1
|
Alhasan A, Abdul Sani S, Tajuddin HA, Ali TH, Hisham S, Ung N, Azhar NA, BM Said NA, Abd Jamil AH, Bradley D. Synthesis of I@MPA-Mn:ZnSe as an efficient contrast agent for CT/fluorescence Bi-modal imaging application. Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2023.110947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
2
|
Ahmed S, Baijal G, Somashekar R, Iyer S, Nayak V. One Pot Synthesis of PEGylated Bimetallic Gold-Silver Nanoparticles for Imaging and Radiosensitization of Oral Cancers. Int J Nanomedicine 2021; 16:7103-7121. [PMID: 34712044 PMCID: PMC8545617 DOI: 10.2147/ijn.s329762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022] Open
Abstract
Background Radiotherapy is an important treatment modality for many types of head and neck squamous cell carcinomas. Nanomaterials comprised of high atomic number (Z) elements are novel radiosensitizers enhance radiation injury by production of free radicals and subsequent DNA damage. Gold nanoparticles are upcoming as promising radiosensitizers due to their high (Z) biocompatibility, and ease for surface engineering. Bimetallic nanoparticles have shown enhanced anticancer activity compared to monometallic nanoparticles. Materials and Methods PEG-coated Au–Ag alloy nanoparticles (BNPs) were synthesized using facile one pot synthesis techniques. Size of ~50±5nm measured by dynamic light scattering. Morphology, structural composition and elemental mapping were analyzed by electron microscopy and SAXS (small-angle X-ray scattering). The radiosensitization effects on KB oral cancer cells were evaluated by irradiation with 6MV X-rays on linear accelerator. Nuclear damage was imaged using confocal microscopy staining cells with Hoechst stain. Computed tomography (CT) contrast enhancement of BNPs was compared to that of the clinically used agent, Omnipaque. Results BNPs were synthesized using PEG 600 as reducing and stabilizing agent. The surface charge of well dispersed colloidal BNPs solution was −5mV. Electron microscopy reveals spherical morphology. HAADF-STEM and elemental mapping studies showed that the constituent metals were Au and Ag intermixed nanoalloy. Hydrodynamic diameter was ~50±5nm due to PEG layer and water molecules absorption. SAXS measurement confirmed BNPs size around 35nm. Raman shift of around 20 cm−1 was observed when BNPs were coated with PEG. 1H NMR showed extended involvement of −OH in synthesis. BNPs efficiently enter cytoplasm of KB cells and demonstrated potent in vitro radiosensitization with enhancement ratio ~1.5–1.7. Imaging Hoechst-stained nuclei demonstrated apoptosis in a dose-dependent manner. BNPs exhibit better CT contrast enhancement ability compared to Omnipaque. Conclusion This bimetallic intermix nanoparticles could serve a dual function as radiosensitizer and CT contrast agent against oral cancers, and by extension possibly other cancers as well.
Collapse
Affiliation(s)
- Shameer Ahmed
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, K.K. Birla Goa Campus, Sancoale, Goa, India
| | - Gunjan Baijal
- Department of Radiation Oncology, Manipal Hospital Goa, Panaji, Goa, India
| | - Rudrappa Somashekar
- Centre for Materials Science and Technology, Vijnana Bhavan, Mysore, Karnataka, India
| | - Subramania Iyer
- Department of Head and Neck Oncology, Amrita Institute of Medical Sciences, Ponekkara, Cochin, India
| | - Vijayashree Nayak
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, K.K. Birla Goa Campus, Sancoale, Goa, India
| |
Collapse
|
3
|
Sneha KR, Sailaja GS. Intrinsically radiopaque biomaterial assortments: a short review on the physical principles, X-ray imageability, and state-of-the-art developments. J Mater Chem B 2021; 9:8569-8593. [PMID: 34585717 DOI: 10.1039/d1tb01513c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
X-ray attenuation ability, otherwise known as radiopacity of a material, could be indisputably tagged as the central and decisive parameter that produces contrast in an X-ray image. Radiopaque biomaterials are vital in the healthcare sector that helps clinicians to track them unambiguously during pre and post interventional radiological procedures. Medical imaging is one of the most powerful resources in the diagnostic sector that aids improved treatment outcomes for patients. Intrinsically radiopaque biomaterials enable themselves for visual targeting/positioning as well as to monitor their fate and further provide the radiologists with critical insights about the surgical site. Moreover, the emergence of advanced real-time imaging modalities is a boon to the contemporary healthcare systems that allow to perform minimally invasive surgical procedures and thereby reduce the healthcare costs and minimize patient trauma. X-ray based imaging is one such technologically upgraded diagnostic tool with many variants like digital X-ray, computed tomography, digital subtraction angiography, and fluoroscopy. In light of these facts, this review is aimed to briefly consolidate the physical principles of X-ray attenuation by a radiopaque material, measurement of radiopacity, classification of radiopaque biomaterials, and their recent advanced applications.
Collapse
Affiliation(s)
- K R Sneha
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi - 682022, India.
| | - G S Sailaja
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi - 682022, India. .,Interuniversity Centre for Nanomaterials and Devices, CUSAT, Kochi - 682022, India.,Centre for Advanced Materials, CUSAT, Kochi - 682022, India
| |
Collapse
|
4
|
Li Z, Ding X, Yu B, Min Y, He B, Shen Y, Cong H. A novel M 2Ga 2GeO 7:N 3+(M = Ca, Ba, Sr; N = Cr, Nd, Er) sub-micron phosphor with multiband NIR emissions: preparation, structure, properties, and LEDs. NANOTECHNOLOGY 2021; 32:395703. [PMID: 34082407 DOI: 10.1088/1361-6528/ac07d3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
Near-infrared (NIR) emission materials can be widely applied in various fields, such as food detection, imaging, treatment, electronic products. With the trend of miniaturization of equipment, smaller materials are needed. In this work, we successfully synthesized a series of M2Ga2GeO7:N3+(M = Ca, Ba, Sr; N = Cr, Nd, Er) samples and then focused on the study of Nd3+doped Sr2Ga2GeO7(SGGO). A series of SGGO:xNd3+sub-micron phosphors were prepared via a microwave-assisted sol-gel process combined with subsequent calcination at 750 ℃, and the structural information and luminescent properties were systematically studied. SGGO is a representative tetragonal crystal and belonging to the space group of P4¯21m (113). The Nd3+ions occupy eight-coordinated Sr2+sites in the crystal lattice. From SEM analysis, the average particle size distribution is 219.7 ± 41.4 nm. The sub-micron phosphors have rich excitation spectra ranging from 350 nm to 850 nm and can produce multiband NIR emissions of 1331, 1056, and 905 nm when excited by ultraviolet and NIR light. The maximum emission intensity was obtained by optimizing the doping ratio of Nd3+ions. A commercial chip was then utilized to fabricate light-emitting diodes (LEDs) to verify its application potential in NIR-II mini-LEDs. Compared with blue light LEDs, the as-prepared LEDs had good imaging penetration depth and could be clearly observed under 10 mm of chicken breast coverage. The maximum imaging penetration depth can be 33 mm.
Collapse
Affiliation(s)
- Zhihua Li
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, People's Republic of China
| | - Xin Ding
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, People's Republic of China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, People's Republic of China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, People's Republic of China
| | - Yu Min
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, People's Republic of China
| | - Bin He
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, People's Republic of China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, People's Republic of China
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, People's Republic of China
| |
Collapse
|
5
|
Gao XS, Ding MJ, Zhang J, Zhao LD, Ren XM. Phase selectivity and tunable photophysical nature of rare earth metal-organic frameworks of Eu xY 1-x-PTC (H 3PTC = 2,4,6-pyridine tricarboxylic acid; x = 0-1). Dalton Trans 2020; 49:14985-14994. [PMID: 33084690 DOI: 10.1039/d0dt03150j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Two rare earth metal-organic frameworks (MOFs), [Y2(PTC)2(H2O)2]·3H2O (Y-PTC) and [Eu2(PTC)2(H2O)5]·H2O (Eu-PTC) together with the solid solutions [Eu2xY2(1-x)(PTC)2(H2O)5]·H2O (EuxY1-x-PTC, x = 0.013-0.82), were synthesized hydrothermally, and characterized by microanalysis, IR spectroscopy, TG, powder, and single crystal X-ray diffraction techniques. Eu-PTC and Y-PTC showed different crystal structures; however, all solid solutions were isomorphic to Eu-PTC even at x = 0.013, leading to the IR spectra and TG plots of the solid solutions to be similar to those of Eu-PTC but distinct from those of Y-PTC. DFT calculations for the crystal lattice energy demonstrated that the procedure for the crystallizing nucleation of Eu-PTC occurred prior to that of Y-PTC in the reaction solution, leading to the all solid solutions being isomorphic to Eu-PTC. The solid emission spectra at ambient condition showed that Y-PTC emitted ligand-based phosphorescence at 433 nm with a quantum yield (QY) of 27.02%, while Eu-PTC and EuxY1-x-PTC (x = 0.013-0.82) emitted the characteristic luminescence of Eu3+ ions, and most solid solutions showed higher QYs than Eu-PTC; in particular, the QY of Eu0.195Y0.805-PTC was up to 29.48%, i.e., increased by 10% regarding Eu-PTC (19.86%). Interestingly, solid solutions with x = 0.013-0.395 showed excitation-wavelength-dependent luminescence, and such type of luminescence MOFs have promising applications including the areas of precise temperature, gas sensing and information encryption or anti-counterfeiting materials.
Collapse
Affiliation(s)
- Xu-Sheng Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry & Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | | | | | | | | |
Collapse
|
6
|
Lutter JC, Eliseeva SV, Collet G, Martinić I, Kampf JW, Schneider BL, Carichner A, Sobilo J, Lerondel S, Petoud S, Pecoraro VL. Iodinated Metallacrowns: Toward Combined Bimodal Near‐Infrared and X‐Ray Contrast Imaging Agents. Chemistry 2020; 26:1274-1277. [DOI: 10.1002/chem.201905241] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Jacob C. Lutter
- Department of ChemistryWillard H. Dow LaboratoriesThe University of Michigan Ann Arbor MI 48109 United States
| | | | - Guillaume Collet
- Centre de Biophysique MoléculaireCNRS UPR 4301 45071 Orléans Cedex 2 France
| | - Ivana Martinić
- Centre de Biophysique MoléculaireCNRS UPR 4301 45071 Orléans Cedex 2 France
| | - Jeff W. Kampf
- Department of ChemistryWillard H. Dow LaboratoriesThe University of Michigan Ann Arbor MI 48109 United States
| | - Bernadette L. Schneider
- Department of ChemistryWillard H. Dow LaboratoriesThe University of Michigan Ann Arbor MI 48109 United States
| | - Aidan Carichner
- Department of ChemistryWillard H. Dow LaboratoriesThe University of Michigan Ann Arbor MI 48109 United States
| | - Julien Sobilo
- Centre d'Imagerie du Petit AnimalPHENOMIN-TAAM 45071 Orléans Cedex 2 France
| | - Stéphanie Lerondel
- Centre d'Imagerie du Petit AnimalPHENOMIN-TAAM 45071 Orléans Cedex 2 France
| | - Stéphane Petoud
- Centre de Biophysique MoléculaireCNRS UPR 4301 45071 Orléans Cedex 2 France
| | - Vincent L. Pecoraro
- Department of ChemistryWillard H. Dow LaboratoriesThe University of Michigan Ann Arbor MI 48109 United States
| |
Collapse
|
7
|
Kalaivani S, Guleria A, Kumar D, Kannan S. Bulk Yttria as a Host for Lanthanides in Biomedical Applications: Influence of Concentration Gradients on Structural, Mechanical, Optical, and in Vitro Imaging Behavior. ACS APPLIED BIO MATERIALS 2019; 2:4634-4647. [DOI: 10.1021/acsabm.9b00718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Anupam Guleria
- Centre of Biomedical Research, SGPGIMS Campus, Raibareli Road, Lucknow 226014, India
| | - Dinesh Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Raibareli Road, Lucknow 226014, India
| | - Sanjeevi Kannan
- Centre for Nanoscience and Technology, Pondicherry University, Puducherry 605 014, India
| |
Collapse
|
8
|
Gao XS, Dai HJ, Ding MJ, Pei WB, Ren XM. Stereochemically Active and Inactive Lone Pairs in Two Room-Temperature Phosphorescence Coordination Polymers of Pb2+ with Different Tricarboxylic Acids. Inorg Chem 2019; 58:6772-6780. [DOI: 10.1021/acs.inorgchem.9b00215] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Xu-Sheng Gao
- State Key Laboratory of Materials−Oriented Chemical Engineering and College of Chemistry & Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Hai-Jie Dai
- State Key Laboratory of Materials−Oriented Chemical Engineering and College of Chemistry & Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Mei-Juan Ding
- State Key Laboratory of Materials−Oriented Chemical Engineering and College of Chemistry & Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Wen-Bo Pei
- State Key Laboratory of Materials−Oriented Chemical Engineering and College of Chemistry & Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Xiao-Ming Ren
- State Key Laboratory of Materials−Oriented Chemical Engineering and College of Chemistry & Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| |
Collapse
|
9
|
Srigurunathan K, Meenambal R, Guleria A, Kumar D, Ferreira JMDF, Kannan S. Unveiling the Effects of Rare-Earth Substitutions on the Structure, Mechanical, Optical, and Imaging Features of ZrO 2 for Biomedical Applications. ACS Biomater Sci Eng 2019; 5:1725-1743. [PMID: 33405549 DOI: 10.1021/acsbiomaterials.8b01570] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The impact of selective rare-earth (RE) additions in ZrO2-based ceramics on the resultant crystal structure, mechanical, morphological, optical, magnetic, and imaging contrast features for potential applications in biomedicine is explored. Six different RE, namely, Yb3+, Dy3+, Tb3+, Gd3+, Eu3+, and Nd3+ alongside their variations in the dopant concentrations were selected to accomplish a wide range of combinations. The experimental observations affirmed the roles of size and dopant concentration in determining the crystalline phase behavior of ZrO2. The significance of tetragonal ZrO2 (t-ZrO2) → monoclinic ZrO2 degradation is evident with 10 mol % of RE substitution, while RE contents in the range of 20 and 40 mol % ensured either t-ZrO2 or cubic ZrO2 (c-ZrO2) stability until 1500 °C. High RE content in the range of 80-100 mol % still confirmed the structural stability of c-ZrO2 for lower-sized Yb3+, Dy3+, and Tb3+, while the c-ZrO2 → RE2Zr2O7 phase transition becomes evident for higher-sized Gd3+, Eu3+, and Nd3+. A steady decline in the mechanical properties alongside a quenching effect experienced in the emission phenomena is apparent for high RE concentrations in ZrO2. On the one hand, the paramagnetic characteristics of Dy3+, Tb3+, Gd3+, and Nd3+ fetched excellent contrast features from magnetic resonance imaging analysis. On the other hand, Yb3+ and Dy3+ added systems exhibited good X-ray absorption coefficient values determined from computed tomography analysis.
Collapse
Affiliation(s)
| | - Rugmani Meenambal
- Centre for Nanoscience and Technology, Pondicherry University, Puducherry 605 014, India.,Department of Clinical Pharmacology and Toxicology, National Institute of Mental Health and Neuro Science, Bangalore 560029, India
| | - Anupam Guleria
- Centre of Biomedical Research, SGPGIMS Campus, Raibareli Road, Lucknow 226014, India
| | - Dinesh Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Raibareli Road, Lucknow 226014, India
| | | | - Sanjeevi Kannan
- Centre for Nanoscience and Technology, Pondicherry University, Puducherry 605 014, India
| |
Collapse
|
10
|
Xu J, Gulzar A, Yang P, Bi H, Yang D, Gai S, He F, Lin J, Xing B, Jin D. Recent advances in near-infrared emitting lanthanide-doped nanoconstructs: Mechanism, design and application for bioimaging. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.11.014] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|