1
|
Fang Q, Mao G, Wang L, Gu Y, Song R, Gu X, Lu S, Li X. Synergetic approaches of fucoidan and trabectedin complex coated PLGA nanoparticles effectively suppresses proliferation and induce apoptosis for the treatment on non-small cell lung cancer. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1323-1342. [PMID: 38530922 DOI: 10.1080/09205063.2024.2328421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/05/2024] [Indexed: 03/28/2024]
Abstract
Traditional methods of treating lung cancer have not been very effective, contributing to the disease's high incidence and death rate. As a result, Fn/Tn-PLGA NPs, a novel directed fucoidan and trabectedin complex loaded PLGA nanoparticle, were produced to investigate the role of developing therapeutic strategies for NSCLC and A549 cell lines. Quantitative real-time polymerase chain reaction was used to examine protein expression and mRNA expression, respectively. Protein activity was knocked down using specific inhibitors and short disrupting RNA transfection. Lastly, cancer cell lines H1299 and A549 were subjected to an in vitro cytotoxicity experiment. Commercial assays were used to assess the levels of cell viability, ROS and proliferation found that Fn/Tn-PLGA NPs effectively killed lung cancer cells. To examine cell death, annexin flow cytometry was employed. In addition, a scratch-wound assay was conducted to assess the migration effects of Fn/Tn-PLGA NPs in a laboratory setting. Finally, PLGA NPs covered with a mix of fucoidan and trabectedin could be a good vehicle for targeting cancerous tissues with chemotherapeutic drugs.
Collapse
Affiliation(s)
- Qingliang Fang
- Department of Radiation Oncology, LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangmin Mao
- Department of Radiation Oncology, LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Wang
- Department of Radiation Oncology, LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yukai Gu
- Department of Radiation Oncology, LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Renjie Song
- Department of Radiation Oncology, LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xianglian Gu
- Department of Radiation Oncology, LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Song Lu
- Department of Radiation Oncology, LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoli Li
- Department of Radiation Oncology, LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
A H, Sofini SPS, Balasubramanian D, Girigoswami A, Girigoswami K. Biomedical applications of natural and synthetic polymer based nanocomposites. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:269-294. [PMID: 37962432 DOI: 10.1080/09205063.2023.2283910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/05/2023] [Indexed: 11/15/2023]
Abstract
Various nanomaterials have been studied for their biomedical application in recent years. Among them, nanocomposites have a prominent medical application in the prevention, diagnosis, and treatment of various diseases. Nanocomposites are made up of polymeric matrix layers composed of synthetic or natural polymers like chitosan, polyethylene glycol, etc. Polymer nanocomposites are inorganic nanoparticles dispersed in a polymer matrix. There are two types of polymeric nanocomposites which include natural and synthetic polymer nanocomposites. These nanocomposites have various biomedical applications, such as medical implants, wound healing, wound dressing, bone repair and replacement, and dental filling. Polymeric nanocomposites have a wide range of biomedical applications due to their high stability, non-immunogenic nature, sustained drug delivery, non-toxic, and can escape reticuloendothelial system uptake along with drug bioavailability improvement. In this review, we have discussed various types of natural and synthetic polymer nanocomposites and their biomedical applications.
Collapse
Affiliation(s)
- Harini A
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Sharon P S Sofini
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Deepika Balasubramanian
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Agnishwar Girigoswami
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Koyeli Girigoswami
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| |
Collapse
|
3
|
Mondal A, Nayak AK, Chakraborty P, Banerjee S, Nandy BC. Natural Polymeric Nanobiocomposites for Anti-Cancer Drug Delivery Therapeutics: A Recent Update. Pharmaceutics 2023; 15:2064. [PMID: 37631276 PMCID: PMC10459560 DOI: 10.3390/pharmaceutics15082064] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer is one of the most common lethal diseases and the leading cause of mortality worldwide. Effective cancer treatment is a global problem, and subsequent advancements in nanomedicine are useful as substitute management for anti-cancer agents. Nanotechnology, which is gaining popularity, enables fast-expanding delivery methods in science for curing diseases in a site-specific approach, utilizing natural bioactive substances because several studies have established that natural plant-based bioactive compounds can improve the effectiveness of chemotherapy. Bioactive, in combination with nanotechnology, is an exceptionally alluring and recent development in the fight against cancer. Along with their nutritional advantages, natural bioactive chemicals may be used as chemotherapeutic medications to manage cancer. Alginate, starch, xanthan gum, pectin, guar gum, hyaluronic acid, gelatin, albumin, collagen, cellulose, chitosan, and other biopolymers have been employed successfully in the delivery of medicinal products to particular sites. Due to their biodegradability, natural polymeric nanobiocomposites have garnered much interest in developing novel anti-cancer drug delivery methods. There are several techniques to create biopolymer-based nanoparticle systems. However, these systems must be created in an affordable and environmentally sustainable way to be more readily available, selective, and less hazardous to increase treatment effectiveness. Thus, an extensive comprehension of the various facets and recent developments in natural polymeric nanobiocomposites utilized to deliver anti-cancer drugs is imperative. The present article provides an overview of the latest research and developments in natural polymeric nanobiocomposites, particularly emphasizing their applications in the controlled and targeted delivery of anti-cancer drugs.
Collapse
Affiliation(s)
- Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha 743 234, India
| | - Amit Kumar Nayak
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar 751 003, India;
| | - Prithviraj Chakraborty
- Department of Pharmaceutics, Royal School of Pharmacy, The Assam Royal Global University, Guwahati 781 035, India;
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol 713 301, India;
| | - Bankim Chandra Nandy
- Department of Pharmaceutics, M.R. College of Pharmaceutical Sciences and Research, Balisha 743 234, India;
| |
Collapse
|
4
|
Hormone receptor binding, selectivity and cytotoxicity of steroid D-homo lactone loaded chitosan nanoparticles for the treatment of breast and prostate cancer cells. Colloids Surf B Biointerfaces 2022; 216:112597. [PMID: 35636320 DOI: 10.1016/j.colsurfb.2022.112597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 11/23/2022]
Abstract
Chemically modified steroids have a long history as anti-neoplastic drugs. Incorporation of a lactone moiety in the steroid nucleus, as in previously obtained 3β-acetoxy-17-oxa-17a-homoandrost-5-en-16-one (A) and 3β-hidroxy-17-oxa-17a-homoandrost-5-en-16-one (B), often results in enhanced anticancer properties. In this work, chitosan-based (Ch) nanoparticles were created and loaded with potent anticancer steroidal compounds, A and B. Changes to hormone receptor binding and cytotoxicity were then measured. In agreement with our previous results for A and B, A- and B-loaded Ch displayed cytotoxic properties against cancer cell lines. Both A-Ch and B-Ch showed activity toward estrogen negative breast cancer (MDA-MB-231) and androgen negative prostate cancer cell lines (PC-3). Greater selectivity toward cancer cells versus healthy lung fibroblast (MRC-5) was observed for B-Ch particles. Cell viability and cytotoxicity measurements after a recovery period indicate more robust recovery of healthy cells versus malignant cells. Compounds A and B or their Ch-encapsulated forms were shown to have negligible affinity for the ligand binding domain of estrogen receptor β or the androgen receptor in a fluorescent yeast screen, suggesting a lack of estrogenicity and androgenicity. Steroid-loaded chitosan nanoparticles display strong cytotoxicity towards MDA-MB-231 and PC-3 with a lack of hormone activity, indicating their safety and efficacy.
Collapse
|
5
|
Liu X, Wu Y, Zhao X, Wang Z. Fabrication and applications of bioactive chitosan-based organic-inorganic hybrid materials: A review. Carbohydr Polym 2021; 267:118179. [PMID: 34119147 DOI: 10.1016/j.carbpol.2021.118179] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/03/2021] [Accepted: 04/30/2021] [Indexed: 01/16/2023]
Abstract
Organic-inorganic hybrid materials like bone, shells, and teeth can be found in nature, which are usually composed of biomacromolecules and nanoscale inorganic ingredients. Synergy of organic-inorganic components in hybrid materials render them outstanding and versatile performance. Chitosan is commonly used organic materials in bionic hybrid materials since its bioactive properties and could be controllable tailored by various means to meet complex conditions in different applications. Among these fabrication means, hybridization was favored for its convenience and efficiency. This review discusses three kinds of chitosan-based hybrid materials: hybridized with hydroxyapatite, calcium carbonate, and clay respectively, which are the representative of phosphate, carbonate, and hydrous aluminosilicates. Here, we reported the latest developments of the preparation methods, composition, structure and applications of these bioactive hybrid materials, especially in the biomedical field. Despite the great progress was made in bioactive organic-inorganic hybrid materials based on chitosan, some challenges and specific directions are still proposed for future development in this review.
Collapse
Affiliation(s)
- Xiaoyang Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuxuan Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xinchen Zhao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
6
|
Ristovski Trifunović J, Žižak Ž, Marković S, Janković N, Ignjatović N. Chitosan nanobeads loaded with Biginelli hybrids as cell-selective toxicity systems with a homogeneous distribution of the cell cycle in cancer treatment. RSC Adv 2020; 10:41542-41550. [PMID: 35516580 PMCID: PMC9057800 DOI: 10.1039/d0ra08085c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/09/2020] [Indexed: 11/22/2022] Open
Abstract
Tetrahydropyrimidines are a class of azaheterocycles, also called Biginelli hybrids (obtained from the Biginelli reaction), that have attracted an enormous interest in the medicinal chemistry community in recent years, due to a broad biological activity, such as anticancer, antiviral, anti-inflammatory, antidiabetic, antituberculosis activities, etc. According to SciFinder®, more than 70 000 different Biginelli-like compounds have been covered in publications. However, although the Biginelli reaction can yield a large number of compounds with a broad range of activities, none of them have been captured in a carrier. In this study, chitosan-based (Ch) nanoparticles (NPs) containing three different molecules (Biginelli hybrids) were developed and tested for the first time as simple and promising vehicles for anticancer Biginelli-based drugs. The key features of NPs, such as size, surface morphology, drug encapsulation efficiency, and in vitro release were systematically investigated. Rather weak cell selectivity of pure Biginelli hybrids (A–C) to selected cancer cell lines has improved and this has been accompanied with two-to-four times stronger cytotoxic effect of A–C loaded Ch NPs, with a triple reduction in toxicity to healthy cells (MRC-5). It has been observed that the examined NPs induce apoptosis. The cell cycle analysis has confirmed the influence of A-loaded Ch (A-Ch), B-loaded Ch (B-Ch), and C-loaded Ch (C-Ch) on the cell cycle distribution, which was homogenously affected. This is the difference with regard to the effect of A, B, and C on the cell cycle. It has been established that the increased selectivity and antitumor activity of NPs are related to the presence of the carrier. Chitosan nanoparticles containing tetrahydropyrimidines were developed and tested for the first time as simple and promising vehicles for anticancer Biginelli-based drugs.![]()
Collapse
Affiliation(s)
- Jovana Ristovski Trifunović
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad Serbia
| | - Željko Žižak
- Institute of Oncology and Radiology of Serbia Pasterova 14 11000 Belgrade Serbia
| | - Smilja Marković
- Institute of Technical Sciences of the Serbian Academy of Science and Arts Knez Mihailova 35/IV, P.O. Box 377 11000 Belgrade Serbia
| | - Nenad Janković
- Institute for Information Technologies Kragujevac, Department of Science, University of Kragujevac Jovana Cvijića bb 34000 Kragujevac Serbia
| | - Nenad Ignjatović
- Institute of Technical Sciences of the Serbian Academy of Science and Arts Knez Mihailova 35/IV, P.O. Box 377 11000 Belgrade Serbia
| |
Collapse
|