/18/2018] [Indexed: 01/04/2023]
Abstract
To combat post-surgical and traumatic bleeding conditions effective hemostasis is of great importance. The study was designed to investigate the effect of thrombin (Th) loading on hemostatic performance of TEMPO-oxidized cellulose nanofiber (TOCN)-silk fibroin (SF) scaffolds. Addition of SF with TOCN significantly (***P < 0.001) increased blood absorption capacity and improved biocompatibility of TOCN. Thrombin loading potentiated platelet activation and hemostatic property of scaffolds (TOCN-SF-Th) compared to samples without thrombin (TOCN-SF). The hemostatic time of TOCN-SF5-Th in rabbit ear artery bleeding model was reduced (*** P < 0.001) to 114 s from 220 s of TOCN-SF5. Reduction in bleeding time and blood loss of TOCN-SF5-Th in rat tail amputation and liver avulsion model was comparable to commercial hemostat (Floseal). Surface morphology (SEM) of samples applied on bleeding site showed that RBCs and fibrin fiber could strongly interact with TOCN-SF and TOCN-SF-Th scaffolds. The result suggests that TOCN-SF-Th can be a promising candidate for designing hemostatic agents.
Collapse
|
24
|
Hu Z, Zhang DY, Lu ST, Li PW, Li SD. Chitosan-Based Composite Materials for Prospective Hemostatic Applications. Mar Drugs 2018; 16:E273. [PMID: 30081571 PMCID: PMC6117657 DOI: 10.3390/md16080273] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/27/2018] [Accepted: 08/02/2018] [Indexed: 01/22/2023] Open
Abstract
Effective hemostasis is vital to reduce the pain and mortality of patients, and the research and development of hemostatic materials are prerequisite for effective hemostasis. Chitosan (CS), with good biodegradability, biocompatibility and non-toxicity, has been widely applied in bio-medicine, the chemical industry, the food industry and cosmetics. The excellent hemostatic properties of CS have been extensively studied. As a result, chitosan-based composite hemostatic materials have been emerging. In this review, the hemostatic mechanism of chitosan is briefly discussed, and then the progress of research on chitosan-based composite hemostatic materials with multiple forms such as films, sponges, hydrogels, particles and fibers are introduced. Finally, future perspectives of chitosan-based composite hemostatic materials are given. The objective of this review is to provide a reference for further research and development of effective hemostatic materials.
Collapse
Affiliation(s)
- Zhang Hu
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China.
| | - Dong-Ying Zhang
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China.
| | - Si-Tong Lu
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China.
| | - Pu-Wang Li
- Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China.
| | - Si-Dong Li
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China.
| |
Collapse
|
25
|
A Potential Adjuvant Agent of Chemotherapy: Sepia Ink Polysaccharides. Mar Drugs 2018; 16:md16040106. [PMID: 29597272 PMCID: PMC5923393 DOI: 10.3390/md16040106] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/19/2018] [Accepted: 03/25/2018] [Indexed: 11/17/2022] Open
Abstract
Sepia ink polysaccharide (SIP) isolated from squid and cuttlefish ink is a kind of acid mucopolysaccharide that has been identified in three types of primary structures from squid (Illex argentinus and Ommastrephes bartrami), cuttlefish Sepiella maindroni, and cuttlefish Sepia esculenta ink. Although SIP has been proved to be multifaceted, most of the reported evidence has illuminated its chemopreventive and antineoplastic activities. As a natural product playing a role in cancer treatment, SIP may be used as chemotherapeutic ancillary agent or functional food. Based on the current findings on SIP, we have summarized four topics in this review, including: chemopreventive, antineoplastic, chemosensitive, and procoagulant and anticoagulant activities, which are correlative closely with the actions of anticancer agents on cancer patients, such as anticancer, toxicity and thrombogenesis, with the latter two actions being common causes of death in cancer cases exposed to chemotherapeutic agents.
Collapse
|