1
|
Yan S, Sun P, Niu N, Zhang Z, Xu W, Zhao S, Wang L, Wang D, Tang BZ. "One Stone, Four Birds" Ion Engineering to Fabricate Versatile Core-Shell Organosilica Nanoparticles for Intelligent Nanotheranostics. ACS NANO 2022; 16:9785-9798. [PMID: 35653181 DOI: 10.1021/acsnano.2c03550] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Developing effective intelligent nanotheranostics is highly desirable for cancer treatment but remains challenging. In this study, an acidic tumor microenvironment-activated organosilica nanosystem, namely AD-Cu-DOX-HA, is straightforwardly constructed, which is composed of aggregation-induced emission (AIE)-active photosensitizer, copper ion-engineered aminosilica, direct coordination polymer of doxorubicin (DOX), and targeting component hyaluronic acid (HA). AD-Cu-DOX-HA is able to accurately distinguish cancer cells over normal cells; meanwhile, it simultaneously exhibits selective accumulation and copper ion-mediated rapid disassembly and turn-on fluorescence in tumor tissue, consequently achieving efficient tumor diagnosis and tumor-growth inhibition through fluorescence imaging-navigated synergetic photodynamic therapy, copper ion-mediated chemodynamic therapy, and DOX-enabled chemotherapy. This work thus brings fresh insight into the exploration of versatile theranostics and presents a momentous advance for potential clinical cancer treatment.
Collapse
Affiliation(s)
- Saisai Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, P.R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P.R. China
| | - Panpan Sun
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, P.R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P.R. China
| | - Niu Niu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, P.R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P.R. China
| | - Zhijun Zhang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, P.R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P.R. China
| | - Weilin Xu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, P.R. China
| | - Siyi Zhao
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, P.R. China
| | - Lei Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, P.R. China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, P.R. China
| | - Ben Zhong Tang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, P.R. China
- School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City, Guangdong 518172, P.R. China
| |
Collapse
|
3
|
Baig MM, Yousuf MA, Alsafari IA, Ali M, Agboola PO, Shakir I, Haider S, Warsi MF. New mesostructured origami silica matrix: a nano-platform for highly retentive and pH-controlled delivery system. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2021. [DOI: 10.1080/16583655.2021.1902176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Mirza Mahmood Baig
- Department of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Asif Yousuf
- Department of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ibrahim A. Alsafari
- Department of Chemistry, College of Science, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Muhammad Ali
- Department of Chemistry, University of Sargodha, Sargodha, Pakistan
| | - Philips O. Agboola
- College of Engineering Al-Muzahmia Branch, King Saud University, Riyadh, Saudi Arabia
| | - Imran Shakir
- Sustainable Energy Technologies (SET) Center, College of Engineering, King Saud University, Riyadh, Saudi Arabia
| | - Sajjad Haider
- Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Farooq Warsi
- Department of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
5
|
Yan S, Gao Z, Xia Y, Liao X, Chen Y, Han J, Pan C, Zhang Y. A Tetraphenylethene Luminogen-Functionalized Gemini Surfactant for Simple and Controllable Fabrication of Hollow Mesoporous Silica Nanorods with Enhanced Fluorescence. Inorg Chem 2018; 57:13653-13666. [PMID: 30345765 DOI: 10.1021/acs.inorgchem.8b02252] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nanoparticles that possess unique structures and properties are highly desired in the production of multifunctional materials because of their combinational performance. In this study, a facile and effective fabricating strategy is developed to controllably prepare fluorescent hollow mesoporous silica nanorods via the cetyltrimethylammonium bromide (CTAB) and tetraphenylethene (TPE) luminogen-functionalized gemini surfactant (CTPE-C6-CTPE) guided dual-templating approach. Because of its unique chemical structure, water solubility, surface activity, and fluorescent properties, the designed CTPE-C6-CTPE will not only provide an anchored fluorophore for silica nanoparticles but also serve as an intimate partner of CTAB to regulate their construction in the structure-directing process. By properly tuning the molar ratio of CTAB/CTPE-C6-CTPE, the shape-controlled aggregation-induced emission hollow mesoporous silica nanoparticles (AIE-MSNs) can be prepared directly, producing two kinds of silica nanorods (AIE-MSNs-15 and AIE-MSNs-7). In particular, the incorporated bulky TPE luminogens will not only endow AIE-MSNs-7 with enhanced fluorescence intensity (2.3-fold) after the removal of CTAB but also bring about high accessible surface area (606.6 m2/g) and larger pore size (3.2 nm) and pore volume (0.634 cm3/g) for effective loading and sustained release of the hydrophobic anticancer drug camptothecin. CTPE-C6-CTPE enriches the family of gemini surfactants and provides important insights into the convenient fabrication of advanced fluorescent mesoporous materials.
Collapse
Affiliation(s)
- Saisai Yan
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , Hubei 430072 , P. R. China.,Key Laboratory of Biomedical Polymers , Ministry of Education of China , Wuhan , Hubei 430072 , P. R. China
| | - Zhinong Gao
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , Hubei 430072 , P. R. China.,Key Laboratory of Biomedical Polymers , Ministry of Education of China , Wuhan , Hubei 430072 , P. R. China
| | - Yan Xia
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , Hubei 430072 , P. R. China.,Key Laboratory of Biomedical Polymers , Ministry of Education of China , Wuhan , Hubei 430072 , P. R. China
| | - Xueming Liao
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , Hubei 430072 , P. R. China.,Key Laboratory of Biomedical Polymers , Ministry of Education of China , Wuhan , Hubei 430072 , P. R. China
| | - Yifan Chen
- School of Materials Science and Chemistry Engineering , China University of Geosciences , Wuhan , Hubei 430074 , P. R. China
| | - Jia Han
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , Hubei 430072 , P. R. China.,Key Laboratory of Biomedical Polymers , Ministry of Education of China , Wuhan , Hubei 430072 , P. R. China
| | - Chenchen Pan
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , Hubei 430072 , P. R. China.,Key Laboratory of Biomedical Polymers , Ministry of Education of China , Wuhan , Hubei 430072 , P. R. China
| | - Yingfang Zhang
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , Hubei 430072 , P. R. China.,Key Laboratory of Biomedical Polymers , Ministry of Education of China , Wuhan , Hubei 430072 , P. R. China
| |
Collapse
|