1
|
Chandra DK, Reis RL, Kundu SC, Kumar A, Mahapatra C. Nanomaterials-Based Hybrid Bioink Platforms in Advancing 3D Bioprinting Technologies for Regenerative Medicine. ACS Biomater Sci Eng 2024; 10:4145-4174. [PMID: 38822783 DOI: 10.1021/acsbiomaterials.4c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
3D bioprinting is recognized as the ultimate additive biomanufacturing technology in tissue engineering and regeneration, augmented with intelligent bioinks and bioprinters to construct tissues or organs, thereby eliminating the stipulation for artificial organs. For 3D bioprinting of soft tissues, such as kidneys, hearts, and other human body parts, formulations of bioink with enhanced bioinspired rheological and mechanical properties were essential. Nanomaterials-based hybrid bioinks have the potential to overcome the above-mentioned problem and require much attention among researchers. Natural and synthetic nanomaterials such as carbon nanotubes, graphene oxides, titanium oxides, nanosilicates, nanoclay, nanocellulose, etc. and their blended have been used in various 3D bioprinters as bioinks and benefitted enhanced bioprintability, biocompatibility, and biodegradability. A limited number of articles were published, and the above-mentioned requirement pushed us to write this review. We reviewed, explored, and discussed the nanomaterials and nanocomposite-based hybrid bioinks for the 3D bioprinting technology, 3D bioprinters properties, natural, synthetic, and nanomaterial-based hybrid bioinks, including applications with challenges, limitations, ethical considerations, potential solution for future perspective, and technological advancement of efficient and cost-effective 3D bioprinting methods in tissue regeneration and healthcare.
Collapse
Affiliation(s)
- Dilip Kumar Chandra
- Department of Biotechnology, National Institute of Technology Raipur, G.E. Road, Raipur, Chhattisgarh 492010, India
| | - Rui L Reis
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimarães 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães 4800-058, Braga,Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimarães 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães 4800-058, Braga,Portugal
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology Raipur, G.E. Road, Raipur, Chhattisgarh 492010, India
| | - Chinmaya Mahapatra
- Department of Biotechnology, National Institute of Technology Raipur, G.E. Road, Raipur, Chhattisgarh 492010, India
| |
Collapse
|
2
|
Ni F, Chen Y, Wang Z, Zhang X, Gao F, Shao Z, Wang H. Graphene derivative based hydrogels in biomedical applications. J Tissue Eng 2024; 15:20417314241282131. [PMID: 39430737 PMCID: PMC11490963 DOI: 10.1177/20417314241282131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/24/2024] [Indexed: 10/22/2024] Open
Abstract
Graphene and its derivatives are widely used in tissue-engineering scaffolds, especially in the form of hydrogels. This is due to their biocompatibility, electrical conductivity, high surface area, and physicochemical versatility. They are also used in tissue engineering. Tissue engineering is suitable for 3D printing applications, and 3D printing makes it possible to construct 3D structures from 2D graphene, which is a revolutionary technology with promising applications in tissue and organ engineering. In this review, the recent literature in which graphene and its derivatives have been used as the major components of hydrogels is summarized. The application of graphene and its derivative-based hydrogels in tissue engineering is described in detail from different perspectives.
Collapse
Affiliation(s)
- Feifei Ni
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangyang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ze Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Gao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Gupta D, Singh AK, Bellare J. Natural bone inspired core-shell triple-layered gel/PCL/gel 3D printed scaffolds for bone tissue engineering. Biomed Mater 2023; 18:065027. [PMID: 37879307 DOI: 10.1088/1748-605x/ad06c2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/25/2023] [Indexed: 10/27/2023]
Abstract
Despite technological advancements in bone tissue engineering, it is still a challenge to fabricate a scaffold with high bioactivity as well as high mechanical strength that can promote osteogenesis as well as bear load. Here we developed a 3D printed gel-polymer multi-layered hybrid scaffold. The innermost layer is porous gel-based framework made of gelatin/carboxymethyl-chitin/nano-hydroxyapatite and is cryogenically 3D printed. Further, the second and middle layer of micro-engineered polycaprolactone (PCL) is infused in the gel with controlled penetration and tuneable coating thickness. The PCL surface is further coated with a third and final thin layer of gel matrix used for the first layer. This triple-layered structure demonstrates compression strength and modulus of 13.07 ± 1.15 MPa and 21.8 ± 0.82 MPa, respectively, post 8 weeks degradation which is >3000% and >700% than gel scaffold. It also shows degradation of 6.84 ± 0.70% (83% reduction than gel scaffold) after 12 weeks and swelling of 69.09 ± 6.83% (81% reduction) as compared to gel scaffolds. Further, nearly 300%, 250%, 50%, and 440% increase in cellular attachment, proliferation, protein generation, and mineralization, respectively are achieved as compared to only PCL scaffolds. Thus, these hybrid scaffolds offer high mechanical strength, slow degradation rate, high bioactivity, and high osteoconductivity. These multifunctional scaffolds have potential for reconstructing non-load-bearing bone defects like sinus lift, jaw cysts, and moderate load-bearing like reconstructing hard palate, orbital palate, and other craniomaxillofacial bone defects.
Collapse
Affiliation(s)
- Deepak Gupta
- Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, United States of America
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, United States of America
| | - Atul Kumar Singh
- Central Research Facility (CRF), Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Jayesh Bellare
- Chemical Engineering Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- Tata Centre for Technology and Design, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- Wadhwani Research Centre for Bioengineering (WRCB), Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
4
|
Liang J, Liu L, Feng H, Yue Y, Zhang Y, Wang Q, Zhao H. Therapeutics of osteoarthritis and pharmacological mechanisms: A focus on RANK/RANKL signaling. Biomed Pharmacother 2023; 167:115646. [PMID: 37804812 DOI: 10.1016/j.biopha.2023.115646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/15/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative disease afflicting millions globally. Despite the development of numerous pharmacological treatments for OA, a substantial unmet need for effective therapies persists. The RANK/RANKL signaling pathway has emerged as a promising therapeutic target for OA, owing to its pivotal role in regulating osteoclast differentiation and activity. In this comprehensive review, we aim to elucidate the relevant mechanisms of OA mediated by RANK/RANKL signaling, including bone remodeling, inflammation, cartilage degradation, osteophyte formation, and pain sensitization. Furthermore, we discuss and summarize the cutting-edge strategies targeting RANK/RANKL signaling for OA therapy, encompassing approaches such as gene-based interventions and biomaterials-aided pharmacotherapy. In addition, we highlight the prevailing challenges associated with pharmacological OA treatments and explore potential future directions, approached through a clinical-translational lens.
Collapse
Affiliation(s)
- Jingqi Liang
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi'an Jiaotong University, China
| | - Liang Liu
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi'an Jiaotong University, China
| | - Hui Feng
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi'an Jiaotong University, China
| | - Yang Yue
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi'an Jiaotong University, China
| | - Yan Zhang
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi'an Jiaotong University, China
| | - Qiong Wang
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi'an Jiaotong University, China
| | - Hongmou Zhao
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi'an Jiaotong University, China.
| |
Collapse
|
5
|
Choi J, Lee EJ, Jang WB, Kwon SM. Development of Biocompatible 3D-Printed Artificial Blood Vessels through Multidimensional Approaches. J Funct Biomater 2023; 14:497. [PMID: 37888162 PMCID: PMC10607080 DOI: 10.3390/jfb14100497] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
Within the human body, the intricate network of blood vessels plays a pivotal role in transporting nutrients and oxygen and maintaining homeostasis. Bioprinting is an innovative technology with the potential to revolutionize this field by constructing complex multicellular structures. This technique offers the advantage of depositing individual cells, growth factors, and biochemical signals, thereby facilitating the growth of functional blood vessels. Despite the challenges in fabricating vascularized constructs, bioprinting has emerged as an advance in organ engineering. The continuous evolution of bioprinting technology and biomaterial knowledge provides an avenue to overcome the hurdles associated with vascularized tissue fabrication. This article provides an overview of the biofabrication process used to create vascular and vascularized constructs. It delves into the various techniques used in vascular engineering, including extrusion-, droplet-, and laser-based bioprinting methods. Integrating these techniques offers the prospect of crafting artificial blood vessels with remarkable precision and functionality. Therefore, the potential impact of bioprinting in vascular engineering is significant. With technological advances, it holds promise in revolutionizing organ transplantation, tissue engineering, and regenerative medicine. By mimicking the natural complexity of blood vessels, bioprinting brings us one step closer to engineering organs with functional vasculature, ushering in a new era of medical advancement.
Collapse
Affiliation(s)
- Jaewoo Choi
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (J.C.); (E.J.L.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Eun Ji Lee
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (J.C.); (E.J.L.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Woong Bi Jang
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (J.C.); (E.J.L.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sang-Mo Kwon
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (J.C.); (E.J.L.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
6
|
Bai L, Tao G, Feng M, Xie Y, Cai S, Peng S, Xiao J. Hydrogel Drug Delivery Systems for Bone Regeneration. Pharmaceutics 2023; 15:pharmaceutics15051334. [PMID: 37242576 DOI: 10.3390/pharmaceutics15051334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
With the in-depth understanding of bone regeneration mechanisms and the development of bone tissue engineering, a variety of scaffold carrier materials with desirable physicochemical properties and biological functions have recently emerged in the field of bone regeneration. Hydrogels are being increasingly used in the field of bone regeneration and tissue engineering because of their biocompatibility, unique swelling properties, and relative ease of fabrication. Hydrogel drug delivery systems comprise cells, cytokines, an extracellular matrix, and small molecule nucleotides, which have different properties depending on their chemical or physical cross-linking. Additionally, hydrogels can be designed for different types of drug delivery for specific applications. In this paper, we summarize recent research in the field of bone regeneration using hydrogels as delivery carriers, detail the application of hydrogels in bone defect diseases and their mechanisms, and discuss future research directions of hydrogel drug delivery systems in bone tissue engineering.
Collapse
Affiliation(s)
- Long Bai
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Gang Tao
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Maogeng Feng
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yuping Xie
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Shuyu Cai
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Shuanglin Peng
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jingang Xiao
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
7
|
Wan T, Zhang M, Jiang HR, Zhang YC, Zhang XM, Wang YL, Zhang PX. Tissue-Engineered Nanomaterials Play Diverse Roles in Bone Injury Repair. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091449. [PMID: 37176994 PMCID: PMC10180507 DOI: 10.3390/nano13091449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/08/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
Nanomaterials with bone-mimicking characteristics and easily internalized by the cell could create suitable microenvironments in which to regulate the therapeutic effects of bone regeneration. This review provides an overview of the current state-of-the-art research in developing and using nanomaterials for better bone injury repair. First, an overview of the hierarchical architecture from the macroscale to the nanoscale of natural bone is presented, as these bone tissue microstructures and compositions are the basis for constructing bone substitutes. Next, urgent clinical issues associated with bone injury that require resolution and the potential of nanomaterials to overcome them are discussed. Finally, nanomaterials are classified as inorganic or organic based on their chemical properties. Their basic characteristics and the results of related bone engineering studies are described. This review describes theoretical and technical bases for the development of innovative methods for repairing damaged bone and should inspire therapeutic strategies with potential for clinical applications.
Collapse
Affiliation(s)
- Teng Wan
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Meng Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Hao-Ran Jiang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Yi-Chong Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Xiao-Meng Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Yi-Lin Wang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Pei-Xun Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| |
Collapse
|
8
|
Siripongpreda T, Hoven VP, Narupai B, Rodthongku N. Emerging 3D printing based on polymers and nanomaterial additives: Enhancement of properties and potential applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
3D Bioprinted Chitosan-Based Hydrogel Scaffolds in Tissue Engineering and Localised Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14091978. [PMID: 36145727 PMCID: PMC9500618 DOI: 10.3390/pharmaceutics14091978] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/17/2022] [Accepted: 09/18/2022] [Indexed: 11/17/2022] Open
Abstract
Bioprinting is an emerging technology with various applications in developing functional tissue constructs for the replacement of harmed or damaged tissues and simultaneously controlled drug delivery systems (DDSs) for the administration of several active substances, such as growth factors, proteins, and drug molecules. It is a novel approach that provides high reproducibility and precise control over the fabricated constructs in an automated way. An ideal bioink should possess proper mechanical, rheological, and biological properties essential to ensure proper function. Chitosan is a promising natural-derived polysaccharide to be used as ink because of its attractive properties, such as biodegradability, biocompatibility, low cost, and non-immunogenicity. This review focuses on 3D bioprinting technology for the preparation of chitosan-based hydrogel scaffolds for the regeneration of tissues delivering either cells or active substances to promote restoration.
Collapse
|
10
|
Cai Y, Chang SY, Gan SW, Ma S, Lu WF, Yen CC. Nanocomposite bioinks for 3D bioprinting. Acta Biomater 2022; 151:45-69. [PMID: 35970479 DOI: 10.1016/j.actbio.2022.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/13/2022] [Accepted: 08/08/2022] [Indexed: 12/20/2022]
Abstract
Three-dimensional (3D) bioprinting is an advanced technology to fabricate artificial 3D tissue constructs containing cells and hydrogels for tissue engineering and regenerative medicine. Nanocomposite reinforcement endows hydrogels with superior properties and tailored functionalities. A broad range of nanomaterials, including silicon-based, ceramic-based, cellulose-based, metal-based, and carbon-based nanomaterials, have been incorporated into hydrogel networks with encapsulated cells for improved performances. This review emphasizes the recent developments of cell-laden nanocomposite bioinks for 3D bioprinting, focusing on their reinforcement effects and mechanisms, including viscosity, shear-thinning property, printability, mechanical properties, structural integrity, and biocompatibility. The cell-material interactions are discussed to elaborate on the underlying mechanisms between the cells and the nanomaterials. The biomedical applications of cell-laden nanocomposite bioinks are summarized with a focus on bone and cartilage tissue engineering. Finally, the limitations and challenges of current cell-laden nanocomposite bioinks are identified. The prospects are concluded in designing multi-component bioinks with multi-functionality for various biomedical applications. STATEMENT OF SIGNIFICANCE: 3D bioprinting, an emerging technology of additive manufacturing, has been one of the most innovative tools for tissue engineering and regenerative medicine. Recent developments of cell-laden nanocomposite bioinks for 3D bioprinting, and cell-materials interactions are the subject of this review paper. The reinforcement effects and mechanisms of nanocomposites on viscosity, printability and biocompatibility of bioinks and 3D printed scaffolds are addressed mainly for bone and cartilage tissue engineering. It provides detailed information for further designing and optimizing multi-component bioinks with multi-functionality for specialized biomedical applications.
Collapse
Affiliation(s)
- Yanli Cai
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117597, Singapore
| | - Soon Yee Chang
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117597, Singapore
| | - Soo Wah Gan
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117597, Singapore
| | - Sha Ma
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117597, Singapore
| | - Wen Feng Lu
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117597, Singapore; Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Ching-Chiuan Yen
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117597, Singapore; Division of Industrial Design, National University of Singapore, Singapore 117356, Singapore.
| |
Collapse
|
11
|
Ren Q, Zhang W, Li P, Zhou J, Li Z, Zhou Y, Li M. Upregulation of osteoprotegerin inhibits tert-butyl hydroperoxide-induced apoptosis of human chondrocytes. Exp Ther Med 2022; 24:470. [PMID: 35747145 PMCID: PMC9204554 DOI: 10.3892/etm.2022.11397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 03/31/2022] [Indexed: 11/29/2022] Open
Abstract
Necrosis of the femoral head (NFH) is an orthopedic disease characterized by a severe lack of blood supply to the femoral head and a marked increase in intraosseous pressure. NFH is associated with numerous factors, such as alcohol consumption and hormone levels. The present study focused on the expression levels of osteoprotegerin (OPG) in NFH and the effect of OPG overexpression on chondrocyte apoptosis. The results demonstrated that OPG expression was markedly decreased in the femoral head of patients with NFH compared with normal femoral heads. Lentivirus-mediated overexpression of OPG in human chondrocytes reversed the decrease in cell viability and the increase in reactive oxygen species production induced by an oxidative stress-inducing factor, tert-butyl hydroperoxide. Flow cytometry and TUNEL assays revealed that OPG overexpression inhibited the apoptosis of chondrocytes. In addition, it was revealed that OPG exerted its anti-apoptotic effect mainly by promoting Bcl-2 expression and Akt phosphorylation and inhibiting caspase-3 cleavage and Bax expression. The present study revealed that OPG may be an important regulator of NFH.
Collapse
Affiliation(s)
- Qifeng Ren
- Department of Joint Surgery, Dezhou People's Hospital, Dezhou, Shandong 253014, P.R. China
| | - Wenfei Zhang
- Department of Clinical Psychology, Dezhou People's Hospital, Dezhou, Shandong 253014, P.R. China
| | - Ping Li
- Department of Hematology, Dezhou People's Hospital, Dezhou, Shandong 253014, P.R. China
| | - Jianli Zhou
- Department of Nuclear Medicine, Dezhou People's Hospital, Dezhou, Shandong 253014, P.R. China
| | - Zhonghao Li
- Department of Joint Surgery, Dezhou People's Hospital, Dezhou, Shandong 253014, P.R. China
| | - Yang Zhou
- Central Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Ming Li
- Department of Joint Surgery, Dezhou People's Hospital, Dezhou, Shandong 253014, P.R. China
| |
Collapse
|
12
|
Hyaluronic acid-based self-repairing hydrogel preparation and 3D cell culture. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03017-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Liu Z, Xin W, Ji J, Xu J, Zheng L, Qu X, Yue B. 3D-Printed Hydrogels in Orthopedics: Developments, Limitations, and Perspectives. Front Bioeng Biotechnol 2022; 10:845342. [PMID: 35433662 PMCID: PMC9010546 DOI: 10.3389/fbioe.2022.845342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/24/2022] [Indexed: 01/16/2023] Open
Abstract
Three-dimensional (3D) printing has been used in medical research and practice for several years. Various aspects can affect the finished product of 3D printing, and it has been observed that the impact of the raw materials used for 3D printing is unique. Currently, hydrogels, including various natural and synthetic materials, are the most biologically and physically advantageous biological raw materials, and their use in orthopedics has increased considerably in recent years. 3D-printed hydrogels can be used in the construction of extracellular matrix during 3D printing processes. In addition to providing sufficient space structure for osteogenesis and chondrogenesis, hydrogels have shown positive effects on osteogenic and chondrogenic signaling pathways, promoting tissue repair in various dimensions. 3D-printed hydrogels are currently attracting extensive attention for the treatment of bone and joint injuries owing to the above-mentioned significant advantages. Furthermore, hydrogels have been recently used in infection prevention because of their antiseptic impact during the perioperative period. However, there are a few shortcomings associated with hydrogels including difficulty in getting rid of the constraints of the frame, poor mechanical strength, and burst release of loadings. These drawbacks could be overcome by combining 3D printing technology and novel hydrogel material through a multi-disciplinary approach. In this review, we provide a brief description and summary of the unique advantages of 3D printing technology in the field of orthopedics. In addition, some 3D printable hydrogels possessing prominent features, along with the key scope for their applications in bone joint repair, reconstruction, and antibacterial performance, are discussed to highlight the considerable prospects of hydrogels in the field of orthopedics.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weiwei Xin
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jindou Ji
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jialian Xu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liangjun Zheng
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Xinhua Qu, ; Bing Yue,
| | - Bing Yue
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Xinhua Qu, ; Bing Yue,
| |
Collapse
|
14
|
The Use of Graphene and Its Derivatives for the Development of Polymer Matrix Composites by Stereolithographic 3D Printing. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Significant advances in graphene-based materials have facilitated the development of various composites structures in a diverse range of industry sectors. At present, the preparation of graphene-added materials is mainly developed through traditional methods. However, in recent years, additive manufacturing emerged as a promising approach that enables the printing of complex objects in a layer-by-layer fashion, without the need for moulds or machining equipment. This paper reviews the most recent reports on graphene-based photopolymerizable resins developed for stereolithography (SLA), with particular consideration for medical applications. The characteristics of the SLA technology, the most suitable raw materials and formulations and the properties of final 3D products are described. Throughout, a specific focus is placed on the mechanical properties and biocompatibility of the final 3D-printed object. Finally, remaining challenges and future directions are also discussed.
Collapse
|
15
|
Huang J, Liu F, Su H, Xiong J, Yang L, Xia J, Liang Y. Advanced Nanocomposite Hydrogels for Cartilage Tissue Engineering. Gels 2022; 8:138. [PMID: 35200519 PMCID: PMC8871651 DOI: 10.3390/gels8020138] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
Tissue engineering is becoming an effective strategy for repairing cartilage damage. Synthesized nanocomposite hydrogels mimic the structure of natural cartilage extracellular matrices (ECMs), are biocompatible, and exhibit nano-bio effects in response to external stimuli. These inherent characteristics make nanocomposite hydrogels promising scaffold materials for cartilage tissue engineering. This review summarizes the advances made in the field of nanocomposite hydrogels for artificial cartilage. We discuss, in detail, their preparation methods and scope of application. The challenges involved for the application of hydrogel nanocomposites for cartilage repair are also highlighted.
Collapse
Affiliation(s)
- Jianghong Huang
- Department of Spine Surgery and Orthopedics, Shenzhen Second People’s Hospital (First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen 518035, China; (J.H.); (J.X.); (L.Y.)
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Fei Liu
- Department of Biochemistry, Texas A&M University School of Medicine, Bryan, TX 77807, USA;
| | - Haijing Su
- Technology R&D Department, Shenzhen Lechuang Medical Research Institute Co., Ltd., Shenzhen 518129, China;
| | - Jianyi Xiong
- Department of Spine Surgery and Orthopedics, Shenzhen Second People’s Hospital (First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen 518035, China; (J.H.); (J.X.); (L.Y.)
| | - Lei Yang
- Department of Spine Surgery and Orthopedics, Shenzhen Second People’s Hospital (First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen 518035, China; (J.H.); (J.X.); (L.Y.)
| | - Jiang Xia
- Department of Chemistry, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China;
| | - Yujie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen 518020, China
| |
Collapse
|
16
|
Zamboulis A, Michailidou G, Koumentakou I, Bikiaris DN. Polysaccharide 3D Printing for Drug Delivery Applications. Pharmaceutics 2022; 14:145. [PMID: 35057041 PMCID: PMC8778081 DOI: 10.3390/pharmaceutics14010145] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/19/2021] [Accepted: 12/24/2021] [Indexed: 12/27/2022] Open
Abstract
3D printing, or additive manufacturing, has gained considerable interest due to its versatility regarding design as well as in the large choice of materials. It is a powerful tool in the field of personalized pharmaceutical treatment, particularly crucial for pediatric and geriatric patients. Polysaccharides are abundant and inexpensive natural polymers, that are already widely used in the food industry and as excipients in pharmaceutical and cosmetic formulations. Due to their intrinsic properties, such as biocompatibility, biodegradability, non-immunogenicity, etc., polysaccharides are largely investigated as matrices for drug delivery. Although an increasing number of interesting reviews on additive manufacturing and drug delivery are being published, there is a gap concerning the printing of polysaccharides. In this article, we will review recent advances in the 3D printing of polysaccharides focused on drug delivery applications. Among the large family of polysaccharides, the present review will particularly focus on cellulose and cellulose derivatives, chitosan and sodium alginate, printed by fused deposition modeling and extrusion-based printing.
Collapse
Affiliation(s)
- Alexandra Zamboulis
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (G.M.); (I.K.)
| | | | | | - Dimitrios N. Bikiaris
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (G.M.); (I.K.)
| |
Collapse
|
17
|
Rastin H, Mansouri N, Tung TT, Hassan K, Mazinani A, Ramezanpour M, Yap PL, Yu L, Vreugde S, Losic D. Converging 2D Nanomaterials and 3D Bioprinting Technology: State-of-the-Art, Challenges, and Potential Outlook in Biomedical Applications. Adv Healthc Mater 2021; 10:e2101439. [PMID: 34468088 DOI: 10.1002/adhm.202101439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Indexed: 12/17/2022]
Abstract
The development of next-generation of bioinks aims to fabricate anatomical size 3D scaffold with high printability and biocompatibility. Along with the progress in 3D bioprinting, 2D nanomaterials (2D NMs) prove to be emerging frontiers in the development of advanced materials owing to their extraordinary properties. Harnessing the properties of 2D NMs in 3D bioprinting technologies can revolutionize the development of bioinks by endowing new functionalities to the current bioinks. First the main contributions of 2D NMS in 3D bioprinting technologies are categorized here into six main classes: 1) reinforcement effect, 2) delivery of bioactive molecules, 3) improved electrical conductivity, 4) enhanced tissue formation, 5) photothermal effect, 6) and stronger antibacterial properties. Next, the recent advances in the use of each certain 2D NMs (1) graphene, 2) nanosilicate, 3) black phosphorus, 4) MXene, 5) transition metal dichalcogenides, 6) hexagonal boron nitride, and 7) metal-organic frameworks) in 3D bioprinting technology are critically summarized and evaluated thoroughly. Third, the role of physicochemical properties of 2D NMSs on their cytotoxicity is uncovered, with several representative examples of each studied 2D NMs. Finally, current challenges, opportunities, and outlook for the development of nanocomposite bioinks are discussed thoroughly.
Collapse
Affiliation(s)
- Hadi Rastin
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Negar Mansouri
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- School of Electrical and Electronic Engineering The University of Adelaide South Australia 5005 Australia
| | - Tran Thanh Tung
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Kamrul Hassan
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Arash Mazinani
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Mahnaz Ramezanpour
- Department of Surgery‐Otolaryngology Head and Neck Surgery The University of Adelaide Woodville South 5011 Australia
| | - Pei Lay Yap
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Le Yu
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Sarah Vreugde
- Department of Surgery‐Otolaryngology Head and Neck Surgery The University of Adelaide Woodville South 5011 Australia
| | - Dusan Losic
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| |
Collapse
|
18
|
Molino BZ, Fukuda J, Molino PJ, Wallace GG. Redox Polymers for Tissue Engineering. FRONTIERS IN MEDICAL TECHNOLOGY 2021; 3:669763. [PMID: 35047925 PMCID: PMC8757887 DOI: 10.3389/fmedt.2021.669763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/22/2021] [Indexed: 01/23/2023] Open
Abstract
This review will focus on the targeted design, synthesis and application of redox polymers for use in regenerative medicine and tissue engineering. We define redox polymers to encompass a variety of polymeric materials, from the multifunctional conjugated conducting polymers to graphene and its derivatives, and have been adopted for use in the engineering of several types of stimulus responsive tissues. We will review the fundamental properties of organic conducting polymers (OCPs) and graphene, and how their properties are being tailored to enhance material - biological interfacing. We will highlight the recent development of high-resolution 3D fabrication processes suitable for biomaterials, and how the fabrication of intricate scaffolds at biologically relevant scales is providing exciting opportunities for the application of redox polymers for both in-vitro and in-vivo tissue engineering. We will discuss the application of OCPs in the controlled delivery of bioactive compounds, and the electrical and mechanical stimulation of cells to drive behaviour and processes towards the generation of specific functional tissue. We will highlight the relatively recent advances in the use of graphene and the exploitation of its physicochemical and electrical properties in tissue engineering. Finally, we will look forward at the future of organic conductors in tissue engineering applications, and where the combination of materials development and fabrication processes will next unite to provide future breakthroughs.
Collapse
Affiliation(s)
- Binbin Z. Molino
- Faculty of Engineering, Yokohama National University, Yokohama, Japan
- Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
| | - Junji Fukuda
- Faculty of Engineering, Yokohama National University, Yokohama, Japan
- Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
| | - Paul J. Molino
- Australian Research Council (ARC) Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Gordon G. Wallace
- Australian Research Council (ARC) Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
19
|
Nanofibrous hyaluronic acid scaffolds delivering TGF-β3 and SDF-1α for articular cartilage repair in a large animal model. Acta Biomater 2021; 126:170-182. [PMID: 33753316 DOI: 10.1016/j.actbio.2021.03.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023]
Abstract
Focal cartilage injuries have poor intrinsic healing potential and often progress to osteoarthritis, a costly disease affecting almost a third of adults in the United States. To treat these patients, cartilage repair therapies often use cell-seeded scaffolds, which are limited by donor site morbidity, high costs, and poor efficacy. To address these limitations, we developed an electrospun cell-free fibrous hyaluronic acid (HA) scaffold that delivers factors specifically designed to enhance cartilage repair: Stromal Cell-Derived Factor-1α (SDF-1α; SDF) to increase the recruitment and infiltration of mesenchymal stem cells (MSCs) and Transforming Growth Factor-β3 (TGF-β3; TGF) to enhance cartilage tissue formation. Scaffolds were characterized in vitro and then deployed in a large animal model of full-thickness cartilage defect repair. The bioactivity of both factors was verified in vitro, with both SDF and TGF increasing cell migration, and TGF increasing matrix formation by MSCs. In vivo, however, scaffolds releasing SDF resulted in an inferior cartilage healing response (lower mechanics, lower ICRS II histology score) compared to scaffolds releasing TGF alone. These results highlight the importance of translation into large animal models to appropriately screen scaffolds and therapies, and will guide investigators towards alternative growth factor combinations. STATEMENT OF SIGNIFICANCE: This study addresses an area of orthopaedic medicine in which treatment options are limited and new biomaterials stand to improve patient outcomes. Those suffering from articular cartilage injuries are often destined to have early onset osteoarthritis. We have created a cell-free nanofibrous hyaluronic acid (HA) scaffold that delivers factors specifically designed to enhance cartilage repair: Stromal Cell-Derived Factor-1α (SDF-1α; SDF) to increase the recruitment and infiltration of mesenchymal stem cells (MSCs) and Transforming Growth Factor-β3 (TGF-β3; TGF) to enhance cartilage tissue formation. To our knowledge, this study is the first to evaluate such a bioactive scaffold in a large animal model and demonstrates the capacity for dual growth factor release.
Collapse
|
20
|
Rejuvenated Stem/Progenitor Cells for Cartilage Repair Using the Pluripotent Stem Cell Technology. Bioengineering (Basel) 2021; 8:bioengineering8040046. [PMID: 33920285 PMCID: PMC8070387 DOI: 10.3390/bioengineering8040046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 01/19/2023] Open
Abstract
It is widely accepted that chondral defects in articular cartilage of adult joints are never repaired spontaneously, which is considered to be one of the major causes of age-related degenerative joint disorders, such as osteoarthritis. Since mobilization of subchondral bone (marrow) cells and addition of chondrocytes or mesenchymal stromal cells into full-thickness defects show some degrees of repair, the lack of self-repair activity in adult articular cartilage can be attributed to lack of reparative cells in adult joints. In contrast, during a fetal or embryonic stage, joint articular cartilage has a scar-less repair activity, suggesting that embryonic joints may contain cells responsible for such activity, which can be chondrocytes, chondroprogenitors, or other cell types such as skeletal stem cells. In this respect, the tendency of pluripotent stem cells (PSCs) to give rise to cells of embryonic characteristics will provide opportunity, especially for humans, to obtain cells carrying similar cartilage self-repair activity. Making use of PSC-derived cells for cartilage repair is still in a basic or preclinical research phase. This review will provide brief overviews on how human PSCs have been used for cartilage repair studies.
Collapse
|
21
|
Recent advances in bioprinting technologies for engineering different cartilage-based tissues. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:112005. [PMID: 33812625 DOI: 10.1016/j.msec.2021.112005] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023]
Abstract
Inadequate self-repair and regenerative efficiency of the cartilage tissues has motivated the researchers to devise advanced and effective strategies to resolve this issue. Introduction of bioprinting to tissue engineering has paved the way for fabricating complex biomimetic engineered constructs. In this context, the current review gears off with the discussion of standard and advanced 3D/4D printing technologies and their implications for the repair of different cartilage tissues, namely, articular, meniscal, nasoseptal, auricular, costal, and tracheal cartilage. The review is then directed towards highlighting the current stem cell opportunities. On a concluding note, associated critical issues and prospects for future developments, particularly in this sphere of personalized medicines have been discussed.
Collapse
|
22
|
Rabiei M, Kashanian S, Samavati SS, Derakhshankhah H, Jamasb S, McInnes SJ. Nanotechnology application in drug delivery to osteoarthritis (OA), rheumatoid arthritis (RA), and osteoporosis (OSP). J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Graphene-laden hydrogels: A strategy for thermally triggered drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111353. [PMID: 33254973 DOI: 10.1016/j.msec.2020.111353] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/08/2020] [Accepted: 07/30/2020] [Indexed: 12/23/2022]
Abstract
The synthesis of graphene-based materials has attracted considerable attention in drug delivery strategies. Indeed, the conductivity and mechanical stability of graphene have been investigated for controlled and tunable drug release via electric or mechanical stimuli. However, the design of a thermo-sensitive scaffold using pristine graphene (without distortions related to the oxidation processes) has not been deeply investigated yet, although it may represent a promising approach for several therapeutic treatments. Here, few-layer graphene was used as a nanofiller in a hydrogel system with a thermally tunable drug release profile. In particular, varying the temperature (25 °C, 37 °C and 44 °C), responsive drug releases were noticed and hypothesized depending on the formation and perturbation of π-π interactions involving graphene, the polymeric matrix and the model drug (diclofenac). As a result, these hybrid hydrogels show a potential application as thermally triggered drug release systems in several healthcare scenarios.
Collapse
|
24
|
Chakraborty PK, Azadmanjiri J, Pavithra CLP, Wang X, Masood SH, Dey SR, Wang J. Advancements in Therapeutics via 3D Printed Multifunctional Architectures from Dispersed 2D Nanomaterial Inks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004900. [PMID: 33185035 DOI: 10.1002/smll.202004900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/01/2020] [Indexed: 06/11/2023]
Abstract
2D nanomaterials (2DNMs) possess fascinating properties and are found in multifarious devices and applications including energy storage devices, new generation of battery technologies, sensor devices, and more recently in biomedical applications. Their use in biomedical applications such as tissue engineering, photothermal therapy, neural regeneration, and drug delivery has opened new horizons in treatment of age-old ailments. It is also a rapidly developing area of advanced research. A new approach of integrating 3D printing (3DP), a layer-by-layer deposition technique for building structures, along with 2DNM multifunctional inks, has gained considerable attention in recent times, especially in biomedical applications. With the ever-growing demand in healthcare industry for novel, efficient, and rapid technologies for therapeutic treatment methods, 3DP structures of 2DNMs provide vast scope for evolution of a new generation of biomedical devices. Recent advances in 3DP structures of dispersed 2DNM inks with established high-performance biomedical properties are focused on. The advantages of their 3D structures, the sustainable formulation methods of such inks, and their feasible printing methods are also covered. Subsequently, it deals with the therapeutic applications of some already researched 3DP structures of 2DNMs and concludes with highlighting the challenges as well as the future directions of research in this area.
Collapse
Affiliation(s)
- Pritam K Chakraborty
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Kandi, Telangana, 502285, India
- School of Engineering, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Victoria, Hawthorn, 3122, Australia
| | - Jalal Azadmanjiri
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, Prague, 166 28, Czech Republic
| | - Chokkakula L P Pavithra
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Kandi, Telangana, 502285, India
| | - Xiaojian Wang
- Centre for 3D Printing Materials and Additive Manufacturing Technology, Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Syed H Masood
- School of Engineering, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Victoria, Hawthorn, 3122, Australia
| | - Suhash Ranjan Dey
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Kandi, Telangana, 502285, India
| | - James Wang
- School of Engineering, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Victoria, Hawthorn, 3122, Australia
| |
Collapse
|
25
|
Cui X, Li J, Hartanto Y, Durham M, Tang J, Zhang H, Hooper G, Lim K, Woodfield T. Advances in Extrusion 3D Bioprinting: A Focus on Multicomponent Hydrogel-Based Bioinks. Adv Healthc Mater 2020; 9:e1901648. [PMID: 32352649 DOI: 10.1002/adhm.201901648] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/14/2020] [Accepted: 03/17/2020] [Indexed: 12/18/2022]
Abstract
3D bioprinting involves the combination of 3D printing technologies with cells, growth factors and biomaterials, and has been considered as one of the most advanced tools for tissue engineering and regenerative medicine (TERM). However, despite multiple breakthroughs, it is evident that numerous challenges need to be overcome before 3D bioprinting will eventually become a clinical solution for a variety of TERM applications. To produce a 3D structure that is biologically functional, cell-laden bioinks must be optimized to meet certain key characteristics including rheological properties, physico-mechanical properties, and biofunctionality; a difficult task for a single component bioink especially for extrusion based bioprinting. As such, more recent research has been centred on multicomponent bioinks consisting of a combination of two or more biomaterials to improve printability, shape fidelity and biofunctionality. In this article, multicomponent hydrogel-based bioink systems are systemically reviewed based on the inherent nature of the bioink (natural or synthetic hydrogels), including the most current examples demonstrating properties and advances in application of multicomponent bioinks, specifically for extrusion based 3D bioprinting. This review article will assist researchers in the field in identifying the most suitable bioink based on their requirements, as well as pinpointing current unmet challenges in the field.
Collapse
Affiliation(s)
- Xiaolin Cui
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
- Medical Technologies Centre of Research Excellence, Auckland, 1142, New Zealand
| | - Jun Li
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Yusak Hartanto
- Department of Chemical Engineering, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Mitchell Durham
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Junnan Tang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Hu Zhang
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Gary Hooper
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
- Medical Technologies Centre of Research Excellence, Auckland, 1142, New Zealand
| | - Khoon Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
- Medical Technologies Centre of Research Excellence, Auckland, 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, 1142, New Zealand
| | - Tim Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
- Medical Technologies Centre of Research Excellence, Auckland, 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, 1142, New Zealand
| |
Collapse
|
26
|
Cheng Z, Xigong L, Weiyi D, Jingen H, Shuo W, Xiangjin L, Junsong W. Potential use of 3D-printed graphene oxide scaffold for construction of the cartilage layer. J Nanobiotechnology 2020; 18:97. [PMID: 32664992 PMCID: PMC7362511 DOI: 10.1186/s12951-020-00655-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/08/2020] [Indexed: 01/08/2023] Open
Abstract
Background Three-dimensional (3D) printing involves the layering of seed cells, biologically compatible scaffolds, and biological activity factors to precisely recapitulate a biological tissue. Graphene oxide (GO), a type of micro material, has been utilized as a small molecule-transport vehicle. With the proliferation of GO, the biocompatibility of chondrocytes in a microenvironment constructed by 3D printed scaffolds and GO is innovative. Accordingly, we speculate that, as a type of micro material, GO can be used with 3D scaffolds for a uniform distribution in the cartilage layer. Results A qualitative analysis of the chondrocyte-proliferation potential revealed that the culture of 3D printing with a 10% GO scaffold was higher than that of the other groups. Meanwhile, the progress of cell apoptosis was activated. Through scanning electron microscopy, immunofluorescence, and in vivo research, we observed that the newborn cartilage matrix extended along the border of the cartilage and scaffold and matured. After an analysis with immunohistochemical staining with aggrecan and collagen I, the cartilage following the 3D-printed scaffold was thinner than that of the 3D-printed GO scaffold. Furthermore, the collagen I of the cartilage expression in treatment with the GO scaffold was significant from week 2 to 6. Conclusions The findings indicate that a 3D-printed GO scaffold can potentially be utilized for the construction of a cartilage matrix. However, the optimum concentration of GO requires further research and discussion.
Collapse
Affiliation(s)
- Zhong Cheng
- Department of Orthopedic, First Affiliated Hospital, College of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, People's Republic of China.,The Sport Medicine Center of the First Affiliated Hospital, College of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, People's Republic of China
| | - Li Xigong
- Department of Orthopedic, First Affiliated Hospital, College of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, People's Republic of China
| | - Diao Weiyi
- The Sport Medicine Center of the First Affiliated Hospital, College of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, People's Republic of China
| | - Hu Jingen
- Department of Orthopedic, First Affiliated Hospital, College of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, People's Republic of China
| | - Wang Shuo
- Department of Orthopedic, First Affiliated Hospital, College of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, People's Republic of China
| | - Lin Xiangjin
- The Sport Medicine Center of the First Affiliated Hospital, College of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, People's Republic of China
| | - Wu Junsong
- Department of Orthopedic, First Affiliated Hospital, College of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, People's Republic of China. .,The Sport Medicine Center of the First Affiliated Hospital, College of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, People's Republic of China.
| |
Collapse
|
27
|
Mobaraki M, Ghaffari M, Yazdanpanah A, Luo Y, Mills D. Bioinks and bioprinting: A focused review. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.bprint.2020.e00080] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
28
|
Setayeshmehr M, Esfandiari E, Rafieinia M, Hashemibeni B, Taheri-Kafrani A, Samadikuchaksaraei A, Kaplan DL, Moroni L, Joghataei MT. Hybrid and Composite Scaffolds Based on Extracellular Matrices for Cartilage Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:202-224. [PMID: 30648478 DOI: 10.1089/ten.teb.2018.0245] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
IMPACT STATEMENT Scaffolds fabricated from extracellular matrix (ECM) derivatives are composed of conducive structures for cell attachment, proliferation, and differentiation, but generally do not have proper mechanical properties and load-bearing capacity. In contrast, scaffolds based on synthetic biomaterials demonstrate appropriate mechanical strength, but the absence of desirable biological properties is one of their main disadvantages. To integrate mechanical strength and biological cues, these ECM derivatives can be conjugated with synthetic biomaterials. Hence, hybrid scaffolds comprising both advantages of synthetic polymers and ECM derivatives can be considered a robust vehicle for tissue engineering applications.
Collapse
Affiliation(s)
- Mohsen Setayeshmehr
- 1 Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.,2 Biomaterials Nanotechnology and Tissue Engineering Group, Department of Advanced Medical Technology, Isfahan University of Medical Sciences, Isfahan, Iran.,3 MERLN Institute for Technology Inspired Regenerative Medicine, Complex Tissue Regeneration, Maastricht University, Maastricht, The Netherlands
| | - Ebrahim Esfandiari
- 4 Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Rafieinia
- 2 Biomaterials Nanotechnology and Tissue Engineering Group, Department of Advanced Medical Technology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Batool Hashemibeni
- 4 Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Asghar Taheri-Kafrani
- 5 Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Ali Samadikuchaksaraei
- 1 Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.,6 Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - David L Kaplan
- 7 Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Lorenzo Moroni
- 3 MERLN Institute for Technology Inspired Regenerative Medicine, Complex Tissue Regeneration, Maastricht University, Maastricht, The Netherlands.,8 CNR Nanotec-Institute of Nanotechnology, c/o Campus Ecotekne, Università del Salento, Lecce, Italy
| | - Mohammad T Joghataei
- 1 Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.,6 Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
29
|
Advances in bioprinting using additive manufacturing. Eur J Pharm Sci 2019; 143:105167. [PMID: 31778785 DOI: 10.1016/j.ejps.2019.105167] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 01/27/2023]
Abstract
Since its conception in the 1980's, several advances in the field of additive manufacturing have led to exploration of alternate as well as combination biomaterials. These progresses have directed the use of 3D printing in wider applications such as printing of dermal layers, cartilage, bone defects, and surgical implants. Furthermore, the incorporation of live and functional cells with or atop biomaterials has laid the foundation for its use in tissue engineering. The purpose of this review is to summarize the advances in 3D printing and bioprinting of several types of tissues such as skin, cartilage, bones, and cardiac valves. This review will address the current 3D technologies used in tissue construction and study the biomaterials being investigated. There are several requirements that need to be addressed, in order to reconstruct functional tissue such as mechanical strength, porosity of the replicate and cellular incorporation. Researchers have focused their studies to answer questions regarding these requirements.
Collapse
|
30
|
Amin K, Moscalu R, Imere A, Murphy R, Barr S, Tan Y, Wong R, Sorooshian P, Zhang F, Stone J, Fildes J, Reid A, Wong J. The future application of nanomedicine and biomimicry in plastic and reconstructive surgery. Nanomedicine (Lond) 2019; 14:2679-2696. [DOI: 10.2217/nnm-2019-0119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Plastic surgery encompasses a broad spectrum of reconstructive challenges and prides itself upon developing and adopting new innovations. Practice has transitioned from microsurgery to supermicrosurgery with a possible future role in even smaller surgical frontiers. Exploiting materials on a nanoscale has enabled better visualization and enhancement of biological processes toward better wound healing, tumor identification and viability of tissues, all cornerstones of plastic surgery practice. Recent advances in nanomedicine and biomimicry herald further reconstructive progress facilitating soft and hard tissue, nerve and vascular engineering. These lay the foundation for improved biocompatibility and tissue integration by the optimization of engineered implants or tissues. This review will broadly examine each of these technologies, highlighting areas of progress that reconstructive surgeons may not be familiar with, which could see adoption into our armamentarium in the not-so-distant future.
Collapse
Affiliation(s)
- Kavit Amin
- Blond McIndoe Laboratories, Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Manchester Collaborative Centre for Inflammation Research (MCCIR), Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- The Transplant Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Roxana Moscalu
- Blond McIndoe Laboratories, Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Angela Imere
- Blond McIndoe Laboratories, Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Department of Materials, School of Natural Sciences, Faculty of Science & Engineering Research Institutes, The University of Manchester, MSS Tower, Manchester, UK
| | - Ralph Murphy
- Blond McIndoe Laboratories, Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Simon Barr
- Blond McIndoe Laboratories, Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Youri Tan
- Blond McIndoe Laboratories, Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Richard Wong
- Blond McIndoe Laboratories, Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Parviz Sorooshian
- Blond McIndoe Laboratories, Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Fei Zhang
- Blond McIndoe Laboratories, Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Department of Materials, School of Natural Sciences, Faculty of Science & Engineering Research Institutes, The University of Manchester, MSS Tower, Manchester, UK
| | - John Stone
- Manchester Collaborative Centre for Inflammation Research (MCCIR), Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- The Transplant Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - James Fildes
- Manchester Collaborative Centre for Inflammation Research (MCCIR), Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- The Transplant Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Adam Reid
- Blond McIndoe Laboratories, Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Jason Wong
- Blond McIndoe Laboratories, Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
31
|
Chiu YC, Shie MY, Lin YH, Lee AKX, Chen YW. Effect of Strontium Substitution on the Physicochemical Properties and Bone Regeneration Potential of 3D Printed Calcium Silicate Scaffolds. Int J Mol Sci 2019; 20:E2729. [PMID: 31163656 PMCID: PMC6600364 DOI: 10.3390/ijms20112729] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/02/2019] [Accepted: 06/02/2019] [Indexed: 12/18/2022] Open
Abstract
In this study, we synthesized strontium-contained calcium silicate (SrCS) powder and fabricated SrCS scaffolds with controlled precise structures using 3D printing techniques. SrCS scaffolds were shown to possess increased mechanical properties as compared to calcium silicate (CS) scaffolds. Our results showed that SrCS scaffolds had uniform interconnected macropores (~500 µm) with a compressive strength 2-times higher than that of CS scaffolds. The biological behaviors of SrCS scaffolds were assessed using the following characteristics: apatite-precipitating ability, cytocompatibility, proliferation, and osteogenic differentiation of human mesenchymal stem cells (MSCs). With CS scaffolds as controls, our results indicated that SrCS scaffolds demonstrated good apatite-forming bioactivity with sustained release of Si and Sr ions. The in vitro tests demonstrated that SrCS scaffolds possessed excellent biocompatibility which in turn stimulated adhesion, proliferation, and differentiation of MSCs. In addition, the SrCS scaffolds were able to enhance MSCs synthesis of osteoprotegerin (OPG) and suppress macrophage colony-stimulating factor (M-CSF) thus disrupting normal bone homeostasis which led to enhanced bone formation over bone resorption. Implanted SrCS scaffolds were able to promote new blood vessel growth and new bone regeneration within 4 weeks after implantation in critical-sized rabbit femur defects. Therefore, it was shown that 3D printed SrCS scaffolds with specific controllable structures can be fabricated and SrCS scaffolds had enhanced mechanical property and osteogenesis behavior which makes it a suitable potential candidate for bone regeneration.
Collapse
Affiliation(s)
- Yung-Cheng Chiu
- School of Medicine, China Medical University, Taichung 40447, Taiwan.
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung 40447, Taiwan.
| | - Ming-You Shie
- School of Dentistry, China Medical University, Taichung 40447, Taiwan.
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung 40447, Taiwan.
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 40447, Taiwan.
| | - Yen-Hong Lin
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung 40447, Taiwan.
- The Ph.D. Program for Medical Engineering and Rehabilitation Science, China Medical University, Taichung 40447, Taiwan.
| | - Alvin Kai-Xing Lee
- School of Medicine, China Medical University, Taichung 40447, Taiwan.
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung 40447, Taiwan.
| | - Yi-Wen Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40447, Taiwan.
- 3D Printing Medical Research Institute, Asia University, Taichung 40447, Taiwan.
| |
Collapse
|
32
|
Martín AR, Patel JM, Zlotnick HM, Carey JL, Mauck RL. Emerging therapies for cartilage regeneration in currently excluded 'red knee' populations. NPJ Regen Med 2019; 4:12. [PMID: 31231546 PMCID: PMC6542813 DOI: 10.1038/s41536-019-0074-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 04/29/2019] [Indexed: 12/13/2022] Open
Abstract
The field of articular cartilage repair has made significant advances in recent decades; yet current therapies are generally not evaluated or tested, at the time of pivotal trial, in patients with a variety of common comorbidities. To that end, we systematically reviewed cartilage repair clinical trials to identify common exclusion criteria and reviewed the literature to identify emerging regenerative approaches that are poised to overcome these current exclusion criteria. The term “knee cartilage repair” was searched on clinicaltrials.gov. Of the 60 trials identified on initial search, 33 were further examined to extract exclusion criteria. Criteria excluded by more than half of the trials were identified in order to focus discussion on emerging regenerative strategies that might address these concerns. These criteria included age (<18 or >55 years old), small defects (<1 cm2), large defects (>8 cm2), multiple defect (>2 lesions), BMI >35, meniscectomy (>50%), bilateral knee pathology, ligamentous instability, arthritis, malalignment, prior repair, kissing lesions, neurologic disease of lower extremities, inflammation, infection, endocrine or metabolic disease, drug or alcohol abuse, pregnancy, and history of cancer. Finally, we describe emerging tissue engineering and regenerative approaches that might foster cartilage repair in these challenging environments. The identified criteria exclude a majority of the affected population from treatment, and thus greater focus must be placed on these emerging cartilage regeneration techniques to treat patients with the challenging “red knee”.
Collapse
Affiliation(s)
- Anthony R Martín
- 1McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA.,2Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104 USA
| | - Jay M Patel
- 1McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA.,2Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104 USA
| | - Hannah M Zlotnick
- 1McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA.,2Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104 USA.,3Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - James L Carey
- 1McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Robert L Mauck
- 1McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA.,2Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104 USA.,3Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
33
|
Tang C, Holt BD, Wright ZM, Arnold AM, Moy AC, Sydlik SA. Injectable amine functionalized graphene and chondroitin sulfate hydrogel with potential for cartilage regeneration. J Mater Chem B 2019; 7:2442-2453. [PMID: 32255121 DOI: 10.1039/c8tb02967a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Damaged cartilage does not readily heal and often requires surgical intervention that only modestly improves outcomes. A synthetic material that could be injected and covalently crosslinked in situ to form a bioactive, mechanically robust scaffold that promotes stem cell chondrogenic differentiation holds promise for next-generation treatment of cartilage lesions. Here, Johnson-Claisen rearrangement chemistry was performed on graphene oxide (GO) to enable functionalization with a primary amine covalently bound to the graphenic backbone through a chemically stable linker. The primary amines are used to form covalent crosslinks with chondroitin sulfate, an important component of cartilage that promotes regeneration, to form a hydrogel (EDAG-CS). The EDAG-CS system gels in situ within 10 min, and the graphenic component imparts improved mechanical properties, including stiffness (320% increase) and toughness (70% increase). EDAG-CS hydrogels are highly porous, resistant to degradation, and enable the growth of human mesenchymal stem cells and their deposition of collagen matrix. This system has potential to improve clinical outcomes of patients with cartilage damage.
Collapse
Affiliation(s)
- Caoxin Tang
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Wang W, Junior JRP, Nalesso PRL, Musson D, Cornish J, Mendonça F, Caetano GF, Bártolo P. Engineered 3D printed poly(ɛ-caprolactone)/graphene scaffolds for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:759-770. [PMID: 30948113 DOI: 10.1016/j.msec.2019.03.047] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/06/2019] [Accepted: 03/13/2019] [Indexed: 12/11/2022]
Abstract
Scaffolds are important physical substrates for cell attachment, proliferation and differentiation. Multiple factors could influence the optimal design of scaffolds for a specific tissue, such as the geometry, the materials used to modulate cell proliferation and differentiation, its biodegradability and biocompatibility. The optimal design of a scaffold for a specific tissue strongly depends on both materials and manufacturing processes. Previous studies of human adipose-derived stem cells (hADSCs) seeded on poly(ε-caprolactone) (PCL)/graphene scaffolds have proved that the addition of small concentrations of graphene to PCL scaffolds improves cell proliferation. Based on such results, this paper further investigates, for the first time, both in vitro and in vivo characteristics of 3D printed PCL/graphene scaffolds. Scaffolds were evaluated from morphological, biological and short term immune response points of view. Results show that the produced scaffolds induce an acceptable level of immune response, suggesting high potential for in vivo applications. Finally, the scaffolds were used to treat a rat calvaria critical size defect with and without applying micro electrical stimulation (10 μA). Quantification of connective and new bone tissue formation and the levels of ALP, RANK, RANKL, OPG were considered. Results show that the use of scaffolds containing graphene and electrical stimulation seems to increase cell migration and cell influx, leading to new tissue formation, well-organized tissue deposition and bone remodelling.
Collapse
Affiliation(s)
- Weiguang Wang
- School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL, UK
| | | | - Paulo Roberto Lopes Nalesso
- Graduate Program in Biomedical Sciences, Hermínio Ometto University Centre, Araras 13607339, Sao Paulo, Brazil
| | - David Musson
- Bone and Joint Research Group, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Jillian Cornish
- Bone and Joint Research Group, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Fernanda Mendonça
- Graduate Program in Biomedical Sciences, Hermínio Ometto University Centre, Araras 13607339, Sao Paulo, Brazil
| | - Guilherme Ferreira Caetano
- Graduate Program in Biomedical Sciences, Hermínio Ometto University Centre, Araras 13607339, Sao Paulo, Brazil
| | - Paulo Bártolo
- School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
35
|
Li Q, Wen J, Liu C, Jia Y, Wu Y, Shan Y, Qian Z, Liao J. Graphene-Nanoparticle-Based Self-Healing Hydrogel in Preventing Postoperative Recurrence of Breast Cancer. ACS Biomater Sci Eng 2019; 5:768-779. [PMID: 33405838 DOI: 10.1021/acsbiomaterials.8b01475] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrogel is an ideal scaffold in the fields of regenerative medicine and tumor therapy because of its biomimetic ability to modulate tissue microenvironment. Herein, we fabricated a new kind of self-healing hydrogel based on graphene nanoparticle and expanded its application in postoperative recurrence of breast cancer. First, a facile method was used to prepare self-healing hydrogel via Schiff-base linkage, which composed of chondroitin sulfate multialdehyde (CSMA), branched polyethylenimine (BPEI) and BPEI conjugated graphene (BPEI-GO). BPEI-GO was doped in the network and participated in Schiff-base reaction and stabilized the structure, as well as provided sustained drug delivery, and near-infrared laser (NIR)-triggered photothermal effect. The hydrogels exhibited excellent self-healing (∼100%) and improved mechanical properties (7,000 Pa). Further, in vitro breast cancer cell inhibition study showed enhanced cell killing efficiency with synergistic chemo-photothermal therapy. In the breast cancer postoperative recurrence prevention mice model, we found that combination of Doxorubicin (DOX) and photothermal therapy in CSMA/BPEI/BPEI-GO hydrogels group reduced tumor recurrence to 33.3%, compared with 66.7% for DOX-loaded hydrogels without NIR irradiation, 66.7% for local administration of free DOX, 100% for hydrogels with NIR irradiation, blank hydrogels, and blank control. This study suggests the great potential of CSMA/BPEI/BPEI-GO hydrogels for postoperative recurrence prevention of breast cancer.
Collapse
|
36
|
Kao CT, Chen YJ, Ng HY, Lee AKX, Huang TH, Lin TF, Hsu TT. Surface Modification of Calcium Silicate via Mussel-Inspired Polydopamine and Effective Adsorption of Extracellular Matrix to Promote Osteogenesis Differentiation for Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1664. [PMID: 30205589 PMCID: PMC6165256 DOI: 10.3390/ma11091664] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/15/2018] [Accepted: 09/05/2018] [Indexed: 12/30/2022]
Abstract
Calcium silicate-based cement has garnered huge interest in recent years, due to its versatility and potential in mass fabrication of a variety of bioceramics. For this study, the main objective was to fabricate functionalized calcium silicate (CS) powder integrated with a simple bio-inspired surface modification using polydopamine (PDA), to regulate cellular behaviors such as cellular adhesion, and subsequently cell differentiation and proliferation. For this study, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) techniques were used to analyze the chemical compositions and observe the surface characteristics of our PDA coated CS cements. Such modifications were found to enhance Wharton Jelly's mesenchymal stem cells (WJMSC) in various ways. Firstly, PDA-coated CS cements were found to significantly enhance cell adhesion with higher expressions of cell adhesion markers, such as focal adhesion kinase and integrins. This was further supported by morphology analysis of the cells. This enhanced cell adhesion, in turn, led to significantly higher secretion of extracellular matrix (ECM) proteins, such as collagen I and fibronectin, which directly promoted cell attachments and proliferation. In our osteogenesis assays, it was found that secretion and expression of osteogenesis related genes and proteins were significantly higher and were dependent on the PDA content. Therefore, these results demonstrated that such simple bio-inspired modification techniques of synthetic degradable CS cements can be applied as a future modification, to modify and convert inert surfaces of synthetic bone grafts to enhance and modulate the cell behaviors of WJMSCs. This in turn can be used as a potential alternative for further bioengineering research.
Collapse
Affiliation(s)
- Chia-Tze Kao
- School of Dentistry, Chung Shan Medical University, Taichung City 40447, Taiwan.
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung City 40447, Taiwan.
| | - Yen-Jen Chen
- School of Medicine, China Medical University, Taichung City 40447, Taiwan.
- Department of Orthopedics, China Medical University Hospital, Taichung City 40447, Taiwan.
| | - Hooi-Yee Ng
- School of Medicine, China Medical University, Taichung City 40447, Taiwan.
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung City 40447, Taiwan.
| | - Alvin Kai-Xing Lee
- School of Medicine, China Medical University, Taichung City 40447, Taiwan.
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung City 40447, Taiwan.
| | - Tsui-Hsien Huang
- School of Dentistry, Chung Shan Medical University, Taichung City 40447, Taiwan.
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung City 40447, Taiwan.
| | - Tz-Feng Lin
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung City 40447, Taiwan.
| | - Tuan-Ti Hsu
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung City 40447, Taiwan.
| |
Collapse
|
37
|
Amărandi RM, Becheru DF, Vlăsceanu GM, Ioniță M, Burns JS. Advantages of Graphene Biosensors for Human Stem Cell Therapy Potency Assays. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1676851. [PMID: 30003089 PMCID: PMC5996421 DOI: 10.1155/2018/1676851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/22/2018] [Indexed: 12/11/2022]
Abstract
Regenerative medicine is challenged by the need to conform to rigorous guidelines for establishing safe and effective development and translation of stem cell-based therapies. Counteracting widespread concerns regarding unproven cell therapies, stringent cell-based assays seek not only to avoid harm but also to enhance quality and efficacy. Potency indicates that the cells are functionally fit for purpose before they are administered to the patient. It is a paramount quantitative critical quality attribute serving as a decisive release criterion. Given a broad range of stem cell types and therapeutic contexts the potency assay often comprises one of the most demanding hurdles for release of a cell therapy medicinal product. With need for improved biomarker assessment and expedited measurement, recent advances in graphene-based biosensors suggest that they are poised to be valuable platforms for accelerating potency assay development. Among several potential advantages, they offer versatility for sensitive measurement of a broad range of potential biomarker types, cell biocompatibility for direct measurement, and small sample sufficiency, plus ease of use and point-of-care applicability.
Collapse
Affiliation(s)
- Roxana-Maria Amărandi
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
| | - Diana F. Becheru
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
| | - George M. Vlăsceanu
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
| | - Mariana Ioniță
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- Advanced Polymer Materials Group, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
| | - Jorge S. Burns
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- Department of Medical and Surgical Sciences of Children and Adults, University Hospital of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|