1
|
Li Z, Kovács P, Friec AL, Jensen BN, Nygaard JV, Chen M. Mechanical memory based biofabrication of hierarchical elastic cardiac tissue. Biofabrication 2024; 17:015013. [PMID: 39437832 DOI: 10.1088/1758-5090/ad89fd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024]
Abstract
Mimicking the multilayered, anisotropic, elastic structure of cardiac tissues for controlled guidiance of 3D cellular orientation is essential in designing bionic scaffolds for cardiac tissue biofabrication. Here, a hierarchically organized, anisotropic, wavy and conductive polycaprolactone/Au scaffold was created in a facile fashion based on mechanical memory during fabrication. The bionic 3D scaffold shows good biocompatibility, excellent biomimetic mechanical properties that guide myoblast alignment, support the hyperelastic behavior observed in native cardiac muscle tissue, and promote myotube maturation, which holds potential for cardiac muscle engineering and the establishment of anin vitroculture platform for drug screening.
Collapse
Affiliation(s)
- Zhitong Li
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150000, Heilongjiang, People's Republic of China
| | - Panna Kovács
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Alice Le Friec
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | | | - Jens Vinge Nygaard
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Menglin Chen
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Li W, Yin Y, Zhou H, Fan Y, Yang Y, Gao Q, Li P, Gao G, Li J. Recent Advances in Electrospinning Techniques for Precise Medicine. CYBORG AND BIONIC SYSTEMS 2024; 5:0101. [PMID: 38778878 PMCID: PMC11109596 DOI: 10.34133/cbsystems.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/03/2024] [Indexed: 05/25/2024] Open
Abstract
In the realm of precise medicine, the advancement of manufacturing technologies is vital for enhancing the capabilities of medical devices such as nano/microrobots, wearable/implantable biosensors, and organ-on-chip systems, which serve to accurately acquire and analyze patients' physiopathological information and to perform patient-specific therapy. Electrospinning holds great promise in engineering materials and components for advanced medical devices, due to the demonstrated ability to advance the development of nanomaterial science. Nevertheless, challenges such as limited composition variety, uncontrollable fiber orientation, difficulties in incorporating fragile molecules and cells, and low production effectiveness hindered its further application. To overcome these challenges, advanced electrospinning techniques have been explored to manufacture functional composites, orchestrated structures, living constructs, and scale-up fabrication. This review delves into the recent advances of electrospinning techniques and underscores their potential in revolutionizing the field of precise medicine, upon introducing the fundamental information of conventional electrospinning techniques, as well as discussing the current challenges and future perspectives.
Collapse
Affiliation(s)
- Wei Li
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
| | - Yue Yin
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
- Zhengzhou Academy of Intelligent Technology,
Beijing Institute of Technology, Zhengzhou 450040, China
| | - Huaijuan Zhou
- Zhengzhou Academy of Intelligent Technology,
Beijing Institute of Technology, Zhengzhou 450040, China
- Advanced Research Institute of Multidisciplinary Sciences,
Beijing Institute of Technology, Beijing 100081, China
| | - Yingwei Fan
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
| | - Yingting Yang
- Advanced Research Institute of Multidisciplinary Sciences,
Beijing Institute of Technology, Beijing 100081, China
| | - Qiqi Gao
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
| | - Pei Li
- Center for Advanced Biotechnology and Medicine,
Rutgers University, Piscataway, NJ, USA
| | - Ge Gao
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
- Zhengzhou Academy of Intelligent Technology,
Beijing Institute of Technology, Zhengzhou 450040, China
| | - Jinhua Li
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
- Zhengzhou Academy of Intelligent Technology,
Beijing Institute of Technology, Zhengzhou 450040, China
| |
Collapse
|
3
|
Nazari-Vanani R, Vafaiee M, Zamanpour F, Asadian E, Mohammadpour R, Rafii-Tabar H, Sasanpour P. Flexible Triboelectric Nanogenerator for Promoting the Proliferation and Migration of Human Fibroblast Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15773-15782. [PMID: 38526295 DOI: 10.1021/acsami.3c17915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Chronic wound healing is often a prolonged process with the migration and proliferation of fibroblast cells playing crucial roles. Electrical stimulation (ES) has emerged as a promising physical therapy modality to promote these key events. In this study, we address this issue by employing a triboelectric nanogenerator (TENG) as an electrical stimulator for both drug release and the stimulation of fibroblast cells. The flexible TENG with a sandwich structure was fabricated using a PCL nanofibrous layer, Kapton, and silicon rubber. The TENG could be folded to any degree and twisted, and it could return to its original shape when the force was removed. Cultured cells received ES twice and three times daily for 8 days, with a 30 min interval between sessions. By applying current in a safe range and appropriate time (twice daily), fibroblasts demonstrate an accelerated proliferation and migration rate. These observations were confirmed through cell staining. Additionally, in vitro tests demonstrated the TENG's ability to simultaneously provide ES and release vitamin C from the patch. After 2 h, the amount of released drug increased 2 times in comparison to the control group. These findings provide support for the development of a TENG for the treatment of wounds, which underlines the promise of this new technique for developing portable electric stimulation devices.
Collapse
Affiliation(s)
- Razieh Nazari-Vanani
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Sharif University of Technology, Tehran, Iran
| | - Mohaddeseh Vafaiee
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Fahimeh Zamanpour
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Sharif University of Technology, Tehran, Iran
| | - Elham Asadian
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Raheleh Mohammadpour
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Sharif University of Technology, Tehran, Iran
| | - Hashem Rafii-Tabar
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- The Physics Branch of Iran Academy of Sciences, Tehran, Iran
| | - Pezhman Sasanpour
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Nanoscience, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran, Iran
| |
Collapse
|
4
|
Peng C, Yan J, Jiang Y, Wu L, Li M, Fan X. Exploring Cutting-Edge Approaches to Potentiate Mesenchymal Stem Cell and Exosome Therapy for Myocardial Infarction. J Cardiovasc Transl Res 2024; 17:356-375. [PMID: 37819538 DOI: 10.1007/s12265-023-10438-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023]
Abstract
Cardiovascular diseases (CVDs) continue to be a significant global health concern. Many studies have reported promising outcomes from using MSCs and their secreted exosomes in managing various cardiovascular-related diseases like myocardial infarction (MI). MSCs and exosomes have demonstrated considerable potential in promoting regeneration and neovascularization, as well as exerting beneficial effects against apoptosis, remodeling, and inflammation in cases of myocardial infarction. Nonetheless, ensuring the durability and effectiveness of MSCs and exosomes following in vivo transplantation remains a significant concern. Recently, novel methods have emerged to improve their effectiveness and robustness, such as employing preconditioning statuses, modifying MSC and their exosomes, targeted drug delivery with exosomes, biomaterials, and combination therapy. Herein, we summarize the novel approaches that intensify the therapeutic application of MSC and their derived exosomes in treating MI.
Collapse
Affiliation(s)
- Chendong Peng
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jie Yan
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yu'ang Jiang
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Lin Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Cardiology, Peking University First Hospital, Beijing, 100000, China
| | - Miaoling Li
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Xinrong Fan
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
5
|
Handley E, Callanan A. Effects of electrospun fibers containing ascorbic acid on oxidative stress reduction for cardiac tissue engineering. J Appl Polym Sci 2023; 140:e54242. [PMID: 38439767 PMCID: PMC10909520 DOI: 10.1002/app.54242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/17/2023] [Accepted: 05/15/2023] [Indexed: 03/06/2024]
Abstract
Tissue engineering provides promise for regeneration of cardiac tissue following myocardial infarction. However, the harsh microenvironment of the infarct hampers the efficacy of regenerative therapies. Ischemia-reperfusion injury dramatically increases the levels of reactive oxygen species (ROS) within the infarcted area, causing a cascade of further cellular injury. Implantable tissue engineered grafts can target this oxidative stress by delivering pharmaceutical compounds directly into the diseased tissue. Herein, we successfully fabricated electrospun polycaprolactone (PCL) fibers containing varying concentrations of ascorbic acid, a potent antioxidant well known for its ROS-scavenging capabilities. The antioxidant scaffolds displayed significantly improved scavenging of DPPH radicals, superoxide anions and hydroxyl radicals, in a dose dependent manner. Mechanical properties testing indicated that incorporation of ascorbic acid enhanced the strength and Young's modulus of the material, correlating with a moderate but non-significant increase in the crystallinity. Moreover, the scaffolds supported adhesion and maintained survival of human umbilical vein endothelial cells in vitro, indicating good cytocompatibility. These results provide motivation for the use of ascorbic acid-containing fibrous scaffolds to regulate the highly oxidative microenvironment following myocardial infarction.
Collapse
Affiliation(s)
- Ella‐Louise Handley
- Institute for Bioengineering, School of EngineeringUniversity of EdinburghEdinburghUK
| | - Anthony Callanan
- Institute for Bioengineering, School of EngineeringUniversity of EdinburghEdinburghUK
| |
Collapse
|
6
|
Fooladi S, Nematollahi MH, Rabiee N, Iravani S. Bacterial Cellulose-Based Materials: A Perspective on Cardiovascular Tissue Engineering Applications. ACS Biomater Sci Eng 2023. [PMID: 37146213 DOI: 10.1021/acsbiomaterials.3c00300] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Today, a wide variety of bio- and nanomaterials have been deployed for cardiovascular tissue engineering (TE), including polymers, metal oxides, graphene/its derivatives, organometallic complexes/composites based on inorganic-organic components, among others. Despite several advantages of these materials with unique mechanical, biological, and electrical properties, some challenges still remain pertaining to their biocompatibility, cytocompatibility, and possible risk factors (e.g., teratogenicity or carcinogenicity), restricting their future clinical applications. Natural polysaccharide- and protein-based (nano)structures with the benefits of biocompatibility, sustainability, biodegradability, and versatility have been exploited in the field of cardiovascular TE focusing on targeted drug delivery, vascular grafts, engineered cardiac muscle, etc. The usage of these natural biomaterials and their residues offers several advantages in terms of environmental aspects such as alleviating emission of greenhouse gases as well as the production of energy as a biomass consumption output. In TE, the development of biodegradable and biocompatible scaffolds with potentially three-dimensional structures, high porosity, and suitable cellular attachment/adhesion still needs to be comprehensively studied. In this context, bacterial cellulose (BC) with high purity, porosity, crystallinity, unique mechanical properties, biocompatibility, high water retention, and excellent elasticity can be considered as promising candidate for cardiovascular TE. However, several challenges/limitations regarding the absence of antimicrobial factors and degradability along with the low yield of production and extensive cultivation times (in large-scale production) still need to be resolved using suitable hybridization/modification strategies and optimization of conditions. The biocompatibility and bioactivity of BC-based materials along with their thermal, mechanical, and chemical stability are crucial aspects in designing TE scaffolds. Herein, cardiovascular TE applications of BC-based materials are deliberated, with a focus on the most recent advancements, important challenges, and future perspectives. Other biomaterials with cardiovascular TE applications and important roles of green nanotechnology in this field of science are covered to better compare and comprehensively review the subject. The application of BC-based materials and the collective roles of such biomaterials in the assembly of sustainable and natural-based scaffolds for cardiovascular TE are discussed.
Collapse
Affiliation(s)
- Saba Fooladi
- Department of Clinical Biochemistry, Afzalipour Medical School, Kerman University of Medical Sciences, 76169-13555 Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Department of Clinical Biochemistry, Afzalipour Medical School, Kerman University of Medical Sciences, 76169-13555 Kerman, Iran
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, 76169-13555 Kerman, Iran
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia 6150, Australia
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461 Isfahan, Iran
| |
Collapse
|
7
|
Liu S, Xu Z, Hu J, Wu Z, Zheng Y. Preparation and sustained-release properties of poly(lactic acid)/graphene oxide porous biomimetic composite scaffolds loaded with salvianolic acid B. RSC Adv 2022; 12:28867-28877. [PMID: 36329763 PMCID: PMC9585927 DOI: 10.1039/d2ra05371c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/01/2022] [Indexed: 01/24/2023] Open
Abstract
Biomimetic scaffolds loaded with drugs can improve the osteogenesis and neovascularisation of scaffolds. A series of PLA/GO/Sal-B drug-loaded scaffolds was prepared by thermally induced phase separation. The addition of Sal-B increased the diameter of the fibres, but the scaffold showed a porous nanofibrous structure after drug release. X-ray diffraction results showed that the addition of Sal-B did not affect the formation of the nanofibre biomimetic structure of the scaffold. FTIR results indicated a certain interaction between Sal-B and PLA/GO. Water absorption and porosity test results revealed that the scaffolds had good hydrophilicity and appropriate porosity. The addition of Sal-B was also conducive to the formation of sediments possibly due to the good water solubility of Sal-B itself. The prepared scaffolds had good blood compatibility and cytocompatibility, and a small additional amount of Sal-B could significantly promote cell proliferation and alkaline phosphatase activity. Their sustained release performance indicated that the biomimetic scaffolds had controlled the release of Sal-B. The kinetic model showed that the PLA/GO/Sal-B drug-loaded biomimetic scaffolds followed the diffusion mechanism.
Collapse
Affiliation(s)
- Shuqiong Liu
- College of Ecology and Resource Engineering, Wuyi University Wuyishan 354300 People's Republic of China
| | - Zhenyi Xu
- College of Ecology and Resource Engineering, Wuyi University Wuyishan 354300 People's Republic of China
| | - Jiapeng Hu
- College of Ecology and Resource Engineering, Wuyi University Wuyishan 354300 People's Republic of China
| | - Zhenzeng Wu
- College of Ecology and Resource Engineering, Wuyi University Wuyishan 354300 People's Republic of China
| | - Yuying Zheng
- College of Materials Science and Engineering, Fuzhou University Fuzhou 350108 People's Republic of China +86-591-22866524
| |
Collapse
|
8
|
Vijayan AN, Solaimuthu A, Murali P, Gopi J, Y MT, R AP, Korrapati PS. Decorin mediated biomimetic PCL-gelatin nano-framework to impede scarring. Int J Biol Macromol 2022; 219:907-918. [PMID: 35952816 DOI: 10.1016/j.ijbiomac.2022.08.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/05/2022]
Abstract
Scars occur as a result of fibrosis after tissue damage or surgery and reports suggest that excessive Transforming growth factor-β (TGF-β) activity during the process of wound healing leads to progressive fibrosis. Decorin is an extracellular matrix (ECM) protein which regulates collagen fibrillogenesis. However, targeted delivery and effective protein therapy remains a challenge owing to degradation byproteases. Hence, we aimed to deliver Decorin in a sustainable mode for the reduction of TGF-β levels and subsequent scar formation. Herein, we have fabricated PCL-Gelatin bio-mimetic scaffolds to optimize the bio-activity and provide localized delivery of recombinant Decorin. The degradation and drug release patterns reveals that this biomaterial is biodegradable and offers sustained release of the recombinant Decorin. Decorin loaded nanofiber displayed lower adhesion and proliferation rates in in-vitro conditions. Moreover, Decorin loaded scaffolds demonstrated morphological changes in cells, specifically targeting the myofibroblast. The expression of TGF-β was also scrutinized to understand the effect of Decorin loaded nanofibers. Besides, in the in-vitro fibrotic model, Decorin loaded nanofibers efficiently reduced the expression of ECM related proteins. Therefore, we report the sustained delivery of the recombinant Decorin from nanofiber dressing to potentially obstruct scar formation during the process of wound healing.
Collapse
Affiliation(s)
- Ane Nishitha Vijayan
- Biological Materials Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai 600020, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anbuthiruselvan Solaimuthu
- Biological Materials Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai 600020, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Padmaja Murali
- Biological Materials Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai 600020, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Janani Gopi
- Biological Materials Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai 600020, Tamil Nadu, India
| | - Madhan Teja Y
- Biological Materials Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai 600020, Tamil Nadu, India
| | - Akshaya Priya R
- Biological Materials Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai 600020, Tamil Nadu, India
| | - Purna Sai Korrapati
- Biological Materials Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai 600020, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
9
|
Handley EL, Callanan A. Modulation of Tissue Microenvironment Following Myocardial Infarction. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Ella Louise Handley
- Institute for Bioengineering School of Engineering University of Edinburgh Edinburgh EH9 3DW UK
| | - Anthony Callanan
- Institute for Bioengineering School of Engineering University of Edinburgh Edinburgh EH9 3DW UK
| |
Collapse
|
10
|
Li Q, Gao Y, Zhang J, Tang Y, Yangyong S, Wu L, Wu H, Shen M, Liu X, Han L, Xu Z. Crosslinking and functionalization of acellular patches via the self-assembly of copper@tea polyphenol nanoparticles. Regen Biomater 2022; 9:rbac030. [PMID: 35665201 PMCID: PMC9157057 DOI: 10.1093/rb/rbac030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/01/2022] [Accepted: 04/17/2022] [Indexed: 11/13/2022] Open
Abstract
Decellularization is a promising technique to produce natural scaffolds for tissue engineering applications. However, non-crosslinked natural scaffolds disfavor application in cardiovascular surgery due to poor biomechanics and rapid degradation. Herein, we proposed a green strategy to crosslink and functionalize acellular scaffolds via the self-assembly of copper@tea polyphenol nanoparticles (Cu@TP NPs), and the resultant nanocomposite acellular scaffolds were named as Cu@TP-dBPs. The crosslinking degree, biomechanics, denaturation temperature and resistance to enzymatic degradation of Cu@TP-dBPs were comparable to those of glutaraldehyde crosslinked decellularized bovine pericardias (Glut-dBPs). Furthermore, Cu@TP-dBPs were biocompatible and had abilities to inhibit bacterial growth and promote the formation of capillary-like networks. Subcutaneous implantation models demonstrated that Cu@TP-dBPs were free of calcification and allowed for host cell infiltration at Day 21. Cardiac patch graft models confirmed that Cu@TP-dBP patches showed improved ingrowth of functional blood vessels and remodeling of extracellular matrix at Day 60. These results suggested that Cu@TP-dBPs not only had comparable biomechanics and biostability to Glut-dBPs, but also had several advantages over Glut-dBPs in terms of anticalcification, remodeling and integration capabilities. Particularly, they were functional patches possessing antibacterial and proangiogenic activities. These material properties and biological functions made Cu@TP-dBPs a promising functional acellular patch for cardiovascular applications.
Collapse
Affiliation(s)
- Qin Li
- Department of Cardiovascular Lab, Institute of Cardiothoracic Surgery, Changhai Hospital, Shanghai, China
| | - Yuan Gao
- Institute of Cardiovascular Surgery, Changhai Hospital, Shanghai, China
| | - Jiajun Zhang
- Institute of Cardiovascular Surgery, Changhai Hospital, Shanghai, China
| | - Yangfeng Tang
- Institute of Cardiovascular Surgery, Changhai Hospital, Shanghai, China
| | - Shun Yangyong
- Department of Cardiovascular Lab, Institute of Cardiothoracic Surgery, Changhai Hospital, Shanghai, China
| | - Lujia Wu
- Department of Cardiovascular Lab, Institute of Cardiothoracic Surgery, Changhai Hospital, Shanghai, China
| | - Hao Wu
- Department of Cardiovascular Lab, Institute of Cardiothoracic Surgery, Changhai Hospital, Shanghai, China
| | - Meifang Shen
- Institute of Cardiovascular Surgery, Changhai Hospital, Shanghai, China
| | - Xiaohong Liu
- Department of Cardiovascular Lab, Institute of Cardiothoracic Surgery, Changhai Hospital, Shanghai, China
| | - Lin Han
- Institute of Cardiovascular Surgery, Changhai Hospital, Shanghai, China
| | - Zhiyun Xu
- Department of Cardiovascular Lab, Institute of Cardiothoracic Surgery, Changhai Hospital, Shanghai, China
- Institute of Cardiovascular Surgery, Changhai Hospital, Shanghai, China
| |
Collapse
|
11
|
Guan X, Zhou J, Du G, Chen J. Bioprocessing technology of muscle stem cells: implications for cultured meat. Trends Biotechnol 2021; 40:721-734. [PMID: 34887105 DOI: 10.1016/j.tibtech.2021.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 12/17/2022]
Abstract
Muscle stem cells (MuSCs) are essential for the growth, maintenance, and repair of skeletal muscle. In the emerging area of cultured meat, meat products are manufactured with MuSCs using theory and technology from the fields of cell culture, tissue engineering, and food processing. Recently, considerable progress has been made in bioprocessing technologies for MuSCs, including isolation, expansion, differentiation, and tissue building. Here we summarize cutting-edge operational strategies and recently characterized regulatory mechanisms for MuSCs. Furthermore, we discuss their applicability to refining the production process for cultured meat and accelerating its industrialization.
Collapse
Affiliation(s)
- Xin Guan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
12
|
Ekambaram R, Sugumar M, Swaminathan E, Micheal Raj AP, Dharmalingam S. Design and fabrication of electrospun Morinda citrifolia-based nanofibrous scaffold as skin wound dressing material: in vitroand in silicoanalysis. Biomed Mater 2021; 16. [PMID: 33725680 DOI: 10.1088/1748-605x/abef59] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 03/16/2021] [Indexed: 11/11/2022]
Abstract
Wound healing is an urgent problem that impacts quality of life, and the need for biomaterials suitable for the treatment of skin wound healing disease is increasing annually. Innovative biomaterials and treatments for skin abrasions are being relentlessly researched and established in order to improve treatment efficacy. Here, we describe a novel electrospun polymeric nanofibrous scaffold enriched with pharmaceutical bioactive materials extracted fromMorinda citrifolia(MC), which demonstrated efficient skin wound healing therapy due to its excellent human skin keratinocyte proliferation and adhesion inin vitroanalysis. Surface morphological analysis was used to reveal the nano-architectural structure of the electrospun scaffolds. The fabricated nanofibers displayed good antibacterial efficacy by creating an inhibitory zone for the pathogenic microbes studied. MC supported active healing due to the presence of pharmaceuticals associated with wound healing, as revealed by the results of gas chromatography-mass spectrometry and the prediction of activity spectra for substances (PASS) analysis. Since MC is a multi-potential therapeutic herbal plant, it was found that the linoleic acid, olelic acid, and diethyl phthalate present in the extract supported the wound healing proteins glycogen-synthase-kinase-3-β-protein and Protein Data Bank-1Q5K with binding energies of -4.6, -5.2, and -5.9 kcal mol-1, as established by the results ofin silicoanalysis. Thus, by being hydrophilic in nature, targeting wound proteins, increasing the proliferation and adhesion of keratinocytes and combating pathogens, the nanofibrous scaffolds endowed with MC extract proved to be an effective therapeutic material for skin wound dressing applications.
Collapse
Affiliation(s)
| | - Moogambigai Sugumar
- Department of Mechanical Engineering, Anna University, Chennai, Tamil Nadu, India
| | | | | | | |
Collapse
|
13
|
Lan X, Wang H, Bai J, Miao X, Lin Q, Zheng J, Ding S, Li X, Tang Y. Multidrug-loaded electrospun micro/nanofibrous membranes: Fabrication strategies, release behaviors and applications in regenerative medicine. J Control Release 2021; 330:1264-1287. [PMID: 33232749 DOI: 10.1016/j.jconrel.2020.11.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 01/02/2023]
Abstract
Electrospun micro/nanofibrous membranes (EFMs) have been widely investigated as local drug delivery systems. Multiple drugs can be simultaneously incorporated into one EFM to create synergistic effects, reduce side effects, and play their respective roles in the complex physiological processes of tissue regeneration and postoperative adhesion prevention. Due to the versatile electrospinning techniques, sustained and programmed release behaviors of multiple drugs could be achieved by modulating the structure of the EFMs and the location of the drugs. In this review, various multidrug incorporation approaches based on electrospinning are overviewed. In particular, the advantages and limitations of each drug incorporation technique, the methods to control drug release and the effect of one drug release on another are discussed. Then the applications of multidrug-loaded EFMs in regenerative medicine, including wound healing, bone regeneration, vascular tissue engineering, nerve regeneration, periodontal regeneration and adhesion prevention are comprehensively reviewed. Finally, the future perspectives and challenges in the research of multidrug-loaded EFMs are discussed.
Collapse
Affiliation(s)
- Xingzi Lan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Han Wang
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jianfu Bai
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaomin Miao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Quan Lin
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Jianpei Zheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Shukai Ding
- Materials Institute of Atomic and Molecular Science, ShaanXi University of Science and Technology, Xi'an 710021, China
| | - Xiaoran Li
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Yadong Tang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.
| |
Collapse
|
14
|
Marrazzo P, O’Leary C. Repositioning Natural Antioxidants for Therapeutic Applications in Tissue Engineering. Bioengineering (Basel) 2020; 7:E104. [PMID: 32887327 PMCID: PMC7552777 DOI: 10.3390/bioengineering7030104] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022] Open
Abstract
Although a large panel of natural antioxidants demonstrate a protective effect in preventing cellular oxidative stress, their low bioavailability limits therapeutic activity at the targeted injury site. The importance to deliver drug or cells into oxidative microenvironments can be realized with the development of biocompatible redox-modulating materials. The incorporation of antioxidant compounds within implanted biomaterials should be able to retain the antioxidant activity, while also allowing graft survival and tissue recovery. This review summarizes the recent literature reporting the combined role of natural antioxidants with biomaterials. Our review highlights how such functionalization is a promising strategy in tissue engineering to improve the engraftment and promote tissue healing or regeneration.
Collapse
Affiliation(s)
- Pasquale Marrazzo
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Corso d’Augusto 237, 47921 Rimini (RN), Italy
| | - Cian O’Leary
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen’s Green, 2 D02 Dublin, Ireland;
- Science Foundation Ireland Advanced Materials and Bioengineering (AMBER) Centre, RCSI, 2 D02 Dublin, Ireland
| |
Collapse
|
15
|
Wang K, Wang P, Wang M, Yu DG, Wan F, Bligh SA. Comparative study of electrospun crystal-based and composite-based drug nano depots. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:110988. [DOI: 10.1016/j.msec.2020.110988] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/05/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022]
|
16
|
Jin Y, Yu L, Xu F, Zhou J, Xiong B, Tang Y, Li X, Liu L, Jin W. Pharmacokinetics of Active Ingredients of Salvia miltiorrhiza and Carthamus tinctorius in Compatibility in Normal and Cerebral Ischemia Rats: A Comparative Study. Eur J Drug Metab Pharmacokinet 2019; 45:273-284. [PMID: 31828667 PMCID: PMC7089879 DOI: 10.1007/s13318-019-00597-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background and Objective Dan-Hong injection, which comprises extracts of Salvia miltiorrhiza and Carthamus tinctorius, promotes blood circulation and reduces blood stasis. Combination of S. miltiorrhiza and C. tinctorius is more effective in treating cerebral ischemia than S. miltiorrhiza alone. This study aimed to examine the pharmacokinetic characteristics of four active ingredients of S. miltiorrhiza and C. tinctorius, namely danshensu (DSS), hydroxysafflor yellow A (HSYA), and salvianolic acid A (SAA) and B (SAB) in normal and cerebral ischemia rats. Methods Normal and cerebral ischemia rats were injected via the tail vein with each active ingredient, and blood was collected through the jaw vein at different time points. The plasma concentration of the compatibility group was analyzed by high-performance liquid chromatography, and pharmacokinetic parameters were determined using Pharmacokinetic Kinetica 4.4 software. Results The pharmacokinetics of the four active ingredients in the normal and cerebral ischemia rats were consistent with a two-compartment model. The area under the concentration–time curve was higher in normal rats than in cerebral ischemia rats, with a highly significant difference for SAA (P < 0.01). Clearance rates were lower in normal rats than in cerebral ischemia rats, with DSS showing the most significant difference (P < 0.01). Furthermore, there were significant differences between normal and cerebral ischemia rats in the distribution phase-elimination half life for DSS, SAA, and HSYA, as well as in the apparent volume of distribution for the central compartment for DSS and HSYA (P < 0.01). The plasma concentrations of the four active ingredients were higher in normal rats than in cerebral ischemia rats. Conclusion Cerebral ischemia rats showed higher drug clearance rates and longer retention times than normal rats, which may be due to destruction of the blood–brain barrier during cerebral ischemia–reperfusion. The four active ingredients likely integrated and interacted with each other to affect target sites in the brain to protect against cerebral ischemic injury.
Collapse
Affiliation(s)
- Ying Jin
- Department of Rehabilitation in Traditional Chinese Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88 Jiefang Road, Hangzhou, 310000, Zhejiang, China.,Department of Acupuncture and Rehabilitation Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210000, Jiangsu, China
| | - Li Yu
- School of Life Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, Zhejiang, China
| | - Fangfang Xu
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88 Jiefang Road, Hangzhou, 310000, Zhejiang, China
| | - Jie Zhou
- Department of Acupuncture, The Third Affiliated Hospital of Zhejiang, Chinese Medical University, No. 219 Moganshan Road, Hangzhou, 310005, Zhejiang, China
| | - Bing Xiong
- Department of Rehabilitation in Traditional Chinese Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88 Jiefang Road, Hangzhou, 310000, Zhejiang, China
| | - Yinshan Tang
- Department of Rehabilitation in Traditional Chinese Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88 Jiefang Road, Hangzhou, 310000, Zhejiang, China
| | - Xiaohong Li
- School of Life Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, Zhejiang, China
| | - Lanying Liu
- Department of Acupuncture and Rehabilitation Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210000, Jiangsu, China.
| | - Weifeng Jin
- School of Life Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, Zhejiang, China.
| |
Collapse
|
17
|
Abdullah MF, Nuge T, Andriyana A, Ang BC, Muhamad F. Core-Shell Fibers: Design, Roles, and Controllable Release Strategies in Tissue Engineering and Drug Delivery. Polymers (Basel) 2019; 11:E2008. [PMID: 31817133 PMCID: PMC6960548 DOI: 10.3390/polym11122008] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 01/04/2023] Open
Abstract
The key attributes of core-shell fibers are their ability to preserve bioactivity of incorporated-sensitive biomolecules (such as drug, protein, and growth factor) and subsequently control biomolecule release to the targeted microenvironments to achieve therapeutic effects. Such qualities are highly favorable for tissue engineering and drug delivery, and these features are not able to be offered by monolithic fibers. In this review, we begin with an overview on design requirement of core-shell fibers, followed by the summary of recent preparation methods of core-shell fibers, with focus on electrospinning-based techniques and other newly discovered fabrication approaches. We then highlight the importance and roles of core-shell fibers in tissue engineering and drug delivery, accompanied by thorough discussion on controllable release strategies of the incorporated bioactive molecules from the fibers. Ultimately, we touch on core-shell fibers-related challenges and offer perspectives on their future direction towards clinical applications.
Collapse
Affiliation(s)
- Muhammad Faiq Abdullah
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia;
- School of Bioprocess Engineering, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 3, Arau, Perlis 02600, Malaysia
| | - Tamrin Nuge
- Centre of Advanced Materials, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (T.N.); (A.A.)
| | - Andri Andriyana
- Centre of Advanced Materials, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (T.N.); (A.A.)
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Bee Chin Ang
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia;
- Centre of Advanced Materials, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (T.N.); (A.A.)
| | - Farina Muhamad
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
18
|
Morphology and Properties of Electrospun PCL and Its Composites for Medical Applications: A Mini Review. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9112205] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polycaprolactone (PCL) is one of the most used synthetic polymers for medical applications due to its biocompatibility and slow biodegradation character. Combining the inherent properties of the PCL matrix with the characteristic of nanofibrous particles, result into promising materials that can be suitable for different applications, including the biomedical applications. The advantages of nanofibrous structures include large surface area, a small diameter of pores and a high porosity, which make them of great interest in different applications. Electrospinning, as technique, has been heavily used for the preparation of nano- and micro-sized fibers. This review discusses the different methods for the electrospinning of PCL and its composites for advanced applications. Furthermore, the steady state conditions as well as the effect of the electrospinning parameters on the resultant morphology of the electrospun fiber are also reported.
Collapse
|
19
|
Facile preparation of a controlled-release tubular scaffold for blood vessel implantation. J Colloid Interface Sci 2018; 539:351-360. [PMID: 30594010 DOI: 10.1016/j.jcis.2018.12.086] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/16/2018] [Accepted: 12/22/2018] [Indexed: 01/08/2023]
Abstract
Salvianic acid-loaded mesoporous silica nanoparticles into gelatin/polyurethane bilayered small-diameter tubular scaffold were prepared by thermally induced phase separation (TIPS) and electrospinning. Mesoporous silica nanoparticles (MSNs) were selected as carriers to load salvianic acid (SAL). The SAL-loaded MSNs (SAL@MSNs) with an optimized SAL loading efficiency of 10% was initially dispersed in gelatin solution and under a vacuum freeze-drying process as an inner layer of vascular scaffolds. Then, poly(ester-urethane)urea (C-PEEUU) nanofibers were electrospun outside the SAL@MSNs/Gelatin vascular scaffold to strengthen the spongy matrix. The loaded SAL within the MSNs/Gelatin/C-PEEUU bilayered small-diameter tubular scaffold showed a sustained release profile and good mechanical properties. In addition, the drug-loaded composite scaffold showed no unfavorable effects on the adhesion and proliferation of endothelial cells. Moreover, no intimal hyperplasia and acute thrombosis was observed in the short-term implantation in rabbit's carotid artery. We believe the SAL@MSNs/Gelatin/C-PEEUU bilayered vascular scaffolds have promise for vascular tissue engineering applications.
Collapse
|